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1. Introduction   
The concept of fuzzy set was introduced by L.A.Zadeh in 1965 [19]. Since then these 
ideas have been applied to other algebraic structures such as groups, rings, modules, 
vector spaces and topologies. Iseki and Tanaka [2] introduced the concept of BCK-
algebras in 1978 and Iseki [3] introduced the concept of BCI-algebras in 1980. It is 
known that the class of BCK –algebras is a proper subclass of the class of BCI algebras. 
Neggers and Kim [4] introduced a notion called d-algebra. Priya and Ramachandran [8,9] 
introduced a new notion, called PS-algebra, which is a generalization of BCK / BCI / d / 
KU algebras in 2014, and investigated some of its properties. Several related works have 
also been done in [6,7,10,11,12-15]. Biswas [1] introduced the concept of anti fuzzy 
subgroups of groups. Modifying his idea, in this paper we apply the idea in PS-algebras. 
In this paper, we introduce the notion of anti Q-fuzzy R-closed PS-ideals of PS-algebras 
and investigate some of its properties. 
 
2. Preliminaries        
In this section we site the fundamental definitions that will be used in the sequel. 
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Definition 2.1.[6,7] A nonempty set X with a constant 0 and a binary operation ‘ * ‘ is 
called  PS – Algebra if it satisfies the following axioms. 

1. x *  x  = 0 
2. x * 0 = 0 
3. x * y = 0 and y * x = 0 ⇒ x = y , ∀  x ,y ∈ X. 

 
Example 2.2. Let X =  { 0,a,b } be the set with the following table. 

*  0 a b 
0 0 a b 
a 0 0 0 
b 0 b 0 

Then (X , * , 0 ) is a PS – algebra. 
 
Definition 2.3. [6-9] Let X be a PS-algebra and I be a subset of X, then I is called a PS-
ideal of X if it satisfies the following conditions: 

1. 0 ∈  I 
2. y * x ∈  I and  y ∈  I ⇒  x ∈  I. 

 
Definition 2.4. [19] Let X be a non-empty set.  A fuzzy subset µ of the set  X  is a 
mapping µ : X →[0, 1]. 
 
Definition 2.5. [17,18] Let Q and G be any two sets.A mapping β: G x Q →[0, 1] is 
called a Q –fuzzy set in G. 
 
3. Anti Q-fuzzy R-closed PS-ideal of PS-algebras 
Definition 3.1.[18] An ideal A of a PS-algebra X is said to be R-closed if x * 0 ∈ A for 
all x ∈ A. 
 
Definition 3.2. Let ( X , * , 0) be a PS-algebra. A non empty subset I of X is called R-
closed PS ideal of X  if 

(1)  x * 0 ∈ I 
(2)        y * x ∈  I and  y ∈  I ⇒  x ∈  I   for all x , y  ∈ X . 

 
Remark:  From Example 2.2, It is clear that A1 = {0,a} and A2 = {0,a,b} are R- closed 
PS-ideals of X. 
 
Definition 3.3. A Q- fuzzy set µ in X is called a Q-fuzzy PS- ideal of X if  
  (i) µ(0,q) ≥ µ(x,q) 
  (ii) µ(x,q) ≥ min{µ( y * x,q), µ(y,q)},for all x, y∈ X and q ∈ Q. 
 
Definition 3.4.  A Q-fuzzy set µ of a PS-algebra X is called an anti Q-fuzzy PS-ideal of 
X, if  

(i)   µ(0,q) ≤ µ(x,q) 
(ii)  µ(x,q) ≤ max { µ (y * x , q ), µ( y , q )}, for all x,y∈ X and q ∈ Q. 
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Definition 3.5.  A Q-fuzzy set µ of a PS-algebra X is called an anti Q-fuzzy R- closed 
PS-ideal of X, if  

(i)   µ(x *0,q) ≤ µ(x,q) 
(ii)  µ(x,q) ≤ max { µ (y * x , q ), µ( y , q )}, for all x,y∈ X and q ∈ Q. 

