Atanassov’s Intuitionistic Fuzzy Generalized Bi-ideals of Γ-Semigroups

M.Mandal1, S.K.Sardar2 and S.K.Majumder3

1,2Department of Mathematics, Jadavpur University
Jadavpur, Kolkata – 700032, India
E-mail: manasi_ju@yahoo.in; sksardarjumath@gmail.com

3Mahipal High School, Mahipal, Dakshin Dinajpur, West Bengal-733121, India
E-mail: samitfuzzy@gmail.com

Received 29 July 2014; accepted 22 August 2014

Abstract. In this paper we introduce the concept of Atanassov’s intuitionistic fuzzy generalized bi-ideals of Γ-semigroups in order to extend the concept of Atanassov’s intuitionistic fuzzy bi-ideal of a Γ-semigroup. Here we characterize regular Γ-semigroups in terms of Atanassov’s intuitionistic fuzzy generalized bi-ideals.

Keywords: Γ-semigroup, Regular Γ-semigroup, Atanassov’s intuitionistic fuzzy ideal, fuzzy ideal, fuzzy bi-ideal, fuzzy generalized bi-ideal.

AMS Mathematics Subject Classification (2000): 03F55, 20M12, 20M171

1. Introduction

Atanassov’s intuitionistic fuzzy sets[1,2] are intuitively straightforward extension of Zadeh’s[12] fuzzy sets; while a fuzzy set gives the degree of membership of an element in a given set, an Atanassov’s intuitionistic fuzzy set gives both a degree of membership and a degree of non-membership. Kuroki[3, 4, 5, 6] is the pioneer of fuzzy ideal theory of semigroups. The idea of fuzzy subsemigroup was also introduced by Kuroki[3, 4]. In [4], Kuroki characterized several classes of semigroups in terms of fuzzy left, fuzzy right and fuzzy bi-ideals. The notion of a Γ-semigroup was introduced by Sen and Saha[10] as a generalization of semigroups and ternary semigroups. S.K. Majumder and M. Mandal[7] studied fuzzy generalized bi-ideals in Γ-semigroups. We have initiated the study of Γ-semigroups in terms of Atanassov’s intuitionistic fuzzy subsets[8, 9]. The purpose of this paper is as mentioned in the abstract.

2. Preliminaries

Definition 2.1. [1] Let X be a nonempty set. A mapping $A = (\mu_A, \nu_A) : X \rightarrow I \times I$ is called an intuitionistic fuzzy set in X if $\mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$, where the mappings $\mu_A : X \rightarrow I$ and $\nu_A : X \rightarrow I$ denote respectively the degree of membership and the degree of non-membership of each $x \in X$ to A, I is the unit interval $[0,1]$.
In this paper we shall use the symbol $A = (\mu_A, \nu_A)$ for the intuitionistic fuzzy subset $A = \{<x, \mu_A(x), \nu_A(x)> : x \in X\}$ of X.

Definition 2.2. [10] Let $S = \{x, y, z, \ldots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \ldots\}$ be two non-empty sets. Then S is called a Γ-semigroup if there exists a mapping $S \times \Gamma \times S \rightarrow S$ (images to be denoted by $a\alpha b$) satisfying

1. $x\gamma y \in S \quad \forall x, y \in S, \quad \gamma \in \Gamma$,
2. $(x\beta y)\zeta = x\beta(y\zeta)$, $\forall x, y, z \in S, \quad \forall \beta, \gamma \in \Gamma$.

Definition 2.3. [8] A non-empty intuitionistic fuzzy subsemigroup $A = (\mu_A, \nu_A)$ of a Γ-semigroup S is called an intuitionistic fuzzy bi-ideal of S if it satisfies:

1. $\mu_A(x\alpha \beta \gamma z) \geq \min\{\mu_A(x), \mu_A(z)\} \quad \forall x, y, z \in S \quad \forall \alpha, \beta \in \Gamma$,
2. $\nu_A(x\alpha \beta \gamma z) \leq \max\{\nu_A(x), \nu_A(z)\} \quad \forall x, y, z \in S \quad \forall \alpha, \beta \in \Gamma$.

For further preliminaries we refer the readers to [8, 11].

