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  Abstract.  The fuzzy set theory has been applied in many fields such as management, 
engineering etc.  In modern management applications ranking using fuzzy numbers are 
the most important aspect in decision making process. This paper proposes a new method 
on the incentre of centroids and uses of Euclidean distance to ranking generalized 
hexagonal fuzzy numbers. We have used a ranking method for ordering fuzzy numbers 
based on areas and weights of generalized fuzzy numbers.  
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1. Introduction  
Ranking fuzzy number is used mainly in decision-making, data analysis, artificial 
intelligence and various other fields of operations research. In fuzzy environment ranking 
fuzzy numbers is a very important decision making procedure. Ranking fuzzy numbers 
were first proposed by Jain [9] for decision making in fuzzy situations by representing the 
ill defined quantity as a fuzzy set and he has given a  procedure for multi aspect decision 
making using fuzzy sets in [10]. Some of these ranking methods have been compared and 
reviewed by Bortolan and Degani [3] and more recently by Chen and Hwang [5]. Lee and 
Li [14] proposed the comparison of fuzzy numbers. Liou and Wang [15] presented 
ranking fuzzy numbers with interval values. The centroids of fuzzy numbers have been 
examined recently and one of the most commonly used methods under the class of fuzzy 
scoring is the centroid point method. Centroid concept in ranking fuzzy number only 
started in 1980 by Yager [23]. Yager was the researcher who contributed the centroid 
concept in the ranking method and used the horizontal co-ordinate as x and the vertical y 
co-ordinates of the centroid point as the ranking index.  Cheng [6] used a centroid based 
distance method to rank fuzzy numbers in 1998.Then Chu and Tsao [7] utilized the area 
between the centroid point and the origin to rank fuzzy numbers in 2002. Abbasbandy 
and Asady [1] suggested a sign distance method for ranking fuzzy numbers in 2006. 
Wang and Lee [22] proposed the revised method of ranking fuzzy numbers with an area 
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between the centroid and original points in2008.Since then several methods have been 
proposed by various researchers in [2,16-21] and ranking trapezoidal fuzzy numbers 
using area compensation distance method, maximizing and minimizing set decomposition 
principle and signed distance [4,24]. For an overview of fuzzy arithmetic theory one may 
refer [11-13] and the mean-value of fuzzy number in [8]. 

In this paper, a new method is proposed which is based on incentre of centroids 
to rank fuzzy quantities .In a hexagonal fuzzy number, the hexagonal is split into three 
plane figures where the first part being a Triangle and the second a Hexagon and the third 
once again a Triangle and then calculating the centroids of each plane figure followed by 
the incenter of these centroids and then finding the Euclidian distance. The proposed 
approach is compared with different existing approaches. 
 
 2. Preliminaries 
Definition 2.1. Let X be a nonempty set. A fuzzy set A in X is characterized by its 
membership function : [0,1],A X →  where A(x) is interpreted as the degree of 
membership of element x in fuzzy A for each x∈X. 
 
Definition 2.2. A fuzzy set is convex if 

                 (λx1+(1-λ)x2) ≥ min )}(),({ 2~1~ xx
AA

µµ ]1,0[,, 21 ∈∈∀ λXxx  

 
Definition 2.3. The fuzzy set Ã is normal if height (A) = 1. In other words there exist at 

least one 1)(~ =∈ xthatsuchXx
A

µ  

 
Definition 2.4. A Fuzzy number “A” is a convex normalized fuzzy set on the real line R 
such that: 

• There exist at least one x∈R with  ( ) 1A xµ =  

• ( )A xµ  is piecewise continuous. 

 
3. Hexagonal Fuzzy Numbers 

A fuzzy number HAɶ  is a hexagonal fuzzy number denoted by  HAɶ (a1, a2, a3, a4, a5, a6) 

where a1, a2, a3, a4, a5, a6 are real numbers and its membership function ( )
HA

xµ
ɶ

 is given 

below. 
 

Definition 3.1. A fuzzy set  HAɶ  defined on the universal set of real numbers R is said to 

be generalized fuzzy number of its membership function has the following characteristics 
function 
     (i) P1(u) is a bounded left continuous non decreasing function over [0,0.5] 
     (ii) Q1 (v) is a bounded left continuous non decreasing function over [0.5,w] 
     (iii) Q2 (v) is a bounded continuous non increasing function over [w, 0.5] 
     (iv) P2 (u) is a bounded left continuous non increasing function over [0.5,0]. 
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Remark 3.1.1. If w = 1, then the hexagonal fuzzy number is called a normal hexagonal 
fuzzy number.  
 
Remark 3.1.2. Membership function  ( )

HA
xµ

ɶ
 are continuous functions. 

 

Definition 3.2. A positive hexagonal fuzzy number  HAɶ  is denoted by 

  HAɶ = (a1, a2, a3, a4, a5, a6) where all ai’s > 0    for all i= 1, 2, 3,4,5,6. 
 

Definition 3.3. A negative hexagonal fuzzy number  HAɶ  is denoted by  

HAɶ = (a1, a2, a3, a4, a5, a6) where all   ai’s < 0  for all i= 1, 2, 3,4,5,6. 

 

Definition 3.4. If   HAɶ  = (a1, a2, a3, a4, a5, a6) is the hexagonal fuzzy number.  

Then    HA− ɶ = (-a6, - a5, -a4, - a3, -a2, -a1) which is the symmetric image of   HAɶ . 

 
3.5. Ordering of Hexagonal fuzzy number 

 Let  HAɶ = (a1, a2, a3, a4, a5, a6) and  HBɶ  = (b1, b2, b3, b4, b5, b6) be in F(R) be the set of all 

real hexagonal fuzzy numbers 

i) ≈   if and only if  ai= bi,  i=1,2,3,4,5,6 

ii)   ≤     if and only if  ai≤ bi,  i=1,2,3,4,5,6 

iii)  ≥      if and only if  ai≥ bi,  i=1,2,3,4,5,6. 
 

