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Abstract. In the study of similarity solution of unsteady convective laminar boundary 
layer flow above a vertical porous plate, four different similarity cases arise of which we 
will present one of them. As usual the governing non-dimensional boundary layer partial 
differential equations are simplified first by using Boussinesq approximation. Secondly, 
similarity transformations are introduced on the basis of detailed analysis in order to 
transform the simplified coupled partial differential equations into a set of ordinary 
differential equations. The transformed complete similarity equations are then solved 
numerically by using Nachtsheim-Swigert shooting iteration technique along with sixth 
order Runga-Kutta method. The flow phenomenon has been characterized with the help 
of obtained flow controlling parameters on the velocity and temperature fields across the 
boundary layer are investigated. Numerical results for the velocity and temperature 
distributions are presented graphically. It is found that a small suction or blowing can 
play a significant role on the patterns of flow and temperature fields.  
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1. Introduction 
Mixed convection flows or combined forced and free convection flows, arise in many 
transport processes in engineering devices and in nature. These flows are characterized 
by the buoyancy parameter (measure of the influence of the free convection in 
comparison with that of forced convection on the fluid flow) which depends on the flow 
configuration and the surface heating conditions. The problem of free mixed and forced 
convection over a horizontal porous plate has been attracted the interest of many 
investigators (Viz. Clark and Riley [1]. Schneider [2] and Merkin and Ingham [3] among 
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several others) in view of its application in many engineering and geophysical problems. 
Ramanaiah et al. [4] considered the problem of mixed convection over a horizontal plate 
subjected to a temperature or surface heat flux varying as a power of x.  

The problem of mixed convection due to a heated or cooled vertical flat plate 
provides one of the most basic scenarios for heat transfer theory and thus is of 
considerable theoretical and practical interest and has been extensively studied by 
Sparrow et al. [5], Wilks [6], Afzal & Banthiya [7] Hunt & Wilks [8], Lin & chen [9]. 
Hussain & Afzal [10], Merkin et al. [11] etc. However, the problem of forced, free and 
mized convection flows past a heated or cooled body with porous wall is of interest in 
realtion to the boundary layer control on airfoil, lubrication of ceramic machine parts and 
food processing. Watanabe [12] has considered the mixed convection boundary layer 
flow past an isothermal vertical porous flat plate plate with uniform suction or injection. 
Sattar [13] made analytical studies on the combined forced and free convection flow in a 
porous medium. Further, a vast literature of similarity solution has appeared in the area of 
fluid mechanics, heat transfer, and mass transfer, etc as it is one of the important means 
for the reduction of a number of independent variables with simplifying assumptions. It is 
revealed that the similarity solution, which being attained for some suitable values of 
different parameters, might be thought of being the solution of the convective boundary 
layer context either near the leading edge or far away in the downstream. Deswita et al. 
[14] obtained a similarity solution for the steady laminar free convection boundary layer 
flow on a horizontal plate with variable wall temperature hossain and Mojumder [15] 
presented the similarity solution for the steady laminar free convection boundary layer 
lfow generated above a heated horizontal rectangular surface. Furthermore the study of 
compete similarity solutions of the unsteady laminar natural convection boundary layer 
flow above a heated horizontal semi-infinite porous plate have been considered by 
hossain et al. [16.17]. 
             The similarity solutions in the contest of mixed convection boundary layer flow 
of steady viscous incompressible fluid over an impermeable vertical flat plate were 
discussed by ishak et al [18]. Ramanaiah et al [19] studied the similarity solutions of free, 
mixed and forced convection problems in a saturated porous media. Recently, Hossain at 
al.[20] Presented  Similarity solution of unsteady combined free and force convective 
laminar boundary layer flow about a vertical porous surface with suction and blowing. 
But in their analysis, they considered the first similarity case out of the four cases. In the 
present study we will consider another case for the complete similarity solution of the 
unsteady laminar combined free and forced convection boundary layer flow about a 
heated vertical porous plate in viscous incompressible fluid and be attempted to 
investigate the effects of several involved parameters on the velocity and temperature 
fields and other flow parameters like skin friction, heat transfer coefficients across the 
boundary layer. We are also tried to predict the role of small suction or blowing velocity 
on these parameters as well. 

