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Abstract. Though the counterfeit coin problem is well known as a fascinating puzzle it 
claims great importance in Computer science, Game theory, and Mathematics. In terms 
of the puzzle the objective is to detect the counterfeit coins which are identical in 
appearance but different in weight. The word counterfeit not only describes forgeries of 
currency or documents, but can also be applied to software, pharmaceuticals, clothing, 
and more recently, motorcycles and cars, especially when these result in patent or 
trademark infringement. Furthermore, the goal in this problem is to minimize the number 
of weighing, i.e., the number of comparisons required to find the false coin/s and their 
type (whether heavier or lighter than the original coin). Finding one counterfeit coin 
among n coins is complex and tricky enough. The problem gets more complicated when 
the set of n coins contains two false coins as the false coins pair may appear in several 
different combinations. In this paper, we have developed a new algorithm for solving two 
counterfeit coin problem in O(logn) time, where n is the total number of coins. 

Keywords: Counterfeit coin problem, equal arm balance, desgin of algorithm, decision 
tree, complexity 
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1. Introduction 
Computing a solution of the counterfeit coin problem has huge significance in both 
theoretical and commercial sphere as well as to prevent forgery in different fields. The 
objective is to minimize the number of weighing for which it is sufficient to determine 
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the defective coin(s) in a set of n coins using only an equal arm balance, when the 
number of odd coins is precisely known and they are identical in appearance but different 
in weight (either heavier or lighter) than a true coin. The complexity of the problem 
increases with the increment of the number of counterfeit coins in a set. If P is the 
number of counterfeit coins in a set of n coins, it is not only sufficient to consider 
whether the counterfeit coins are heavier or lighter in comparison to a genuine coin 
individually, but we must also take into account their mutual relation like equally heavier 
or lighter, unequally heavier or lighter, etc. In this paper, we consider that there are two 
false coins in a set of n coins which are equally heavier (or equally lighter) in comparison 
to a genuine coin. The objective is to identify the counterfeit coins using a minimum 
number of comparisons (or weighing). 
 
2. Literature survey 
In paper [4], the problem has been introduced in two ways. In the first case, we do not 
know if there is a fake coin in the given set. The process is supposed to check it first, and 
if yes, then identify the targeted coin by means of a minimum number of weighing. In the 
second case, it is told that there is a counterfeit coin and the objective is to find the coin 
through minimum number of weighing. At times, a standard coin may also be given. In 
the first case, if a lighter coin is there in the given set S of coins, then it is proved that the 
least number of weighing to find out the fake coin satisfies 3n−1 < |S| ≤ 3n for some unique 
value of n, where |S| is the cardinality of set S. In the second case, we are given a set S of 
coins plus a standard coin, where only one coin in S is of different weight. Then it is 
proved that (3n−1−1)/2 < |S| ≤ (3n–1)/2. 

In paper [1], the problem has been addressed as an application of dynamic 
programming and the associated analysis has been made through optimal and suboptimal 
testing policy. Here also only one coin is defective out of n given coins. This technique 
always assumes k < n coins in each pan for each weighing, where the value of k 
essentially depends on the value of n. If the two groups balance, the defective coin must 
be in the remaining n−2k coins; otherwise, the false coin is in one of the k groups. After 
each weighing, the number of coins to be examined reduces, but the problem remains the 
same. This allows the authors to apply dynamic programming to this problem. 

One classical solution is available in the form of a decision tree that represents a 
set of all possible decisions by which we can acquire the desired solution(s) of the 
problem [2, 3]. In this solution, each internal vertex (that is not a leaf vertex) symbolizes 
a comparison between a pair of equal sets of coins using an equal arm balance. Here the 
problem under consideration is more generalized; the fake coin can either be heavier or 
lighter. So, for n given coins, there are 2n leaf vertices in the tree as probable solutions. 
 In paper [5], the problem of ascertaining the minimum number of weighing 
which suffice to determine the counterfeit (heavier) coins in a set of n coins of the same 
appearance, given a balance scale and the information that there are exactly two heavier 
coins present, has been considered. Both of heavier coins are of equal weight and they are 
not heavier than 3/2 times than the true coin. If p is the maximum number of comparisons 
required to find out two false coins (equally heavier), the paper introduces an algorithm 
which has the lower bound log3(

nC2). In this paper, an infinite set of n has been 
determined for which this lower bound is reached, whereas the upper bound is only one 
unit more than the lower bound. 
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3. Problem formulation and algorithm 
In this section, we formulate and develop an efficient algorithm to solve two counterfeit 
coins problem. The algorithm finds both the counterfeit coins among n number of coins, 
which are indexed sequentially from 1 to n. Finding out two false coins introduces 
several cases, i.e., different combinations of false coin pairs, such as heavier-heavier, 
lighter-lighter, heavier-lighter, etc. The behaviour of the problem changes with the 
change in the specification of the problem. In this paper, we consider the case where both 
false coins are equally heavier (or equally lighter) than the true coin and any two coins 
among n coins may be false. We assume that the heavier (lighter) and the true coin are 
denoted by H (L) and T, whereas the weight of those are w(H) (w(L)) and w(T) 
respectively. The issue to be considered in this problem is the minimum value of n such 
that we can find two false coins among them without using any extra standard coin. 
  
