Annals of Pure and Applied Mathematics Vol. 9, No. 1, 2015, 119-124 ISSN: 2279-087X (P), 2279-0888(online) Published on 30 January 2015 www.researchmathsci.org

Transitive Compatible Pair Congruence

Pei Yang¹, Zhenlin Gao² Hai-zhen Liu³ and Jing Zhang⁴

¹College of Science, University of Shanghai for Science and Technology Shanghai-200093, China. Email: 742155149@qq.com

²College of Science, University of Shanghai for Science and Technology Shanghai-200093, China. Email: zlgao@sina.com

³College of Science, University of Shanghai for Science and Technology Shanghai-200093, China. Email: 592663972@qq.com

> ⁴College of Science, Dalian University of Technology Dalian-116024, China. Email: 731689657@qq.com Corresponding author: Pei Yang

Received 19 January 2015; accepted 28 January 2015

Abstract. In this paper, we introduce the concepts of transitive compatible pair congruence $\rho_{(H,K)}$. Prove that any congruence on a semigroup *S* can be expressed as a transitive compatible pair congruence.

Keywords: Semigroup ; Transitive compatible pair; congruence

AMS Mathematics Subject Classification (2010): 20M10

1. Introduction and preliminaries

The Green's star relations \mathscr{L}^* , \mathscr{R}^* , \mathscr{D}^* , \mathscr{H} , \mathscr{J}^* on semigroup S are defined as follows.

$$\begin{aligned} (a,b) &\in \mathcal{L}^* \Leftrightarrow (\forall x, y \in S^1) \ ax = ay \Leftrightarrow bx = by; \\ (a,b) &\in \mathcal{R}^* \Leftrightarrow (\forall x, y \in S^1) \ xa = ya \Leftrightarrow xb = yb; \\ \mathcal{D}^* &= \mathcal{L}^* \lor \ \mathcal{R}^* \ , \ \mathcal{H}^* &= \mathcal{L}^* \land \ \mathcal{R}^* \ , \ a \ \mathcal{J}^* \ b \Leftrightarrow J^*(a) = J^*(b) \end{aligned}$$

where $J^*(x)(x \in S)$ represents the minimal \mathcal{J}^* -ideal generated by x.

Definition 1.1. Assume that *P* represents a kind property about semigroups, if the semigroup *S* has *P* property, then *S* is called a *P* semigroup. A congruence ρ on the semigroup *S* is called *P* congruence, if S/ρ is a *P* semigroup.

We shall call a semigroup *S* a *rpp* semigroup, if every \mathscr{L}^* -class of *S* contains idempotents of *S* and for any $a \in S$, $e \in E(L_a^*)$, then a = ae. A *rpp* semigroup *S* is called adequate, if for any $a \in S$, there exists a unique $a^+ \in E(L_a^*)$ such that $a = a^+a$.

Pei Yang, Zhenlin Gao, Hai-zhen Liu and Jing Zhang

The following basic conclusions are needed throughout this paper.

Lemma 1.1. Let *S* be a semigroup, for any $a \in S$, $e \in E(S)$ the following statements are equivalent:

(1) $a \mathcal{L}^* e(a \mathcal{R}^* e);$

(2) ae = a (ea = a), and for any $s, t \in S^1$, as = at(sa = ta) implies es = et(se = te).

Lemma 1.2. (1) *L* and *L*^{*} both are right congruences on semigroup *S*; (2) $R \subseteq R^*$, $L \subseteq L^*$, $D \subseteq D^*, H \subseteq H^*, J \subseteq J^*$; (3) $R^* |_{\text{Re}_g(S)} = R, L^* |_{\text{Re}_g(S)} = L$.

Lemma 1.3. (1) Band *B* has a semilattice decomposition $B = \bigcup_{\alpha \in Y} J_{\alpha}$ which rest with the semilattice *Y*, where J_{α} ($\forall \alpha \in Y$) are *J* -classes of *B*.

(2) Left regular band I is a semilattice of left zero bands L_{α} , where L_{α} are L -classes of I.

2. Transitive compatible pair congruences

From this section, we always assume that semigroup S mentioned below contains zero element, unless otherwise stated.

