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Abstract. The numerical study is performed to examine the steady two-dimensional MHD 
free convection and mass transfer flow past through an inclined plate with heat 
generation. The governing partial differential equations are transformed to a system of 
dimensionless coupled partial differential equation. Finite difference method has been 
used to solve the above equations. The effects on the velocity, temperature, concentration 
distribution of various parameters entering into the problem separately are discussed with 
the help of graphs and tables. 
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1. Introduction 
Investigation of Magneto hydrodynamic flow (MHD) for an electrically conducting fluid 
past a heated surface has attracted the interest of many researchers in view of its 
important applications in many engineering problems such as plasma studies, petroleum 
industries, MHD power generators, cooling of nuclear reactors, the boundary layer 
control in aerodynamics, and crystal growth. This study has been largely concerned with 
the flow and heat transfer characteristics in various physical situations. Alam and Sattar 
[1] investigated the heat transfer in thermal boundary layers of magneto-hydrodynamic 
flow over a flat plate. Elbashbeshy [2] studied heat and mass transfer along a vertical 
plate in the presence of a magnetic field.  Chamkha and Khaled [3] investigated the 
problem of coupled heat and mass transfer by hydromagnetic free convection from an 
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inclined plate in the presence of internal heat generation or absorption, and similarity 
solutions were presented. 

The problem of free convection and mass transfer flow of an electrically 
conducting fluid past an inclined vertical surface under the influence of a magnetic field 
has attracted interest in view of its application to geophysics, astrophysics and many 
engineering problems, such as cooling of nuclear reactors, the boundary layer control in 
aerodynamics. Hossain et al. [4] studied the free convection flow from an isothermal 
plate inclined at a small angle to the horizontal. Anghel et al. [5] presented a numerical 
solution of free convection flow past an inclined surface. Reddy and Reddy [6] performed 
an analysis to study the natural convection flow over a permeable inclined surface with 
variable temperature, momentum and concentration.  The study of the heat generation or 
absorption in moving fluids is important problems dealing with chemical reactions and 
those concerned with dissociating fluids. Vajravelu and Hadjinicolaou [7] studied the 
heat transfer boundary layer of a viscous fluid over a stretching sheet with internal heat 
generation. Hossain et al. [8] studied the problem of natural convection flow along a 
vertical wavy surface in the presence of heat generation/absorption. 

Hence our aim is to study MHD free convection and mass transfer flow past 
through an inclined plate with heat generation. 
  
2. Mathematical Formulation 
By introducing Cartesian co-ordinate system, the X − axis is chosen along the plate in 
the direction of the flow and the Y − axis is normal to it. Initially it has been considered 
that the plate as well as the fluid is at the same temperature ( )T T∞ and the concentration 

level ( )C C∞ everywhere in the fluid is same. Also it is considered that the fluid and the 

plate is at rest after that the plate is to be moving with a constant velocity. 0U  in its own  
plane and  instantaneously at time t > 0, the species concentration and the temperature of 
the plate are raised to  ( )wC C∞>  and ( )wT T∞> respectively, which are there after 

maintained constant, where  wC , wT  are species concentration and temperature at the 

wall of the plate and C∞ ,T∞  are the concentration and temperature of the species far 
away from the plate respectively. The physical configuration of the problem is shown in 
Fig 1. Within the framework of the above stated assumptions with reference to the 
generalized equations described before the equation relevant to the transient two 
dimensional problems are governed by the following system of coupled non-linear 
differential equations. 

Continuity equation 0=
∂
∂

+
∂
∂

y
v

x
u

                                                                                     (1) 

Momentum equation 

( ) ( )
22

* 0
2 cos cosu u u uu v v g T T g C C u

t x y y
σββ α β α
ρ∞ ∞

∂ ∂ ∂ ∂
+ + = + − + − −

∂ ∂ ∂ ∂
          (2) 
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Energy equation   
2

2
T

T
p

QT T T Tu v K
t x y y Cρ

∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂
                                                (3) 

Concentration equation  
2

2

C C C Cu v D
t x y y

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                                                   (4) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1:  The physical model and coordinate system 
 
With the corresponding initial and boundary conditions are 
at  0 0, 0,t u v C C∞= = = → everywhere5 

0

0, 0, , 0
0 , 0, , 0

0, 0, ,w w

u v T T C C at x
t u U v T T C C at y

u v T T C C as y

∞ ∞

∞ ∞

= = → → =
> = = → → =

= = → → →∞
                                              (6) 

where yx,  are Cartesian co-ordinate system. vu,  are yx,  component of flow velocity 
respectively. Here g  is the  local acceleration due  to  gravity ; υ  is the  kinematic 

viscosity; ρ  is  the density  of  the  fluid ; K  is  the  thermal conductivity ; pC  is  the  

specific heat  at  the constant  pressure; D  is the coefficient of mass diffusivity. 
 