 
2. Basic equations of the flow and mathematical analysis 
A semi- infinite flat-plate extending vertically upwards and which is fixed with its 
leading edge horizontal is placed in an unsteady free stream. The plate is heated to a 
certain unsteady temperature above the ambient temperature Te. Heat is supplied by 
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diffusion from the plate. The density of the fluid near the plate is reduced so that the fluid 
there is buoyant compared with the fluid in the free stream at a large distance from the 
plate. Consequently layers of the fluid close to the plate begin to rise. It is supposed that 
the maximum velocity created in this buoyant layer at a distance L from the bottom of the 
plate is U. If the Reynolds number based on this velocity U is sufficiently large, buoyant 
flow is amenable to Prandtl’s boundary layer analysis.  
Considering the flow direction along the x-axis. Then the simplified form of the basic 
boundary layer equations of mass, momentum and energy for a viscous and heat 
conducting fluid of variable properties subject to a body force are as follows: 
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Since at a particular station ( )tx ,  the pressure p does not very with y through the 

boundary layer, we have written epp = , euu → , eρρ → , eTT → , and 0→
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Also we have 

written, ew
ew

e TTT
TT

TT
−=∆=

−
−

,θ                                                                     (4) 

where T∆  and eT  are functions of x and t. 0TTe =  (=constant) is one of the solutions of 

(4). 
 
3. Similar solutions for the Boussinesq approximation 
In this section we will simplify the above boundary layer equations (1)-(3) using the 

usual Boussinesq approximation Thus the elimination of the first term 
Dt

Dρ
 in the 

continuity equation(1) will be found to lead to great simplifications in the boundary layer 
equations. Since the fluid property variations other than density variation in the buoyancy 
term of the momentum equation are ignored completely in this approximation, it is also 
assumed here that the fluid temperature outside the boundary layereT , is constant. Hence 

we get 
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where, rρρ ≈ , rµµ ≈ , rkk ≈ ,
rpp CC ≈ and 
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kinematic viscosity and Pr is the Prandtl number of the fluid respectively.  
 
4. Equations governing similar solutions 
To reduce the above system equations (5)-(6) into suitable forms we adopt the method of 
similarity solutions. Hence the following substitutions are introduced- 
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wv  represents the non-zero wall velocity called suction or blowing 

velocity normal to the porous surface, so that fluid can either be sucked or blown through 
it. Physically, 0<wv  and 0>wv  represent the suction and blowing velocity through the 

porous surface respectively. For uniform suction (or blowing) wv =constant. However, 

0=wv  implies that the surface is impermeable to the fluid. In view of the above 

transformation, equations (5) to (7) become  
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The boundary conditions which are imposed in order to determine the solutions of the 
transformed boundary layer equations (8)-(9) are given by: ( ) ( ) 000 == ϕFF  
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The relations in equation (10) furnish us with the conditions under which similarity 
solutions are obtained provided that all sa'  must be constants and thus the equations (8)-
(9) will become non-linear ordinary differential equations. 
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5. Numerical solution and discussions 
To obtain the solution of differential equations (13)–(14) with the boundary conditions 
(15), a numerical procedure based on Nachtsheim-Swigert shooting iteration technique 
(guessing the missing value) (Nachtsheim & Swigert (1965)) together with Runge-Kutta 
sixth order integration scheme is implemented. The effects of various pameters on the 
flow and temperature fields have been determined for different values of the 
suction/blowing parameterwf , the driving parameter β  (the ratio between the changes 

of local boundary-layer thickness with regard to position and time), the buoyancy 

parameter 
2
0

2 /uU F   (the square of the ratio between the fluid velocity caused by 

buoyancy effects and external velocity for the forced flow) and the prandtl number Pr . 
Since there are four parameters of interest in the present problem which can be varied, to 
observe the effect of one, the other three parameters are kept as constants. Under these 
conditions the solutions to the problem thus obtained finally by employing the above 
mentioned numerical technique are plotted and tabulated in terms of the similarity 
variables. 
           The effect of wf  on the velocity and temperature profiles are plotted in the Fig. 