Definition 2.1. Let *H* and *K* be two subsemigroups of semigroup *S*, such that $S = H \cup K$, ρ^{H} and ρ^{K} be two relations on *H* and *K* respectively. We define a relation on S by ρ^{H} and ρ^{K} as follows:

$$\rho_{(H,K)} = \rho^H \bigcup \rho^K = \{ (a,b) \in S \times S \mid (a,b) \in \rho^H \text{ or } (a,b) \in \rho^K \}.$$
(2.1)

If ρ^{H} and ρ^{K} satisfy the following conditions:

$$(a,b) \in \rho^{H}, \ (b,c) \in \rho^{K} \Rightarrow (a,c) \in \rho_{(H,K)};$$

$$(2.2)$$

$$(\forall x \in S)(a,b) \in \rho^{H} (resp,(a,b) \in \rho^{K})$$

$$\Rightarrow \begin{cases} (xa,xb) \in \rho^{H} \text{ or } (xa,xb) \in \rho^{K}, \\ or (\exists c \in H \cap K)(xa,c) \in \rho^{H}, (c,xb) \in \rho^{K}; \end{cases}$$
(2.3)

$$\begin{cases} (ax,bx) \in \rho^{H} \text{ or } (ax,bx) \in \rho^{K}, \\ or \ (\exists \ c \in H \cap K)(ax,c) \in \rho^{H}, (c,bx) \in \rho^{K}, \end{cases}$$
(2.4)

then, (H, K) is called a *transitive compatible pair of* $\rho_{(H,K)}$.

Theorem 2.1. Let (H, K) be a transitive compatible pair of $\rho_{(H,K)}$ defined as Definition 2.1. Then the following conclusions hold :

(1) $\rho_{(H,K)}$ is an equivalent relation on *S* if and only if ρ^{H} and ρ^{K} are equivalent relations on *H* and *K* respectively. And we also have

Transitive Compatible Pair Congruence

$$\rho^{H} = \rho_{(H,K)}|_{H} \text{ or } \rho^{K} = \rho_{(H,K)}|_{K} ;$$
(2.5)

(2) $\rho_{(H,K)}$ is a congruence on S if and only if ρ^H and ρ^K are congruences on H and K respectively.

Proof: (1) \Rightarrow . Assume that the relation $\rho_{(H,K)}$ is an equivalent relation on *S*, for any $a \in H$, $(a,a) \in \rho_{(H,K)}$ implies $(a,a) \in \rho^{H}$, thus the relation ρ^{H} is reflexive. Let $(a,b) \in \rho^{H}$, by formula (2.1) we have $(a,b) \in \rho_{(H,K)}$, thus $(b,a) \in \rho_{(H,K)}$, namely $(b,a) \in \rho^{H}$ by $(b,a) \in H \times H$ and formula (2.1), this shows that the relation ρ^{H} is symmetric. Similarly, we have

$$(a,b),(b,c) \in \rho^{H} \Longrightarrow (a,b),(b,c) \in \rho_{(H,K)} \Longrightarrow (a,c) \in \rho_{(H,K)} \Longrightarrow (a,c) \in \rho^{H}.$$

So we conclude that ρ^{H} is an equivalent relation on H. Also, using the same argument as above, we obtain that ρ^{K} is an equivalent relation on K.

 \Leftarrow . Let ρ^{H} , ρ^{K} be equivalent relations on *H* and *K* respectively, for any *a* ∈ *S*, then *a* ∈ *H* or *a* ∈ *K*. Hence (*a*, *a*) ∈ ρ^{H} or (*a*, *a*) ∈ ρ^{K} , this implies (*a*, *a*) ∈ $\rho_{(H,K)}$ by formula (2.1), thus the relation $\rho_{(H,K)}$ is reflexive. Let (*a*, *b*) ∈ $\rho_{(H,K)}$, then (*a*, *b*) ∈ ρ^{H} or (*a*, *b*) ∈ ρ^{K} by formula (2.1). Hence, we can infer that (*b*, *a*) ∈ ρ^{H} or (*b*, *a*) ∈ ρ^{K} , this fact shows (*b*, *a*) ∈ $\rho_{(H,K)}$.Namely, $\rho_{(H,K)}$ is symmetric. Next, we shall illustrate that $\rho_{(H,K)}$ is transitive. Let (*a*, *b*), (*b*, *c*) ∈ $\rho_{(H,K)}$, according to formula (2.1), there exist four cases as follows:

(i)
$$(a,b), (b,c) \in \rho^{H}$$
; (ii) $(a,b), (b,c) \in \rho^{K}$;
(iii) $(a,b) \in \rho^{H}, (b,c) \in \rho^{K}$; (iv) $(a,b) \in \rho^{K}, (b,c) \in \rho^{H}$

For case (i) (resp, case(ii)), we know $(a,c) \in \rho^H$ (resp, $(a,c) \in \rho^K$), it allows that $(a,c) \in \rho_{(H,K)}$. Now we considers the last two cases. Since (H, K) is a transitive compatible pair of $\rho_{(H,K)}$, by formula (2.2) we have $(a,c) \in \rho_{(H,K)}$ by formula(2.1). Summing up the above cases, we know that the relation $\rho_{(H,K)}$ is transitive. Consequently, the relation $\rho_{(H,K)}$ is an equivalent relation on *S*. Finally, we shall prove formula (2.5). Clearly,

$$\rho^{H} \subseteq \rho_{(H,K)}|_{H}, \rho^{K} \subseteq \rho_{(H,K)}|_{K}.$$

We assume that $\rho^{K} \subset \rho_{(H,K)}|_{K}$, then we will illustrate $\rho^{H} = \rho_{(H,K)}|_{H}$. Since $\rho_{(H,K)}|_{K} = \rho^{K} \bigcup (\rho_{(H,K)}|_{(H \cap K)})$, thus according to Definition 2.1 we have that

$$\rho_{(H,K)} = (\rho_{(H,K)}|_H) \bigcup (\rho_{(H,K)}|_K) \supseteq (\rho_{(H,K)}|_H) \bigcup \rho^K \supseteq \rho^H \bigcup \rho^K = \rho_{(H,K)}.$$

So, we can include that $\rho^{H} = \rho_{(H,K)}|_{H}$, and $\rho^{H} \supseteq \rho_{(H,K)}|_{(H\cap K)}$. (2) $\leftarrow \cdot \rho_{(H,K)}$ is an equivalent relation on *S*. Let $(a,b) \in \rho_{(H,K)}$, then $(a,b) \in \rho^{H}$ or $(a,b) \in \rho^{K}$. Now we consider the situation $(a,b) \in \rho^{H}$. For any $x \in S$. If $x \in H$, since Pei Yang, Zhenlin Gao, Hai-zhen Liu and Jing Zhang

 $(a,b) \in \rho^{H}$ and ρ^{H} is a congruence on *H*, thus we have $(xa,xb) \in \rho^{H}$, $(ax,bx) \in \rho^{H}$. If $x \in K$, by formula (2.3) given in Definition 2.1, we have

 $(xa, xb) \in \rho^H$ or $(xa, xb) \in \rho^K$, or $(\exists c \in H \cap K)(xa, c) \in \rho^H$, $(c, xb) \in \rho^K$.

Hence, we obtain $(xa, xb) \in \rho_{(H,K)}$. Similarly, we have $(ax, bx) \in \rho_{(H,K)}$.

For the situation $(a,b) \in \rho^{K}$, similarly, we also have $(xa,xb), (ax,bx) \in \rho_{(H,K)}$. Thus $\rho_{(H,K)}$ is a congruence on *S*.

⇒. Let $(a,b) \in \rho^H$, then $(a,b) \in \rho_{(H,K)}$. For $h \in H$, since *H* is a subsemigroup of *S*, thus $(ha,hb), (ah,bh) \in H \times H$. By the given condition, $\rho_{(H,K)}$ is a congruence on *S*, we immediately have $(ha,hb), (ah,bh) \in \rho_{(H,K)}$, therefore $(ha,hb), (ah,bh) \in \rho^H$ by formula(2.1) and $(ha,hb), (ah,bh) \in H \times H$. This shows that ρ^H is a congruence on *H*. In a similar way, we also can obtain that ρ^K is a congruence on *K*.

Definition 2.2. If the relation $\rho_{(H,K)} = \rho^H \cup \rho^K$ defined by formula (2.1) is a congruence on semigroup *S*, then we call $\rho_{(H,K)}$ a *transitive compatible pair congruence* on *S*. For the *transitive compatible pair congruence* $\rho_{(H,K)} = \rho^H \cup \rho^K$ on *S*, if at least one of *H* and *K* is a proper subsemigroup of *S* and $\rho^H \neq 1_H \text{ or } \rho^K \neq 1_K$, then we call $\rho_{(H,K)}$ a proper transitive compatible pair congruence on *S*, and (H,K) a proper transitive compatible pair congruence on *S*.