 
Theorem 3.1. Every Anti Q-fuzzy R-closed PS- ideal µ  of a PS-algebra X is order 
preserving. 
Proof: Let µ be an anti Q-fuzzy R-closed PS- ideal of a PS-algebra X and let x, y ∈ X 
and q ∈ Q be such that x ≤ y, then y * x = 0      
Then µ(x,q) ≤ max {µ ((y * x) , q) , µ (y,q)} 
                          = max {µ (0,q) , µ (y,q) } 
                          = max {µ (y*0, q), µ (y,q) } 
                          = µ (y,q)                   
Hence µ(x,q) ≤ µ (y,q). 
 
Theorem 3.2. µ is a Q-fuzzy R-closed PS-ideal of a PS-algebra X if and only if µc is an 
anti Q-fuzzy R-closed PS-ideal of X. 
Proof: Let µ be a Q-fuzzy R-closed PS- ideal of X and let x , y , z ∈ X and q ∈ Q. 

(i) µ(x *0,q) ≥  µ(x ,q) 
        1 - µc ( x* 0,q) ≥ 1 - µc ( x,q) 
            µc ( x*0,q) ≤ µc ( x,q) 
 That is µc(x *0,q) ≤  µc ( x,q) 

(ii)  µc ( x, q) = 1 - µ(x, q) 
              ≤ 1 – min { µ (  y * x , q) , µ ( y ,q) } 
      = 1 – min { 1 - µc (  y * x , q) ,1 - µc ( y , q) } 
      = max {µc ( y * x , q) , µc ( y , q)}  

That is µc ( x * z , q) ≤ max { µc ( y * x , q) , µc ( y , q) }. 
Thus µc is an anti Q-fuzzy R-closed PS-ideal of X. The converse also can be proved 
similarly.    
 
Theorem 3.3. If µ  is an anti Q-fuzzy R-closed PS-ideal of PS– algebra X, then for all  
x,y ∈ X and q ∈ Q,  
µ(x*(x *y), q ) ≤ µ(y,q)  
Proof:  Let x,y ∈ X and q ∈ Q.  
 µ ( x * (x * y), q)  ≤  max { µ ( y * ( x * ( x *  y)), q ), µ( y, q) }        
                               = max { µ ( 0, q ), µ( y, q) }  
                               = max { µ (y * 0, q ), µ( y, q) } 
                               = µ (y,q)              
∴ µ ( x * (x * y), q )  ≤  µ ( y , q ). 
  
Theorem 3.4 : Let X  be a PS-algebra.  For any anti Q- fuzzy R-closed PS-ideal µ of X, 
Xµ = {x ∈ X and q ∈ Q / µ(x,q) = µ (0,q) } is a PS-ideal of X.  
Proof: Let y*x , y ∈ Xµ . Then µ(y*x,q) = µ(y,q) = µ (0,q) 
Since , µ  is an anti Q-fuzzy R-closed PS-ideal  of X ,  
               µ(x,q) ≤ max {µ(y * x,q), µ(y,q)} 
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              = max { µ (0,q) , µ (0,q) }= µ (0,q) 
Hence, x ∈  Xµ. Therefore Xµ is a PS-ideal of X. 
 
Theorem 3.5. If λ and µ are anti Q-fuzzy R-closed PS ideals of a PS-algebra X, then λ ∩ 
µ is also an anti Q-fuzzy R-closed PS-ideal of X.   
Proof :  Let  x , y ∈ X and q ∈ Q. Then  

(λ∩µ) (0,q) = min { λ (0,q) , µ(0,q) } 
                  ≤  min { λ ( x, q) , µ(x, q) } 

                                         = (λ∩µ) (x, q) 
 (λ∩µ) (x, q) = min { λ (x, q) , µ(x, q) } 

         ≤  min { max {λ(y * x, q), λ(y, q)}, max {µ(y * x, q), µ(y, q)}} 
          = min { max {λ(y * x, q), µ(y * x, q)}, max {λ(y, q), µ(y, q)}} 
                     ≤ max { min {λ(y * x, q), µ(y * x, q)}, min {λ(y, q), µ(y, q)}} 
                    = max {(λ∩µ) (y *x, q), (λ∩µ) (y, q)}. 
⇒ (λ∩µ) (x, q) ≤ max {(λ∩µ) (y *x, q), (λ∩µ) (y, q) }.  
Thus (λ ∩ µ) is also an anti Q-fuzzy R-closed PS ideal of X. 
 