3. Intuitionistic fuzzy generalized bi-ideal

Definition 3.1. [7] Let S be a Γ-semigroup. A non-empty subset I of S is called a generalized bi-ideal of S if $I \subseteq I$. \forall Γ $\subseteq I$.

Definition 3.2. A non-empty intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a Γ-semigroup S is called an intuitionistic fuzzy generalized bi-ideal of S if it satisfies:

1. $\mu_A(x\alpha \beta \gamma z) \geq \min\{\mu_A(x), \mu_A(z)\} \quad \forall x, y, z \in S \quad \forall \alpha, \beta \in \Gamma$,
2. $\nu_A(x\alpha \beta \gamma z) \leq \max\{\nu_A(x), \nu_A(z)\} \quad \forall x, y, z \in S \quad \forall \alpha, \beta \in \Gamma$.

Remark 1. It is clear that every intuitionistic fuzzy bi-ideal of S is an intuitionistic fuzzy generalized bi-ideal of S. But in general the converse does not hold which will be clear from the following example. For a restricted converse we refer to Proposition 3.1.

Example 1. Let $S = \{x, y, z, r\}$ and $\Gamma = \{\gamma\}$, where γ is defined on S with the following Cayley table:

<table>
<thead>
<tr>
<th>γ</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>z</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>r</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

Then S is a Γ-semigroup. We define an intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of S as $\mu_A(x) = 0.5$, $\mu_A(y) = 0$, $\mu_A(z) = 0.2$, $\mu_A(r) = 0$. and $\nu_A(x) = 0.4$, $\nu_A(y) = 1$, $\nu_A(z) = 0.3$, $\nu_A(r) = 0.2$. $\forall x, y, z, r \in S$. $\forall \Gamma$. $\forall \alpha, \beta \in \Gamma$.

84
Atanassov’s Intuitionistic Fuzzy Generalized Bi-ideals of Γ-Semigroups

Theorem 3.1. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of a Γ-semigroup S. Then the upper and lower level cuts $U(\mu_A; t)$ and $L(\mu_A; t)$ are generalized bi-ideals of S, for every $t \in \text{Im}(\mu_A) \cap \text{Im}(\nu_A)$.

Theorem 3.2. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy subset of a Γ-semigroup S such that the sets $U(\mu_A; t)$ and $L(\nu_A; t)$ are generalized bi-ideals of S whenever $t \in [0,1]$ and the sets are nonempty. Then the intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of S.

Theorem 3.3. If a non-empty subset I of a Γ-semigroup S is a generalized bi-ideal of S, then (χ_I, χ_I^β) is an intuitionistic fuzzy generalized bi-ideal of S, where χ_I is the characteristic function of I.

Definition 3.4.[10] A Γ-semigroup S is called regular if for each element $x \in S$, there exist $y \in S$ and $\alpha, \beta \in \Gamma$ such that $x = x\alpha y \beta x$.

Proposition 3.1. Let S be a regular Γ-semigroup. Then every intuitionistic fuzzy generalized bi-ideal of S is intuitionistic fuzzy bi-ideal of S.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy generalized bi-ideal of S. Let $a, b \in S$. Since S is regular, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $b = b\alpha x \beta b$. Then for any $\gamma \in \Gamma$,

$$\mu_A(a \gamma b) \geq \min\{\mu_A(a), \mu_A(b)\} \text{ and } \nu_A(a \gamma b) \leq \max\{\nu_A(a), \nu_A(b)\}.$$

Hence $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy subsemigroup of S and consequently $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of S.

Remark 2. In view of above proposition and Remark 1 we can say that in a regular Γ-semigroup the concepts of intuitionistic fuzzy generalized bi-ideal and intuitionistic fuzzy bi-ideal coincide.
Definition 3.5. Let S be a Γ-semigroup. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two intuitionistic fuzzy subsets of a Γ-semigroup S. Then the product $A \circ B = (\mu_{A \circ B}, \nu_{A \circ B})$ of A and B is defined as

$$(\mu_{A \circ B})(x) = \begin{cases} \sup \{\min \{\mu_A(u), \mu_B(v)\} : u, v \in S; \gamma \in \Gamma\} \\ 0, \text{if for any } u, v \in S \text{ and for any } \gamma \in \Gamma, x \neq u \gamma v \end{cases}$$

and

$$(\nu_{A \circ B})(x) = \begin{cases} \inf \{\max \{\nu_A(u), \nu_B(v)\} : u, v \in S; \gamma \in \Gamma\} \\ 1, \text{if for any } u, v \in S \text{ and for any } \gamma \in \Gamma, x \neq u \gamma v \end{cases}$$

Lemma 3.1. Let S be a Γ-semigroup and $A = (\mu_A, \nu_A)$ be a non-empty intuitionistic fuzzy subset of S. Then $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of S if and only if $A \subseteq A^\circ S \subseteq A$, where $S = (\chi_S, \chi_S^c)$ and χ_S is the characteristic function of S.