Obviously, by Definition 2.2, the Rees congruence $\rho = (H \times H) \bigcup 1_S$ determined by a proper ideal is the proper transitive compatible pair congruence $\rho_{(H,S)}$ on *S* and (H,S) is a proper transitive compatible pair of ρ . In order to study a nontrivial congruence ρ , we need to obtain some proper transitive compatible pair congruence representation of ρ . So, we need to prove the following theorem.

Theorem 2.2. For any nontrivial congruence ρ on semigroup *S* can be expressed as a proper transitive compatible pair congruence $\rho_{(H,K)}$ on *S*.

Proof: Let $1_S \neq \rho \subset S \times S$. Now, we shall prove that ρ can be expressed as a proper transitive compatible pair congruence $\rho_{(H,K)}$ on *S*.

Denote the zero element of S/ρ by $\overline{0}$, let

 $0_{a} = \{ a \in S \mid a \in \overline{0} \}, K = \{ x \in S \mid \overline{0} \neq \overline{x} \in S/\rho \} \bigcup \{ 0 \},$

 $K_0 = \{x \in K \mid \overline{x} \text{ is not a zero divisor of } S/\rho \}, H = 0_{\rho} \bigcup (K \setminus K_0).$

If $K_0 \neq \emptyset$, then for any $x, y \in K_0$, $\overline{x \cdot y} = \overline{xy} \neq \overline{0}$, thus $0 \neq xy \in K_0$. This fact shows that

Transitive Compatible Pair Congruence

 K_0 is a proper subsemigroup of *S* without zero divisors. Since for any $a \in 0_\rho$, $x \in S$, $\overline{0} = \overline{a \cdot x} = \overline{ax}$, therefore we have $ax \in 0_\rho$. Similarly, we obtain $xa \in 0_\rho$. Hence we can deduce that 0_ρ is a proper ideal of *S*. Next, we shall prove that *H* is a subsemigroup of *S*. For any $a, b \in H$, we distinguish two cases as follows.

Case 1. At least one of elements *a* and *b* belong to 0_{ρ} ;

Case 2. Elements *a* and *b* both are in $K \setminus K_0$, i.e. $a, b \in K \setminus K_0$. For the former, since 0_ρ is an ideal of *S*, then $ab \in 0_\rho \subseteq H$. For the latter, let $a, b \in K$

 $\backslash K_0$, if $\overline{ba} = \overline{0}$ (or $\overline{ab} = \overline{0}$), then ba (or $ab \in K \setminus K_0$. If $\overline{ba} \neq \overline{0}, \overline{ab} \neq \overline{0}$, since $\overline{a} \neq \overline{0}$ is a zero divisor in S/ρ , then there exists $x \in K \setminus K_0$ such that $\overline{ax} = \overline{ax} = \overline{0}$ (or $\overline{xa} = \overline{0}$). Therefore $\overline{bax} = \overline{bax} = \overline{0}$ (or $\overline{xab} = \overline{xab} = \overline{ab} = \overline{0}$), and consequently $\overline{ba} \neq \overline{0}$ (or $\overline{ab} \neq \overline{0}$) is a zero divisor in S/ρ . We immediately have ba (or $ab \in K \setminus K_0$. Hence, we obtain that H is a subsemigroup of S. In particular, let $K_0 = \emptyset$, then $K = K \setminus K_0$ is a proper subsemigroup of S.

Now we distinguish the following two situations.

(i) If $K_0 = \emptyset$, then $H = 0_\rho \bigcup K = S$. Since 0_ρ is a proper ideal of *S*, it is obvious that $\rho_{(0_\rho,K)} = (\rho|_{0_\rho}) \bigcup (\rho|_K)$ is a proper transitive compatible pair congruence on *S* and $\rho = \rho_{(0_\rho,K)}$.

(ii) If $K_0 \neq \emptyset$, we shall prove that $\rho_{(H,K_0)} = (\rho|_H) \bigcup (\rho|_{K_0})$ is a proper transitive compatible pair congruence on *S*. Clearly, $\rho|_H$ and $\rho|_{K_0}$ are congruences on *H* and K_0 respectively. Since $H \cap K_0 = \emptyset$, thus formula (2.2) naturally holds.