Theorem 3.6. The union of any set of anti Q-fuzzy R-closed PS-ideals in PS-algebra X is 
also an anti Q-fuzzy R-closed PS-ideal. 
Proof: Let { µ i } be a family of  anti Q-fuzzy R-closed PS-ideals of  PS-algebras X. 
Then for any x , y ∈ X  and q ∈ Q. 
 ( ∪ µ i  ) (0, q) = sup (µ i (0 , q) )  
              ≤ sup (µ i (x , q) ) 
              = ( ∪ µ i  ) (x, q) 
And ( ∪  µ i  ) (x, q) = Sup (µ i (x ,q) ) 
                     ≤ Sup { max { µ i (y * x, q) , µ i (y, q)}} 
          = max { Sup (µ i (y * x, q) ) , Sup (µ i (y, q) ) } 
          = max { ( ∪ µ i  ) (y * x, q) , ( ∪ µ i  ) ( y, q) } 
This completes the proof. 
 
4. Lower level cuts in anti Q-fuzzy R-closed PS-ideals of PS-algebra  
Definition 4.1.[7,8] Let µ be a Q-fuzzy set of X. For a fixed t ∈ [0, 1], the set µt ={x ∈ X 
µ(x,q) ≤ t for all q ∈ Q} is called the lower level subset of µ. Clearly µt  ∪ µ t = X for 
t∈[0,1] if t1 < t2 , then µt1  ⊆ µt2. 
 
Theorem 4.1. If µ is an anti Q-fuzzy R-closed PS-ideal of PS-algebra X, then µt

  is a R-
closed PS-ideal of X for every t∈ [0,1] . 
Proof: Let µ be an anti Q-fuzzy R-closed PS-ideal of PS-algebra X. 
(i)  Let y ∈ µt   ⇒  µ( y, q ) ≤  t.                                                                                                                                                      
                         µ (x * 0, q ) ≤  max { µ ( y * (x *0)),q ) , µ(y,q) }  
                          =  max { µ (y * 0),q ) , µ(y,q) } 
                                          = µ(y,q)  ≤  t. 
   ⇒  x * 0 ∈ µt . 
(ii) Let y * x ∈ µt

 and y ∈ µt , for all  x, y ∈ X and q ∈ Q. 
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      ⇒ µ (y * x ,q ) ≤  t and µ ( y,q ) ≤  t. 
 µ (  x ,q ) ≤  max { µ (y * x , q ), µ( y , q )} ≤ max {t,t} = t. 
⇒ x ∈ µt. 
Hence µt

  is an R-closed PS- ideal of X for every t∈ [0,1]. 
 
Theorem 4.2. Let µ be a Q-fuzzy set of PS- algebra X. If for each t ∈ [0,1], the lower 
level cut  µt is a R-closed PS-ideal of X, then µ is an anti Q- fuzzy R-closed PS-ideal of 
X.   
Proof: Let µt  be a R-closed PS-ideal of X. 
If µ(x* 0,q) >  µ(x,q) for some x ∈ X and q ∈ Q, then µ(x*0,q) > t0 > µ(x,q) by taking t0= 
 { µ(x*0,q) + µ(x,q)}. 

Hence x*0 ∉  µt0 and x ∈ µt0 , which is a contradiction. 
Therefore, µ(x*0,q) ≤ µ(x,q). 
Let x, y ∈ X and q ∈ Q be such that µ (x, q) > max {µ (y * x, q), µ(y, q)}.   
Taking t1 =   {µ(x, q) + max {µ (y * x) , q), µ(y, q)}}  

⇒  µ (x, q) > t1 > max {µ (y * x, q), µ(y, q)}. 
It follows that (y * x), y ∈ µt1 and   x ∉ µt1. This is a contradiction. 
Hence µ(x, q) ≤ max {µ (y * x, q), µ(y, q)}   
Therefore µ is an anti Q-fuzzy R-closed PS-ideal of X. 
 
Definition 4.2. Let X be an PS- algebra and a,b ∈ X.We can define an set A(a,b) by  
A(a,b) = { x ∈ X / a * ( b * x ) = 0 }. It is easy to see that 0,a, b ∈ A(a,b) for all a,b ∈ X. 
 