Lemma 1. To find p counterfeit coins among n coins without taking help of an additional 
genuine coin, the value of n has to be at least of 2p+1. 
Proof: If there is one false coin among two coins, a standard coin is necessary to detect 
the false coin unless the weight of the correct coin is given. So if the number of false 
coins, p = 1, the minimum value of n = 3 = 2p+1. Now, if there are two false coins we 
can identify them from four coins if and only if two false coins are of different weight. If 
they are of same weight, we cannot conclude which set of coins is true, as there are equal 
numbers of false and true coins. So, for p = 2, the minimum value of n = 5, i.e., 2p+1. In 
general, if there are p counterfeit coins, we can detect them from p+2 coins if all the p 
coins are of distinct weights. But if at least two false coins are of same weight, we cannot 
distinguish them from the set of all coins. So, to satisfy the above cases specially the case 
where all the false coins are of same weight, we need at least one more true coin than the 

false coin, i.e., the minimum number of total coins required is p+p+1 = 2p+1.  □ 

  The algorithm proceeds by dividing the coins into three sets, say K1, K2, and K3. 
The results of division depends on three cases: (i) n is divisible by 3, i.e., n|3, (ii) n+1 is 
divisible by 3, i.e., (n+1)|3, and (iii) n−1 is divisible by 3, i.e., (n−1)|3. Thus, depending 
on the value of n it can easily be decided to which group the set of n coins belongs to and 
precisely which variant of the algorithm can be applied on the given set of coins. We 
assume that the coins are indexed by natural numbers 1 through n. For the first case, |K1| 
= |K2| = |K3| = n/3. For the second case, |K1| = |K2| = (n+1)/3, and |K3| = n−2(n+1)/3 = 
(n−2)/3. So, there is a difference of one coin between K1 and K3, or K2 and K3. For the 
third case, |K1| = |K2| = (n−1)/3+1 = (n+2)/3, and |K3| = n–2(n+2)/3 = (n−4)/3. There is a 
difference of two coins between K1 and K3, or K2 and K3.  

After dividing the set of n coins into K1, K2, and K3, at first K1 and K2 are put 
on the arms (or pans) for weighing. Depending on the outcome of the weighing three 
versions of the algorithm proceeds towards the next weighing taking different sets. 
Considering the result of its parent nodes some weighing is performed at each internal 
node. At the leaf nodes we perform either one TCP(Ki) operation or two OCPH(Ki) 
operations (OCPL(Ki) in case of equally lighter coins) to find out both the counterfeit 
coins in set Ki. Whenever we are sure that there is only one heavier (lighter) false coin in 
Ki, we call OCPH(Ki) (OCPL(Ki)). When we are convinced that there are two false coins 
in Ki, the algorithm is recursively applied to Ki, considering its version. We denote this 
operation as TCP(Ki) in general. Figure 1 shows the decision tree for the version of the 



J.Ghosh, L.Dey, A.Nandy, A.Chakrabarty, P.Datta, R.K.Pal and R.K.Samanta 

80 
 

 

algorithm when n|3 (in case of H1 = H2). At the root node, K1 and K2 are compared and 
the result is analyzed as follows. If w(K1) = w(K2), either K1 and K2 contain one false 
coin each or K3 contains both the counterfeit coins. So next we compare K2 and K3. 
There are two possibilities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
If K2 > K3, then we are certain that one false coin is in K1 and the other is in K2. 

So, we perform OCPH(K1) and OCPH(K2). If K2 < K3, then we are sure that both the 
false coins are in K3; thus, we perform TCP(K3). If w(K1) > w(K2), then either both the 
false coins are in K1 or  one false coin is in K1 and another is in K3. So, we compare K2 
and K3 in the next step. The former case arises when w(K2) = w(K3). So, TCP(K1) is 
applied. But if w(K2) < w(K3), then OCPH(K1) and OCPH(K3) are performed. Figure 
2(a) shows the decision tree when (n+1) is divisible by 3. In this case the algorithm does 
the same thing as for the version n|3 except the second level of comparisons. It takes 
(|K2|−1) coins instead of |K2| and (|K1|−1) coins instead of |K1|. For the sake of 
determinism, we always prefer the coins from set Ki except the last coin in the set. The 
subsequent operations in the levels followed are shown in the decision tree. 