Proof: Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy generalized bi-ideal of S. Then for all $x, y, p, q \in S$ and for all $\beta, \gamma \in \Gamma$,

$$\mu_A(p \beta q \gamma) \geq \min \{\mu_A(p), \mu_A(y)\} \quad \text{and} \quad \nu_A(p \beta q \gamma) \leq \max \{\nu_A(p), \nu_A(y)\}.$$

Hence for any $x, y \in S$ and for some $p, q \in S$ and for some $\beta, \gamma \in \Gamma$, then $(\mu_A \circ \chi_S \circ \mu_A)(a) \leq \mu_A(a)$ (by Lemma 1[7]) and

$$(\nu_A \circ \chi_S^c \circ \nu_A)(a) = \inf \{\max \{(\nu_A \circ \chi_S^c)(x), \nu_A(y)\} \}$$

$$= \inf \{\max \{\inf \{\max \{\nu_A(p), \chi_S^c(q)\}\}, \nu_A(y)\}\}$$

$$= \inf \{\max \{\inf \{\max \{\nu_A(p), 0\}\}, \nu_A(y)\}\}$$

$$= \inf \{\max \{\nu_A(p), \nu_A(y)\}\} \geq \nu_A(p \beta q \gamma) = \nu_A(x \gamma y) = \nu_A(a).$$

If for $a \in S$ no such $\beta, \gamma \in \Gamma$ exist then $(\mu_A \circ \chi_S \circ \mu_A)(a) = 0 \leq \mu_A(a)$ and $(\nu_A \circ \chi_S^c \circ \nu_A)(a) = 1 \geq \nu_A(a)$. Hence $A \circ S \subseteq A$. Conversely, let $A \circ S \subseteq A$. Then $\mu_A \circ \chi_S \circ \mu_A \subseteq \mu_A$ and $\nu_A \circ \chi_S^c \circ \nu_A \supseteq \nu_A$. Hence for $x, y, z \in S$, and $\beta, \gamma \in \Gamma$, we deduce by repeated use of Definition 3.5 $\mu_A(x \beta y \gamma z) \geq \min \{\mu_A(x), \mu_A(z)\}$ (by Lemma 1[7]) and

$$\nu_A(x \beta y \gamma z) \leq (\nu_A \circ \chi_S^c \circ \nu_A)(x \beta y \gamma z) \leq \max \{\max \{(\nu_A \circ \chi_S^c)(x \beta y), \nu_A(z)\}\}$$

$$\leq \max \{\max \{\nu_A(x), 0\}, \nu_A(z)\} = \max \{\nu_A(x), \nu_A(z)\}.$$}

Hence $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of S.

In view of the above lemma we obtain the following theorem by routine verification.
Atanassov’s Intuitionistic Fuzzy Generalized Bi-ideals of Γ-Semigroups

Theorem 3.4. The product of any two intuitionistic fuzzy generalized bi-ideals of a Γ-semigroup S is an intuitionistic fuzzy generalized bi-ideal of S.

Theorem 3.5. A Γ-semigroup S is regular if and only if for every intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of S and $a \in S$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha \beta a$.

Proof: Suppose S is regular. Then for an intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of S and $a \in S$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha \beta a$. Hence $\mu_A \circ \chi_s \circ \mu_A = \mu_A$ (by Theorem 3[7])

Again $(\nu_A \circ \chi_s \circ \nu_A)(a) \leq \max\{\nu_A(a), \chi_s(x), \nu_A(a)\}$

$= \max\{\nu_A(a), \chi_s(x), \nu_A(a)\}$

$= \max\{\nu_A(a), 0, \nu_A(a)\} = \nu_A(a)$.