Theorem 4.3. Let µ be a Q-fuzzy set in PS-algebra X. Then µ is an anti Q- fuzzy R-
closed PS- ideal of X iff µ satisfies the following condition. 

        
Proof: Assume that µ is an anti Q-fuzzy R-closed PS- ideal of X. 
Let a,b ∈ µt.  Then µ (a,q ) ≤  t and µ (b,q ) ≤  t. 
Let x ∈ A (a,b). Then a * ( b * x ) = 0. 
Now, 
µ (x,q) ≤  max { µ ((b * x) , q) , µ ( b,q )} 
            ≤  max { max {µ (a * (b * x) , q) , µ (a,q)} , µ(b,q) } 
            = max { max {µ (0,q) , µ (a,q)} , µ(b,q) } 
            = max { max {µ (a * 0,q) , µ (a,q)} , µ(b,q) } 
            = max { µ (a,q)} , µ(b,q) } 
            ≤ max { t , t} = t    
⇒  µ (x,q) ≤ t . 
⇒  x ∈ µt. 
Therefore A(a,b) ⊆ µt . 
Conversely, suppose that A(a,b) ⊆ µt . 
Obviously x*0 = 0 ∈ A (a, b) ⊆ µt

  for all a, b ∈ X. 
Let x, y ∈ X  be such that (y * x) ∈ µt and y ∈ µt . 
Since (y * x) * (y * x) = 0.      
We have x ∈ A (y * x, y) ⊆ µt . 
∴ µt

  is a R-closed PS- ideal of X. 
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Hence, by theorem 4.2, µ is an anti Q-fuzzy R-closed PS-ideal of X. 
 
Theorem 4.4. Let µ be a Q-fuzzy set in PS-algebra X. If µ is an anti Q-fuzzy R-closed 
PS-ideal of X then 

 
Proof: Let t ∈ [0,1] be such that . Since x * 0 = 0 ∈ µt , we have  

 
Now, let x ∈   
Then there exists (u, v) ∈  such that x ∈ A (u, v) ⊆   by theorem 4.3. Thus 

      
∴     
 
5. Homomorphism and anti homomorphism on anti Q-fuzzy R-closed PS-algebras 
In this section, we discussed about ideals in PS-algebra under homomorphism and anti 
homomorphism and some of its properties.  
 
Definition 5.1.[6-11] Let (X,*,0) and ( Y ,∆ ,0 ) be PS– algebras. A mapping f: X → Y is 
said to be a homomorphism if f(x * y) =  f(x) * f(y) for all x,y ∈ X. 
 
Definition 5.2. [17,18] Let (X,*,0) and ( Y ,∆ ,0) be PS–algebras. A mapping f: X → Y is 
said to be an anti homomorphism if  f( x * y) =  f(y) ∆ f(x) for all x,y ∈ X. 
 
Definition 5.3. Let f: X → X be an endomorphism and µ be a fuzzy set in X. We define a 
new fuzzy set in X by µf  in X as µf (x) = µ (f(x)) for all x in X. 
 
Theorem 5.1. Let f be an endomorphism of a PS- algebra X. If µ is an anti Q- fuzzy R-
closed PS-ideal of X, then so is µf . 
Proof: Let µ be an anti Q-fuzzy R-closed PS-ideal of X. 
Now,           µf (x * 0,q) = µ ( f (x * 0,q )) 
                                      ≤ µ (f(x,q))  =  µf (x,q) ,  for all x,y ∈ X and q∈Q. 
Let x, y ∈ X and q∈ Q. 
Then    µf ( x, q) = µ ( f( x, q)) 
                          ≤ max { µ ( ( f(y, q) * f(x, q) ), µ(f (y, q)) } 
                          = max { µ ( f(y * x), q ) , µ(f (y, q))} 

  = max { µf (y * x, q ) , µf (y, q)} 
∴ µf ( x, q) ≤  max { µf ( y * x ), q ) , µf (y, q)} 
Hence µf  is an anti Q -fuzzy R-closed PS-ideal of X.   
 