3.6. Ranking of Hexagonal Fuzzy Numbers 
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An efficient approach for comparing the fuzzy numbers is by the use of a ranking  
function R : F (R) → R, where F (R) is a set of fuzzy numbers defined on set of real  
numbers, which maps each fuzzy number into a real number, where a natural order     

exists. For any two hexagonal fuzzy numbers HAɶ =(a1,a2,a3,a4,a5,a6) and HBɶ  

=(b1,b2,b3,b4,b5,b6) we have the following comparison  

i) ≈  ⇔  R(  ) 

ii)   ≥ ⇔  R( ) ≥ R( ) 

iii)   ≤  ⇔ R(  ) ≤ R( ) 
  
4. Proposed  Method  
                                                              
 
 

                                 
                                     Fig.1 Generalized hexagonal fuzzy number  
  

The centriod of a hexagonal fuzzy number is considered to be the balancing point 
of the hexagon (Fig.1). Divide the hexagonal into three plane figures .These three plane 
figures are a Triangle  ABQ, Hexagon CDERQB and again a triangle REF respectively. 
Let the centriod of the three plane figures be  G1,G2 ,G3,  respectively. The incenter of the 
centroids G1,G2 ,G3 is taken as the point of reference to define the ranking of generalized 
hexagonal fuzzy numbers. The reason for selecting this point as a point of reference is 
that each centroid points are balancing points of each individual plane figure and the 
incenter of these centroid points is a much more balancing point for a generalized 
hexagonal fuzzy number. Therefore, this point would be a better point than the centroid 

point of the hexagon.  Consider a generalize d hexagonal fuzzy number   =(a1, a2 ,a3, 
a4,a5, a6;w).  The centriod of the three plane figures are  
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respectively. 

 Equation of the line   is  y=  and G2 does not lie on the line G1 G3. 
Therefore G1  ,G2 and  G3 are non- collinear and they form  a triangle. 
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We define the incentre 0 0( , )
HA

I x yɶ
  of the triangle with vertices G1 ,G2 and  G3 of the  

generalized    hexagonal fuzzy number  =(a1, a2 ,a3, a4,a5, a6;w) as 
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         (2) 
The ranking function of the generalized    hexagonal fuzzy number 

HAɶ  =(a1, a2 ,a3, a4,a5, a6;w),which maps the set of all fuzzy numbers to a set of real 

numbers 

 is defined as: 
2

0
2

0)
~

( yxAR H +=                                                           (3) 
This  is the Euclidean distance from the incentre of the centroids. 

In sum, the rank of two fuzzy numbers  HAɶ  and HBɶ  based on the incentre of the 

centroids is given in the following steps. 

Let HAɶ =(a1, a2 ,a3, a4,a5, a6;w1) and  HBɶ =(b1,b2,b3,b4,b5,b6;w2)  be two generalized 

Hexagonal Fuzzy numbers then, 
Step 1.  

Find HHH AAA
~~~ ,, γβα

& HHH BBB
~~~ ,, γβα

 
Step 2. 

Find 
),( 00~ yxI

HA &
),( 00~ yxI

HB  
Step 3.  

Find 
2

0
2

0)
~

( yxAR H += &  
2

0
2

0)
~

( yxBR H += and using the following for the ranking of fuzzy 
numbers  

i) If R(   then    

ii)  If R( ) < R(  ) then    ≤  

iii)  If R( ) ≈ R(  ) then    ≈  
 

Example 5.1. Let  HAɶ =(0.2,0.3,0.5,0.6,0.7,0.9;0.35)  and  

HBɶ =(0.1,0.2,0.4,0.5,0.6,0.9;0.7) be two  generalized fuzzy numbers, then, 

Step 1: 

6
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HBα
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Step 3: 
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HAR
= 0.44    
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Example 5.2. Let (0.1,0.2,0.4,0.6,0.7,0.9;1)HA =ɶ  and (0.2,0.4,0.6,0.7,0.8,0.9;1)HB =ɶ   be two 

generalized fuzzy numbers. Then, 
Step 1; 
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Step 3: 
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= 0.48   
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~
 

 
Example I of  T.C.Chu and C.T.Tsao Approach: 

Let (0.2,0.3,0.5,0.6,0.7,0.9;0.35)HA =ɶ   and  (0.1,0.2,0.4,0.5,0.6,0.9;0.7)HB =ɶ  be two  

 generalized fuzzy numbers, then 
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Example II of  T.C.Chu and C.T.Tsao: 

Let  (0.1,0.2,0.4,0.6,0.7,0.9;1)HA =ɶ   and  (0.2,0.3,0.6,0.7,0.8,0.9;1)HB =ɶ  be two generalized 

fuzzy numbers 
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Approaches  Chu T.C. and  
Tsao .C T.[7] 

Proposed approach in 
Hexagonal  

Ex 1 HH BA
~~

>  HH BA
~~

>  
Ex2  HH BA

~~
>  HH BA

~~
<  

 
6. Conclusion 
In this method, splitting the generalized hexagonal fuzzy numbers into three plane figures 
and then calculating the centroid of each plane figure followed by the incenter of the 
centroid and then finding the Euclidian distance and the same problem was compared 
with Chu and  Tsao [7] method with comparative examples. The main advantage of the 
proposed approach is that this provides the correct ordering of generalized and normal 
hexagonal fuzzy numbers and also easy to apply in the real life problems. Presently in 
real life there are many situations and parameters with more criteria, so in order to get a 
comprehensive result this method is very useful.     
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