For (n−1)|3, the algorithm proceeds in the same way as for the version (n+1)|3 
with a little difference in the second level of comparisons in the all the branches. As K3 
contains two coins less than that of K1 or K2, it receives (|K2|−2) coins instead of |K2| 
and (|K1|−2) coins instead of |K1|. The operations in the subsequent levels are shown in 
the decision tree in Figure 2(b). When we call OCPL(Ki) or OCPH(Ki), the algorithm 
proceeds dealing with that set Ki of coins and we divide it into two equal subsets for 
further weighing. If this set contains even number of coins we put half of them on the left 
pan and the remaining half on the right pan and weigh, i.e., comparison is performed. 
Again at this stage, if we are searching for a heavier coin, i.e., in case of OCPH(), after 
the weighing we deal only with the coins in the heavier pan. If the number of coins is 
odd, we divide them into two equal halves and one coin remains out of weighing. If the 

Figure 1: Decision tree of the algorithm for 
n|3. 
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weighing results in inequality, we focus on either the left pan or the right pan depending 
on the outcome we examine. 

So far we have developed an algorithm to find out two false coins among a set of 
n coins where both the coins are equally heavier, i.e., w(H1) = w(H2). For the variant 
where two coins are equally lighter, i.e., w(L1) = w(L2), the algorithm works as well.  

 
4. Experimental results 
In this section, we choose some values of n so that it would cover all the three categories 
for the subdivision of n and calculate the average number of comparisons required. To 
compute the average case complexity, we have to consider pair of false coins in all 
possible pairs of indexed locations. Hence for a given value of n, there are nC2 
combinations as the combination of ith heavier and jth heavier is same as the combination 
of jth heavier and ith heavier being the two false coins equally heavier, we cannot 
distinguish them. Hence, there are O(nC2) leaves in the decision tree. The average number 
of comparisons required against the number of given coins are shown in Table 1 and the 
same is plotted in Figure 3. 

 
 

Number of 
coins  
(n) 

Total number of 
comparisons  

(S) 

Possible number of 
false coin 

combinations  
(C = nC2) 

Average number 
of comparisons  
(AVG = S/C) 

9 171 36 4 
11 277 55 5 
20 1254 190 6 
27 2565 351 7 
29 2939 406 7 
36 5508 630 8 
46 9201 1035 8 
54 13365 1431 9 
72 27396 2556 10 
82 34267 3321 10 
100 54926 4950 11 
108 65232 5778 11 
144 130842 10296 12 
198 251883 19503 12 
200 254788 19900 12 

   
 

 
Figure 3: Plot of average number of comparisons required against the number of coins. 

Table 1: Average number of comparisons for some values of n. 
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5. Computational complexity 
At each iteration, n is divided into nearly three equal parts and the cardinality of the set 
on which the operations are actually performed, always reduces by a factor of three. Let 
us consider the case n|3. As we see at the ith level, each set is of cardinality n/3i.  Now if 
we reach a set with five coins, then we can solve it using exactly four comparisons. So, 
let at the ith level of comparison the cardinality of the set reduces to five. Thus, n/3i = 5, 
i.e., 3i = n/5. Hence, i = log3(n/5). Again, if TCP(Ki) is applied at each iteration before 
reaching a set with five coins, 2×i comparisons are required resulting in 2×i+4 
comparisons in total. If OCPH(Ki) or OCPL(Ki) is applied at kth level of comparison, it is 
definite that before that iteration TCP() is applied for (K−1) times. We know that OCPH() 
or OCPL() requires  log2n comparisons  and at kth level it is to be applied on n/3k coins. 
Hence, it requires total number of 2|K|+2log3(n/3k) comparisons. So, in the worst case it 
would take O(2|K|+2log3(n/3k)) + O(2×log3(n/5)+ 4), i.e., O(logn) comparisons as a 
whole. 
 
6. Conclusion and applications 
The raising issue of counterfeits violates intellectual property right and also causing 
damage to both producer and consumer. To identify the counterfeit goods like pirated 
electronic gadgets, counterfeit batteries used in a digital camera, pharmaceuticals, 
valuable ornaments, the solution of counterfeit coin problem are used. In this paper, we 
have developed an algorithm to identify two false coins among a set of n coins that are 
identical in appearance. In this case we have assumed that both the false coins are equally 
heavier (or lighter) than the weight of a true coin, and developed algorithms for 
identifying the same. The algorithm solves the problem with time complexity O(logn). 
The most important fact is that the decision tree structure can be used to solve such 
problems of large size, by eliminating a part of the solution domain after each step of 
decision making. Especially, as our algorithm works for any value of n, it does not matter 
if the value of n is not known a priori.  
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