Theorem 5.2. Let f: X → Y be an epimorphism of PS- algebra. If µf is an anti Q-fuzzy R-
closed PS-ideal of X, then µ is an anti Q-fuzzy R-closed PS-ideal of Y. 
Proof: Let µf be an anti Q-fuzzy R-closed PS-ideal of X. 
Let y ∈ Y and q∈ Q. Then there exists x ∈ X such that f(x, q) = (y, q). 
 Now,  
         µ(y * 0,q)  = µ ((y,q) * (0,q)) 



T.Priya and T.Ramachandran 

156 

 

                     = µ ( f ( x,q ) * f(0,q) ) 
              = µ ( f ((x,q) * (0,q)) ) 
                        = µf ( (x,q) * (0,q) )  

            ≤ µf ( x,q ) =  µ (f( x,q )) = µ ( y,q)  
 ∴ µ (y * 0,q)  ≤  µ (y,q ) 
Let y1, y2  ∈ Y and q∈ Q. 
       µ ((y1,q))  = µ ( f ( x1,q ) ) 
                       = µf (x1, q) 
                       ≤ max { µf ( (x2,q) * (x1,q) ), µf ( x2,q )} 
                       = max { µ [f ((x2,q) * (x1,q) )], µ (f(x2,q) )} 
                       = max { µ[ f (x2,q) ) * f (x1,q)] , µ (f( x2,q ))} 
                       = max { µ[ (y2,q) * (y1,q) ] , µ ( y2,q )} 
∴ µ (y1,q)   ≤  max { µ[ (y2,q) * (y1,q)] , µ ( y2,q )} 
 ⇒   µ is an anti Q-fuzzy R-closed PS-ideal of Y. 
 
Theorem 5.3. Let f: X → Y be a homomorphism of PS- algebra. If µ is an anti Q-fuzzy 
R-closed PS-ideal of Y then µf is an anti Q-fuzzy R-closed PS-ideal of X. 
Proof: Let µ be an anti Q-fuzzy R-closed PS-ideal of Y. 
Let x,y ∈ X and q∈ Q. 
         µf (x*0,q)  = µ [f(x*0,q)]  
     ≤ µ [f(x,q)] 
     = µf (x,q)    
⇒   µf (x*0,q) ≤ µf (x,q). 
       µf  (x , q) = µ(f( x,q)) 
                      ≤ max{ µ [f(y, q) * f(x, q) ] , µ (f (y, q)) } 
                      = max {µ [f(y * x, q)], µ (f (y, q))} 
                      = max {µf (y * x, q), µf (y, q)} 
   ∴ µf (x, q) ≤ max {µf (y * x, q), µf (y, q)} 
Hence µf is an anti Q-fuzzy R-closed PS-ideal of X. 
 
6. Cartesian product of anti Q-fuzzy PS-ideals of PS–algebras 
In this section, we introduce the concept of Cartesian product of anti Q-fuzzy R-closed 
PS-ideals of PS-algebra.  
 
Definition 6.1. [14,17] Let µ and δ be the fuzzy sets in X. The Cartesian product µ x δ : 
X x X → [0,1] is defined by ( µ x δ ) ( x, y) = min {µ(x),δ(y)},  for all x, y ∈ X.  
 
Definition 6.2. [18] 
Let µ and δ be the anti fuzzy sets in X. The Cartesian product µ x δ : X x X → [0,1] is 
defined by  ( µ x δ ) ( x, y) =  max {µ(x), δ(y)} , for all x, y ∈ X.  
 