Let $(a,b) \in \rho|_H$, for any $x \in S$, then $x \in H$ or $x \in K_0$. If $x \in H$, we have $(xa, xb), (ax, bx) \in \rho|_H$, if $x \in K_0$, since $(a,b) \in \rho|_H$, then $(a,b) \in \rho$, and therefore $(xa,xb) \in \rho$, $(ax, bx) \in \rho$. For the case $(xa, xb) \in \rho$, we will illustrate that either $(xa, xb) \in H \times H$ or $(xa, xb) \in K_0 \times K_0$. If $xa \in K_0$, let $\vartheta: S \to S/\rho, x\vartheta = x\rho$ be the natural homomorphism. We have $xb \in ((xa)\rho)\vartheta^{-1} \subseteq K_0$ by $(xa)\rho = (xb)\rho$, hence $xb \in K_0$. If $xa \in H$, we also can get $xb \in H$ using the same means as above. Thus, we deduce that either $(xa, xb) \in H \times H$ or $(xa, xb) \in K_0 \times K_0$. Since $(xa, xb) \in \rho$, then either $(xa, xb) \in \rho|_H$ or $(xa, xb) \in \rho|_{K_0}$ by $(xa, xb) \in H \times H$ or $(xa, xb) \in K_0 \times K_0$. Consider the other case $(ax, bx) \in \rho, x \in S$, we also obtain that either $(ax, bx) \in \rho|_H$ or $(ax, bx) \in \rho|_{K_0}$ using the similar arguments.

Similarly, for the situation $(a,b) \in \rho|_{K_0}$, $x \in S$, we also conclude that formulas (2.3),(2.4) hold. Summing up the discussion above, we immediately know that formulas (2.3) and (2.4) hold. Thus, (H, K_0) is a proper transitive compatible pair of ρ .

Pei Yang, Zhenlin Gao, Hai-zhen Liu and Jing Zhang

Finally, we will prove $\rho = \rho_{(H,K_0)}$. Suppose that $(a,b) \in \rho$, if $(a,b) \notin \rho|_{K_0}$, since $H \cap K_0 = \emptyset$, then $(a,b) \in H \times H$ and consequently $(a,b) \in \rho|_H$. If $(a,b) \notin \rho|_H$, similarly we can get $(a,b) \in \rho|_{K_0}$. This fact implies $\rho \subseteq \rho_{(H,K_0)}$. On the contrary, let $(a,b) \in \rho_{(H,K_0)}$, then either $(a,b) \in \rho|_H$ or $(a,b) \in \rho|_{K_0}$, namely $(a,b) \in \rho$. To sum up, we know $\rho = \rho_{(H,K_0)}$.

By Theorem 2.2, we know that transitive compatible pair congruence on semigroup *S* is a kind of universal representation method fitting to any congruence on *S*. Concretely speaking, let *H* and *K* be subsemigroups of semigroup *S*, for a congruence ρ on *S*, so long as (H, K) is a transitive compatible pair of ρ , then ρ can be represented as $\rho = \rho_{(H,K)} = (\rho|_H) \bigcup (\rho|_K)$.

REFERENCES

- 1. Howie J. M. An introducation to semigroup theory, London. Academic Press, 1976.
- ZhenLin Gao, On the Lest Property of the Semilattice Congruences on po-Semigroups, Semigroup Forum, 56 (1998) 323-333.
- Zhu Pinyu, Guo Yuqi, Structure and characterizations of left Clifford semigroups, Sci. China, 21(6) (1991) 582- 590.
- 4. J.B.Fountain, Right pp monoids with central idempotents, *Semigroup Forum*, 13 (1977) 229-237.
- 5. K.P.Shum and X.M.Ren, The structure of right C-rpp semigroups, *Semigroup Forum*, 68 (2004) 280-292.
- 6. T.Vasanthi and M.Amala, Some special classes of semirings and ordered semirings, *Annals of Pure and Applied Mathematics*, 4(2) (2013) 145-159.
- 7. T.Vasanthi and N.Sulochana, On the additive and multiplicative structure of semirings, *Annals of Pure and Applied Mathematics*, 3(1) (2013) 78-84.
- 8. Hai-zhen Liu and Pei Yang, Rees nilpotent radical and semisimple semigroups, *Annals of Pure and Applied Mathematics*, 9(1) (2014) 53-65.