So $\nu_A \supseteq \nu_A \circ \chi_s \circ \nu_A$. By Lemma 3.1 $\nu_A \circ \chi_s \circ \nu_A \supseteq \nu_A$. Consequently, $\nu_A \circ \chi_s \circ \nu_A = \nu_A$. Hence $A \circ S \circ A = A$.

Conversely suppose the given condition holds. Let R be a generalized bi-ideal of S.

Then by Theorem 3.3, (χ_r, χ'_r) is an intuitionistic fuzzy generalized bi-ideal of S.

Hence by given condition $\chi_r \circ \chi_s \circ \chi_r = \chi_r$ and $\chi'_r \circ \chi'_s \circ \chi'_r = \chi'_r$. Let $a \in R$. Then $\chi_r(a) = 1$ and $\chi'_r(a) = 0$. Hence $\sup_{a \in \chi_r} \{a \circ \chi_r(p), \chi'_r(c)\} = 1$. (By Theorem 3[7])

Also

$(\chi'_r \circ \chi'_s \circ \chi_r)(a) = 0$

i.e., $\inf_{a \in \chi_r} \{\max\{\chi'_r \circ \chi'_s\}(b), \chi_r(c)\} = 0$

i.e., $\inf_{a \in \chi_r} \{\max\{\inf_{b \in \chi_r} \{\chi'_r(p), \chi'_r(q)\}, \chi'_r(c)\}\} = 0$

i.e., $\inf_{a \in \chi_r} \{\max\{\inf_{b \in \chi_r} \{\chi'_r(p), 0\}, \chi'_r(c)\}\} = 0$

i.e., $\inf_{a \in \chi_r} \{\max\{\inf_{b \in \chi_r} \chi'_r(p), \chi'_r(c)\}\} = 0$.

Thus we get $p, c \in S$ such that $a = b \chi_r$ and $b = p \chi'_r$ with $\chi_r(p) = \chi'_r(c) = 1$ and $\chi_r(p) = \chi'_r(c) = 0$ whence $p, c \in S$. So $a = b \chi_r = p \chi'_r \in R^* \Gamma S^r \Gamma$. Consequently, $R \subseteq R^* \Gamma S^r \Gamma$. Since R is a generalized bi-ideal of S so $R^* \Gamma S^r \Gamma \subseteq R$. Hence $R = R^* \Gamma S^r \Gamma$ and so S is regular.

Using Lemma 3.1, Theorem 3.16[8] and Theorem 3.5 we can have the following theorem.
Theorem 3.6. A Γ-semigroup S is regular if and only if for each intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of S and each intuitionistic fuzzy ideal $B = (\mu_B, \nu_B)$ of S, $A \cap B = A \circ B \circ A$.

To conclude the paper we obtain the following result that characterizes regular Γ-semigroups in terms of intuitionistic fuzzy generalized bi-ideals.

Theorem 3.7. Let S be a Γ-semigroup. then the following are equivalent:

1. S is regular,
2. $A \cap B \subseteq A \circ B$ for each intuitionistic fuzzy bi-ideal $A = (\mu_A, \nu_A)$ of S and for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of S,
3. $A \cap B \subseteq A \circ B$ for each intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of S and for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of S,
4. $C \cap A \cap B \subseteq C \circ A \circ B$ for each intuitionistic fuzzy bi-ideal $A = (\mu_A, \nu_A)$ of S, for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of S, and for each intuitionistic fuzzy right ideal $C = (\mu_C, \nu_C)$ of S,
5. $C \cap A \cap B \subseteq C \circ A \circ B$ for each intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of S, for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of S, and for each intuitionistic fuzzy right ideal $C = (\mu_C, \nu_C)$ of S.

Proof: (1) \Rightarrow (2): Let S be regular, $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy bi-ideal of S and $B = (\mu_B, \nu_B)$ be an intuitionistic fuzzy left ideal of S. Let $a \in S$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a \alpha \beta a = a \alpha \beta a \alpha \beta a$. Then $\mu_A \circ \mu_B \supseteq \mu_A \cap \mu_B$ (cf. Theorem 6[7]). Again since A is a intuitionistic fuzzy bi-ideal and B is a intuitionistic fuzzy left ideal,

$$(\nu_A \circ \nu_B)(a) = \inf \left\{ \max\{\nu_A(y), \nu_B(z)\}; y = a \alpha \beta a \alpha \beta a \right\}$$

$\leq \max\{\nu_A(a \alpha \beta a), \nu_B(x \beta a)\} (a = a \alpha \beta a \alpha \beta a)$

$\leq \max\{\nu_A(a), \nu_B(a)\} = (\nu_A \cup \nu_B)(a)$.

