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Abstract. In this paper, we present an efficient method for solving the inverses of anti-
tridiagonal and anti-pentadiagonal matrices draw support from symmetric circulant 
matrices. In addition, we establish the connections between anti-tridiagonal, anti-
pentadiagonal matrices and symmetric circulant matrices Also some numerical examples 
are given. 
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1. Introduction 
It is well known that (anti-) tridiagonal and (anti-) pentadiagonal matrices are widely 
applied in applied mathematics and engineering mathematics. They are an effective tool 
in approximation theory, especially in the research of special functions and orthogonal 
polynomials [2,7]. Therefore, they also arise naturally in partial differential equations and 
numerical analysis [4,5,14,15]. In many of these areas, inverses of (anti-) tridiagonal and 
(anti-) pentadiagonal matrices are important, So a fast and efficient computational 
method to obtain the inverses of them is demanded. Of course, a large number of 
important methods have been posed, efficient algorithms [1,8] and explicit formula 
[3,6,12,15] for ( -) tridiagonal matrix inverse were presented. In [9] and [10], the authors 
presented recursive algorithm for inverting tridiagonal, ant-tridiagonal and pentadiagonal, 
anti-pentadiagonal matrices. In these methods, usually LU factorization is a main tool. 
What is new in our paper is to use symmetric circulant matrices for computing the 
inverse of them. 

In this paper, we first consider the inverses of nonsingular ant-tridiagonal matrices 
with the following form 

                                                                                  (1.1) 

and the ant-pentadiagonal matrices as follows, respectively. 
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                                                                              (1.2) 

We expand  ant-tridiagonal  and  ant-pentadiagonal  matrices  to  symmetric  circulant 
matrices,  and establish the connections between them and symmetric  circulant  matrices 
respectively.   Also  the  same  considerations  occur  to  tridiagonal  and  pentadiagonal 
matrices with constant diagonals.  Finally, we give  some  numerical examples and make 
some concluding conclusions. 

 
2.   Inverses of ant-tridiagonal and ant-pentadiagonal matrices 
In this section, we give an approach to compute the inverses of ant-tridiagonal and ant-
pentadiagonal matrices. We always assume that matrices discussed are nonsingular, 
unless otherwise stated. Suppose that  and  are ant-tridiagonal and ant-pentadiagonal 
matrices defined in (1.1), (1.2), respectively. We will assume  and 

,  ,   to avoid trivial conditions. Let  be a symmetric circulant 
matrix with respect to , that is 

                                 (2.1) 

we denote . 
 

First we give the following lemma. 
 
Lemma 2.1. Let  be a symmetric circulant matrix of order  defined in (2.1). Then  
is also a symmetric circulant matrix. Suppose that , then 

                                                      (2.2) 

Proof: For the sake of simplicity, we denote , and  stands 
for the element of  th row,  th column of . Thus we need only to prove that 

 

It is easy to verify that 

 

where the symbol  denote the remainder of  divided by . Thus we have 
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According to the relevant result in Number Theory and , we have 
 

 
 

 
Therefore 

 

 

 

If , then 

 

If , then 

 

This fact show that scric  scirc , as required. □ 
 

For an ant-tridiagonal matrix  defined in (1.1),  let 
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                                                                         (2.3) 

Clearly,  is a symmetric circulant matrix. According to Lemma 2.1 we have the  
following corollary. 
 
Corollary 2.1.  Let  be a symmetric circulant matrix of order  and  

. Then 

                               (2.4) 

Theorem 2.1. Suppose that  is a  matrix defined in (2.3)   is partitioned as 

 

where  , and . Then 

                                                                                              (2.5) 

 
Proof:  For simplicity, we use  to denote the zero matrix whose sizes will be clear from 
the context. Let  denote the identity matrix of order . By the identity , 
we have 

 

 
where . Then one can obtain that 
 

   

 

Comparing the entries of the both sides, we have 
 

 

 
In the light of (1) and (2), we immediately attain that 
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Taking the determinant of both sides, then , which yields . 
By (2) and (3), we have 

 

as required.                                                           □ 

 
According to Theorem 2.1, we give a relation between  and the submatrices of 

. Concretely speaking, in order to compute the inverse of , we need only to obtain 
,  ,   and  which are submatrices of . Clearly 

 
 

 
where symbol  stands for the submatrix of  that lies on the 
intersection of rows  with columns . 

Combining with Corollary 2.1 and Theorem 2.1, we immediately have 

                   (2.6) 

Thus  is given by (2.4), (2.5) and (2.6). 
 

For an anti-pentadiagonal matrix  with the form (1.2), we let 
 

                                                    (2.7) 

 
According to Lemma 2.1 and (2.7), we have the following corollary. 
 
Corollary 2.2.  Let  be a symmetric circulant matrix of order  defined in (2.7) and 

, . Then 
 

          (2.8) 

for  
Theorem 2.2.  Suppose that  is a  matrix defined in (2.7),  is partitioned as 
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where , , , . Then 
 

                                                                                                 (2.9) 
 

Proof:  Suppose that 

 

According to the equation , we have 
 

 

 

Therefore we obtain that 

 

Thus we have 

. 

 
Taking the determinant of both sides, then  , which shows that  is 

nonsingular.  Since , then . It follows that  
 

 
 

namely . This completes the proof.                                                 □ 
 

From Theorem 2.2, we readily obtain the inverse of  by establishing a connection 
between  and submatrices of . More specifically, in order to compute the inverse 
of , we need only to obtain  and  which are given by 

 

 

 
Combining with Corollary 2.2 and Theorem 2.2, one can readily obtain 
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   (2.10) 

Thus  is determined by (2.8), (2.9) and (2.10). 
 
3.  Numerical examples and stability analysis 
In this section, we give some numerical examples to support the theoretical analysis 
in Section 2. 
 
Example 3.1. Now we consider the  anti-tridiagonal matrix  and  anti-
pentadiagonal matrix , respectively. 

 

For the anti-tridiagonal matrix , , , , , . 
According to (2.4), ( 2.5)  and  (2.6),  one can obtain 

 

Similarly, for the anti-pentadiagonal matrix , ,  ,  ,  

,  , , . The inverse of  is given by 
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Example 3.2. Consider the  anti-pentadiagonal matrix  and . 

 

What the follows we computer the errors  when , , , 
which are shown in Table 3.1 and Fig 3.1. 

Table 3.1. The errors  

 

 

Figure 3.1: The errors 1

2n i iI B B−− changing with n 

4.  Conclusion 
In this paper, we give an approach to compute anti-tridiagonal and anti-pentadiagonal 
matrices with constant anti-diagonals by means of the properties of  symmetric  circulant 
matrices. The advantages of our methods are steady and high-efficiency.  More precisely, 
The complexity of the algorithm for anti-tridiagonal and anti-pentadiagonal matrices  are 

 and , respectively. Furthermore, our methods can be applied to 
compute the inverse of anti- -diagonal matrix with constant anti-diagonals,  and a similar 
conclusion can be proved easily. 
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