Definition 6.3. [17,18] Let µ and δ be the anti Q-fuzzy sets in X. The Cartesian product µ 
x δ : X x X → [0,1] is defined by ( µ x δ ) (( x, y),q) =  max {µ(x, q), δ(y, q)} , for all x, y 
∈ X and q∈Q.  
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Theorem 6.1. If  µ and δ are anti Q-fuzzy R-closed PS-ideals in a PS– algebra X, then µ x 
δ is an anti Q-fuzzy R-closed KU-ideal in X x X. 
Proof: Let ( x1, x2) ∈ X x X and q∈ Q. 
           (µ x δ)((x1 * 0, x2 * 0), q) = max {µ (x1 * 0, q), δ (x2 * 0,q) } 
                                                  ≤  max {µ (x1, q), δ (x2, q)} 
                                                  = (µ xδ) ((x1, x2), q) 
∴ (µ x δ)((x1 * 0, x2 * 0), q) ≤ (µ xδ ) ((x1, x2), q) 
Let ( x1, x2) , ( y1, y2) ∈ X x X and q∈Q. 
Now, 
  (µ x δ) ((x1, x2), q) =  max {µ (x1, q),  δ (x2, q)} 
                                ≤ max {max {µ(y1* x1,q), µ( y1,q)},max {δ (y2 * x2),q), δ (y2,q)}} 
                                   = max {max {µ(y1* x1 ),q),δ ( y2 * x2),q)}, max { µ( y1,q), δ(y2,q)}} 
                                = max {(µ x δ ) ( ((y1,y2), q) * ((x1, x2), q) ), (µ x δ) ((y1 , y2),q)}      
∴ (µxδ) ((x1, x2), q) ≤ max {(µ x δ ) ( ((y1,y2), q) * ((x1, x2), q) ), (µ x δ) ((y1 , y2),q)}.      
Hence, µ x  δ is an anti Q-fuzzy R-closed PS- ideal in X x X. 
 
Theorem 6.2. Let  µ and δ  be fuzzy sets in a PS-algebra X such that µ x δ is an anti Q-
fuzzy R-closed PS-ideal of X x X. Then  
(i) Either µ(x * 0,q) ≤ µ(x, q) (or) δ(x * 0,q) ≤ δ(x,q) for all x ∈ X and q∈Q. 
(ii) If µ(x * 0,q) ≤  µ(x,q) for all x ∈ X and q∈Q, then either δ(x * 0,q)  ≤  µ(x, q) (or) δ(x 
*0,q)  ≤  δ(x, q) 
(iii) If δ(x *0,q)  ≤  δ(x,q) for all x∈ X and q∈Q, then either µ(x * 0,q) ≤  µ(x,q)  (or)  
µ(x* 0,q) ≤ δ(x,q). 
Proof: Straightforward. 
 
Theorem 6.3. Let  µ and δ  be fuzzy sets in a PS-algebra X such that µ x δ is an anti Q-
fuzzy R-closed PS-ideal of X x X. Then either µ or δ is an anti Q-fuzzy R-closed PS-
ideal of X.  
Proof: First we prove that δ is an anti Q- fuzzy R-closed PS-ideal of X.  
Since by 6.2(i) either µ(x*0,q) ≤ µ(x,q) or δ(x*0,q) ≤ δ(x,q) for all x∈ X and q∈Q.  
Assume that δ(x*0,q) ≤ δ(x,q) for all x∈ X and q∈Q. It follows from 6.2(iii) that either 
 µ(x*0,q) ≤  µ(x,q)  (or) µ(x*0,q) ≤ δ(x,q). 
If µ(x*0,q) ≤ δ(x,q), for any x∈ X and q∈Q ,then 
 δ(x,q) = max {µ(x*0,q), δ(x,q)}= max {µ(0,q), δ(x,q)}= (µ x δ) ((0, x),q)   
        δ(x,q) = max {µ(0,q) , δ(x,q)}. 
                  = (µ x δ) ((0, x),q)   
                  ≤ max {(µ x δ) [ ((0,y),q) * ((0,x),q) ], (µ x δ)  ((0, y),q)} 
                  = max {(µ x δ)[ ((0*0,y*x), q)], (µ x δ)  ((0, y),q)} 
                  = max {(µ x δ)[ ((0, (y*x)),q)], (µ x δ)  ((0, y),q)} 
                  = max { δ((y*x),q), δ(y, q)} 
Hence, δ is an anti Q- fuzzy R-closed PS-ideal of X.  
Similarly, we will prove that µ is an anti Q- fuzzy R-closed PS-ideal of X. 
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7. Conclusion  
In this article we have discussed anti Q-fuzzy R-closed PS- ideals of PS-algebras and its 
lower level cuts in detail. In our aspect this R-closed definition and main results can be 
similarly extended to some other algebraic systems such as BG-algebras,TM-algebras etc. 
We hope that this work would other foundations for further study of the theory of PS-
algebras. In our future study of fuzzy structure of PS-algebra, may be the topics , 
Intuitionistic fuzzy set, interval valued fuzzy sets, should be considered .  
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