So $\nu_A \circ \nu_B \subseteq \nu_A \cup \nu_B$. Hence $A \cap B \subseteq A \circ B$.

Similarly we can prove that (1) implies (3).

(2) \Rightarrow (1): Let (2) hold. Let A be an intuitionistic fuzzy right ideal and B be an intuitionistic fuzzy left ideal of S. Then since every intuitionistic fuzzy right ideal of S is intuitionistic fuzzy quasi ideal of S and every intuitionistic fuzzy quasi ideal of S is intuitionistic fuzzy bi-ideal of S, so A is an intuitionistic fuzzy bi-ideal of S. Hence by (2), $A \cap B \subseteq A \circ B$. Also $A \circ B \subseteq A \cap B$ always holds. Hence $A \circ B = A \cap B$ and consequently, by Theorem 3.20 [8], S is regular.

(3) \Rightarrow (1): Suppose (3) holds. Let T be a generalized bi-ideal of S, L be a left ideal of S and $a \in T \cap L$. Then $a \in T$ and $a \in L$. Since T is a generalized bi-ideal
Atanassov’s Intuitionistic Fuzzy Generalized Bi-ideals of \(\Gamma \)-Semigroups

of \(S \), so by Theorem 3.3, \((\chi_T, \chi'_T)\) is an intuitionistic fuzzy generalized bi-ideal of \(S \).

By Corollary 3.13 [8], \((\chi_L, \chi'_L)\) is an intuitionistic fuzzy left ideal of \(S \). Hence by (3),
\(\chi_T \cap \chi_L \subseteq \chi_T \circ \chi_L \) and \(\chi'_T \cup \chi'_L \supseteq \chi'_T \circ \chi'_L \). Then
\((\chi_T \circ \chi_L)(a) = (\chi_T \cap \chi_L)(a) = \min\{\chi_T(a), \chi_L(a)\}\).

and
\((\chi'_T \circ \chi'_L)(a) = (\chi'_T \cup \chi'_L)(a) = \max\{\chi'_T(a), \chi'_L(a)\}\).

Hence \(\chi_{T,L}(a) = 1 \) and \(\chi'_{T,L}(a) = 0 \).

Hence in view of Definition 3.5, there exist \(b, c \in S \) and \(\delta \in \Gamma \) such that
\(a = b \delta c \) and \(\chi_T(b) = \chi'_L(c) = 1 \) and \(\chi'_T(b) = \chi_L(c) = 0 \), whence, \(b \in T \) and \(c \in L \).

Hence \(a = b \delta c \in T \cap L \). Thus \(T \cap L \subseteq T \cap L \). Hence by Theorem 5[7], \(S \) is regular.

(1) \(\Rightarrow \) (4): Let \(S \) be regular. Let \(A = (\mu_A, \nu_A) \) be an intuitionistic fuzzy bi-
ideal, \(B = (\mu_B, \nu_B) \) be an intuitionistic fuzzy left ideal and \(C = (\mu_C, \nu_C) \) be an
intuitionistic fuzzy right ideal of \(S \) respectively. Let \(a \in S \). Then there exist \(x \in S \) and
\(\alpha, \beta \in \Gamma \) such that
\(a = a \alpha \beta a = a \alpha \beta a \alpha \beta a = a \alpha \beta a \alpha \beta a \alpha \beta a \alpha \beta a \). Then
\(\mu_C \cap \mu_A \cap \mu_B \subseteq \mu_C \circ \mu_A \circ \mu_B \) (cf. Theorem 6[7]). Again
\((\nu_C \circ \nu_A \circ \nu_B)(a) \leq \max\{\nu_C(a), (\nu_A \circ \nu_B)(a)\}\).