1(a) and (b) respectively. From Fig.1 (a), we observe that the velocity is increasing for 
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the decreasing value ofwf  in the region 02.1≤η . The maximum velocity appears 

at 0.1=η . Then the velocity profiles start decreasing and become negative when 

1.59η >  again the velocities take the reverse direction and finally become zero at 

about 5.1η = . The magnitude of the velocities reaches the highest value when 2.53η ≈ . 

Further we conclude that the velocity profiles increase with the decreasing value of wf  in 

the region ( )0 2.53η≤ ≤  and increasing with the increasing of wf  in the region 

( )2.53 5.1η≤ ≤  for both suction and blowing. From the Fig. 1(b), we observe the effect 

of  wf  on the temperature profiles. From the figure it is observed that the wall lost its 

temperature to the fluid and after sometimes it receives the temperature from the fluid. In 
the region very close to the surface, the temperature falls sharply and decreases with the 
increase in wf . When 1.22η ≈ , the temperature profiles take the reverse direction and 

increase with increasingwf . Here the temperature again decrease with the increase of  

wf  when 5.3>η  and finally approaches to zero when 5.06η > . 
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Figure 1: (a) Velocity profiles and (b) Temperature profiles for different values of wf  

(with fixed values of  3.1/ 2

0

2 −=uU F , 0.1=β  and Pr 0.72= ). 
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(b): 

Figure 2: (a) Velocity profiles and (b) for different values of 
2
0

2 /uU F  (with fixed values 

of 0.1=β , 3.0−=wf  and 72.0=rP ).  

           Fig. 2(a) and Fig. 2 (b) show the effects of 
2

0

2 /uUF  on the velocity and 

temperature profiles. we observe from Fig.2(a) that the velocity profiles are increasing 

near the surface with the decreasing values of 
2
0

2 /uUF  and obtained maximum value at 

99.0≈η . Then the velocity profiles change their directions and obtained negative values 

at 1.65η >  and finally become zero at 5.6=η . The magnitude of velocity obtained its 

highest value when 65.2≈η  and after that a reverse characteristic is found. Here the 

magnitude of velocity is decreased with the increases of magnitude of 
2
0

2 /uUF .Again the 

effects of 
2

0

2 /uUF  on the temperature profiles show that, very close to the wall the 

temperature falls sharply in the region0 1.35η≤ < . The unusual shape of the 
temperature profiles in Fig. 2(b) indicates that the wall rejects more and more heat to the 

fluid as the buoyancy parameter 
2
0

2 /uU F  decreases. This is due to the plate possessing 

an infinite source of heat at the leading edge, that is, 
t

T
1∝∆  at x = 0, hence ∞→wT  

as 0→t  at the leading edge. 
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Figure 3: (a) Velocity profiles and Tempeture for different values of β  (with fixed 

values of 3.1/ 2

0

2 −=uU F , 3.0−=wf  and Pr 0.72= ).  

          From Fig. 3(a), we see that the velocity profile becomes positive and a maximum 
appears at 2.35η ≈  for minimum value of 0.967β = . After that the velocity profiles 

again change their directions and become negative values when 25.3≥η  and 
asymptotically approaches zero far away from the plate surface. Here the velocity 
profiles decreases with increasingβ . Fig. 3(b) we see temperature first increases with 

decreasing β  when 3.2>η  and asymptotically approach to zero for all values of β  for 

far away and then they are again increase with increasingβ . 
           From the Fig. 4(a) we observe that the velocity profiles decreases with the increase 
in Pr . The velocity is positive in the region 0 1.58η≤ ≤  and become maximum 

at 0.97η = . After that the velocity profiles changes their directions and become negative 