(since \(C \) is an intuitionistic fuzzy right ideal of \(S \))
\(\leq \max\{\nu_C(a), \max\{\nu_A(a), \nu_B(x)\}\}\)
\(\leq \max\{\nu_C(a), \max\{\nu_A(a), \nu_B(a)\}\}\)

(since \(A \) is an intuitionistic fuzzy bi-ideal of \(S \) and \(B \) is an intuitionistic fuzzy left ideal)
\(\leq \max\{\nu_C(a), \nu_A(a), \nu_B(a)\}\). Hence \(C \cap A \cap B \subseteq C \circ A \circ B \).

Similarly we can prove that (1) implies (5).

(4) \(\Rightarrow \) (1): Let (4) hold. Let \(B = (\mu_B, \nu_B) \) and \(C = (\mu_C, \nu_C) \) be any
intuitionistic fuzzy left ideal and intuitionistic fuzzy right ideal of \(S \). Since
\(S = (\chi_S, \chi'_S) \) itself is an intuitionistic fuzzy bi-ideal of \(S \), by (4), we have
\(C \cap B = C \cap S \cap B \subseteq C \circ S \circ B \subseteq C \circ B \). Also \(C \circ B \subseteq C \cap B \).

Therefore \(C \circ B = C \cap B \). Hence by Theorem 3.20 [8], \(S \) is regular.

(5) \(\Rightarrow \) (1): Suppose (5) holds. Let \(T \) be a generalized bi-ideal of \(S \), \(L \) be a
left ideal of \(S \), \(R \) be a right ideal of \(S \) and \(a \in R \cap L \). Then \(a \in R \), \(a \in A \) and
\(a \in L \). Since \(T \) is a generalized bi-ideal of \(S \), so by Theorem 3.3, \((\chi_T, \chi'_T)\) is an
intuitionistic fuzzy generalized bi-ideal of \(S \), by Theorem 3.13 [8], \((\chi_L, \chi'_L)\) is an
intuitionistic fuzzy left ideal of \(S \) and \((\chi_R, \chi'_R)\) is an intuitionistic fuzzy right ideal of

89
M. Mandal, S.K. Sardar and S.K. Majumder

S. Hence by (5), \(\mathcal{X}_R \cap \mathcal{X}_L \cap \mathcal{X}_T \subseteq \mathcal{X}_R \circ \mathcal{X}_L \circ \mathcal{X}_T \) and \(\mathcal{X}_R^c \cup \mathcal{X}_L^c \cup \mathcal{X}_T^c \supseteq \mathcal{X}_R^c \circ \mathcal{X}_L^c \circ \mathcal{X}_T^c \). Then \((\mathcal{X}_R \circ \mathcal{X}_T \circ \mathcal{X}_L)(a) \geq (\mathcal{X}_R \cap \mathcal{X}_T \cap \mathcal{X}_L)(a) = \min \{\mathcal{X}_R(a), \mathcal{X}_T(a), \mathcal{X}_L(a)\} = 1\). and \((\mathcal{X}_R^c \circ \mathcal{X}_T^c \circ \mathcal{X}_L^c)(a) \leq (\mathcal{X}_R^c \cup \mathcal{X}_T^c \cup \mathcal{X}_L^c)(a) = \max \{\mathcal{X}_R(a), \mathcal{X}_T(a), \mathcal{X}_L(a)\} = 0\).

Hence \(\mathcal{X}_{(R \cap T) \cap L}(a) = 1 \) and \(\mathcal{X}_{(R \cap T) \cap L}(a) = 0 \).

Hence in view of Definition 3.5, there exist \(b, c \in S \) and \(\delta \in \Gamma \) such that \(a = b \delta c \) and \((\mathcal{X}_R \circ \mathcal{X}_T)(b) = \mathcal{X}_L(c) = 1 \) and \((\mathcal{X}_R^c \circ \mathcal{X}_T^c)(b) = \mathcal{X}_L^c(c) = 0 \). Hence by applying similar argument as above we see that there exist \(d, e \in S \) and \(\theta \in \Gamma \) such that \(b = d \theta e \) and \(\mathcal{X}_R(d) = \mathcal{X}_T(e) = 1 \) and \(\mathcal{X}_R^c(d) = \mathcal{X}_T^c(e) = 0 \). Thus \(c \in L \), \(d \in R \) and \(e \in T \), with \(a = b \delta c = d \theta e \delta \in RTTL \). Hence \(R \cap T \cap L \subseteq RTTL \). Consequently, by Theorem 5 [7], \(S \) is regular.

REFERENCES