in the region1.58 5.1η< ≤ .  
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Figure 4: (a) Velocity profiles and (b) for different values of Pr  (with fixed values of 
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2 −=uU F , 0.1=β  and 3.0−=wf ). 
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              Finally reduced to zero asymptotically except for Pr 7.0= . From the figure 4(b) 
we observe that the temperature profiles decreasing more with the decreasing in Pr close 
to the wall. For relatively higher values of η  they changes there direction and become 
positive. Before reaching zero finally, the temperature becomes positive and never 
negative again. 
            The values proportional to the coefficients of skin friction (f //(0)) and heat 

transfer ( )/(0)ϑ−  are tabulated in Table (4.1)–(4.4). From the table it is seen that with 

the increase in wf , both the coefficients of skin friction and heat transfer increase. The 

coefficient of skin friction decreases whereas and coefficient of heat transfer increases 

with increasing
2
0

2 uU F . Two different situations are observed for β  variation. In the 

range of 0.967 0.984β≤ < , the skin friction decrease but the coefficient of heat 

transfer increases whereas in the range of 01.1984.0 ≤≤ β  both the skin friction and 

heat transfer coefficients increase for the increase in β . Again both the skin friction 

( )0(//f ) and heat transfer ( )/(0)ϑ−  coefficients reduces with the increase in Pr. 

Unfortunately no experimental data is available to us to correspond our numerical results.  
 

Table 1: Variation of the coefficients of skin friction and heat transfer with fw , 
2 2

0/FU u , 

β , Pr. 

Values proportional to the coefficients of skin friction (f //(0)) and heat transfer 

( / (0)ϑ− ) with  

the variation of suction parameter for fixed 3.1/ 2

0

2 −=uU F , 0.1=β  and Pr 0.72=  

 fw f  //(0) / (0)ϑ−  

0.34 0.64352 3.07080 
0.30 0.63844 3.01001 
0.00 0.545924 2.50976 

- 0.30 0.63844 1.99617 
- 0.50 0.446546 1.69337 

Buoyancy parameter 
2
0

2 uU F  for fixed 3.0−=wf , 0.1=β  and 

Pr 0.72=  
2 2

0/FU u  f //(0) / (0)ϑ−  

-1.1 0.438147 2.1618 
-1.2 0.454657 2.0588 
-1.3 0.477470 1.99617 
-1.4 0.509787 1.96947 

driving parameter β  for fixed 3.0−=wf , 3.12
0

2 −=uU F  and 

Pr 0.72= . 
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β  f //(0) / (0)ϑ−  

0.967 - 1.568036 -1.992520 
0.98 - 1.08877 -1.674788 
0.983 -1.006547 -1.621930 
0.984 0.268703 0.827137 
0.985 0.331071 1.17268 
0.99 0.411649 1.588687 

                      1.01 0.528188 2.457179 

Prandtl’s number Pr , for fixed 3.0−=wf , 0.1=β  and 3.12

0

2 −=uU F . 

Pr f //(0) / (0)ϑ−  

0.72 0.47747 1.99617 
1.00 0.422092 2.09212 
7.00 0.4 0.3 

 
6. Conclusion 
Similarity solution for the two-dimensional unsteady laminar combined free and forced 
convection boundary layer flow over a semi-infinite heated vertical porous plate with the 

similarity case
τd

dA
 and 

ξ
ξ

d

dB )(
=0 has been studied in this paper. On the basis of the 

findings the following conclusions can be drawn: 
(i)  Velocity increase with the decrease of suction/blowing and increasing with the 
increasing for both suction and blowing.. In the region very close to the surface, the 
temperature falls sharply and decreases with the increase suction and blowing. Here the 
temperature again decreases with the increase of suction and blowing and finally 
approaches to zero. 
(ii)  The velocity increase near the surface with the decreasing values of buoyancy 
parameter. The unusual shape of the temperature indicates that the wall rejects more and 
more heat to the fluid as the buoyancy parameter decreases.  
(iii)  The velocity decreases with increasing control parameter and temperature first 
increases with decreasing control parameter and asymptotically approach to zero for all 
values of control parameter for far away and then they are again increase with increasing 
control parameter 
(iv)  With the increase in Pr both the velocity and temperature decrease. Also both the 
values proportional to the coefficients of skin-friction and heat transfer decrease with the 
increase in the prandtl’s number. 
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