Since the solutions of the governing equations (1)-(4) under the initial (5) and boundary 
(6) conditions will be based on a finite difference method it is required to make the said 
equations dimensionless. 
For this purpose it has been now introduced the following dimensionless variables; 
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2
*0 0 0

0 0

, , , , , , ( )T
w

xU yU tU T Tu vX Y U V T Q T T Q
U U T T

τ
υ υ υ

∞
∞

∞

−
= = = = = = = −

−  
and 

w

C CC
C C

∞

∞

−
=

−  
From the above dimensionless variable we have 

0 ,u U U=  ( )wT T T T T∞ ∞= + −  and ( )wC C C C C∞ ∞= + −  
Using these relations we have the following derivatives are 

2 3
0 0

0
U Uu u U UU

t t
τ

τ τ υ υ τ
∂ ∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂  

2
0 0

0 .U Uu u X U UU
x X x X Xυ υ

∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂  
2

0Uu u Y U
y Y y Yυ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
 

2 2 32 2
0 0 0

2 2 2. . .U U Uu u U U Y U
y y y y Y Y Y y Yυ υ υ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

2
0Uv v Y V

y Y y Yυ
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂  

( ) { }cos ( ) cos ( ) cosw wg T T g T T T T T g T T Tβ α β α β α∞ ∞ ∞ ∞ ∞− = + − − = −  

( ) { }* * *cos ( ) cos ( ) cosw wg C C g C C C C C g C C Cβ α β α β α∞ ∞ ∞ ∞ ∞− = + − − = −  
2 2
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0u U Uσβ σβ
ρ ρ

=  

( ) ( )0 0; ;w wU T T U T TT T T T
x X y Yυ υ

∞ ∞− −∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂  

( ) ( )
2 22 2
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2 2 2 ;w w

U UT T C CT T C C
y Y tυ υ τ∞ ∞

∂ ∂ ∂ ∂
= − = −
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( ) ( ) ( )
22 2
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2 2 2; ;w w w

U U UC C C C C CC C C C C C
x X y Y y Yυ υ υ∞ ∞ ∞

∂ ∂ ∂ ∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂  
Now,  we  substitute  the values of  the above derivatives into the equations (1)-(3) and 
by simplifying,  it has been obtained the following  nonlinear coupled  partial differential 
equations  in terms of  dimensionless  variables 

     0=
∂
∂

+
∂
∂

Y
V

X
U                                                                                                               (7) 

2

2 cos cosr m
U U U UU V G T G C MU

X Y Y
α α

τ
∂ ∂ ∂ ∂

+ + = + + −
∂ ∂ ∂ ∂

                                     (8) 
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2

2

1 .
Pr

T T T TU V T
X Y Y

α
τ

∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂
                                                                            (9) 

2

2

1

c

C C C CU V
X Y S Yτ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                                                                                    (10) 

where, 

Grashof number 
( )

3
0

w
r

T T
G g

U
υ β ∞−

= =  

Modified Grashof number 
( )*

3
0

w
m

C C
G g

U
υ β ∞−

= =
 

Magnetic parameter
2
0
2
0

M
U
σβ υ

= =
 

Prandlt number Pr pC
K

υρ
= =  

Schmidt number cS
D
υ

= =  

Also the associated initial and boundary conditions become 
0 0, 0, 0, 0U V T Cτ = = = = =     everywhere                                                     (11) 

0, 0, 0, 0 0
0 0, 0, 1, 1 0

0, 0, 0, 0

U V T C at X
U V T C at Y
U V T C as Y

τ
= = = = =

> = = = = =

= = = = →∞

                                                     (12) 

 
3.  Numerical Calculations 
In this section, it has been attempted to solve the governing second order nonlinear 
coupled dimensionless partial differential equations with the associated initial and 
boundary conditions.  

From  the concept  of  the  above discussion, for  simplicity  the  explicit finite  
difference  method  has been used to solve  equations (1) - (4) subject to the conditions  
given  by  (5) and (6). To  obtain  the  difference   equations  the  region  of   the  flow  is  
divided into a grid of lines parallel to X and Y axes whereY -axes is taken along the   
plate  and  X - axes  is   inclined to the plate. Here   we   consider  that  the  plate  of  

height max( 100)X =  i.e. X  varies from 0 to  100 and regard max( 25)Y =  as 

corresponding to ∞→Y  i.e. Y  varies 0 to 25. There  are 100m =  and  100n=  grid  
spacing  in  the X  and Y  directions  respectively as  shown  in the  Fig. 2.  

It is assumed that YX ∆∆ ,  are constant mesh sizes along X  and Y directions 
respectively and taken as follows, 
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1(0 100)
0.2(0 25)

X x
Y y

∆ = ≤ ≤
∆ = ≤ ≤

 

With the smaller time step, 0.001τ∆ =  
Now ', , ,U V T C′ ′ ′  are denoted the values of  , ,U V T  and 'C  at the end of a step of time 
respectively.  
 
 
 
 
 
  
 
                                       
 
 
 
 
 
 
 
 
                         

Fig. 2.  The finite difference space grid 
 
Using the explicit finite difference approximation we get, 
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Substituting the above relations into the corresponding differential equation we obtain an 
appropriate set of finite difference equations, 

                        

, 1, , , 1 0i j i j i j i jU U V V
X Y

− −− −
+ =

∆ ∆
                                             

                      , 1,
, , 1
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∆
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i j i j
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U V
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The initial and boundary conditions with the finite difference scheme are 
                      0 0 0 0

, , , ,0, 0, 0, 0i j i j i j i jU V T C= = = =                                                   (17) 

                     

0. 0, 0, 0,

,0 ,0 ,0 ,0

, , , ,

0, 0, 0, 0

1, 0, 1, 1

0, 0, 0, 0

n n n n
j j j j

n n n n
i i i i

n n n n
i L i L i L i L

U V T C

U V T C

U V T C

= = = =

= = = =

= = = =

                                                  (18) 

                     where  ∞→L  
Here   the subscripts   i   and  j  designate   the grid points with  x and  y  coordinates 
respectively and    the   superscript n  represents a   value   of   time, ττ ∆= n    
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where 0,1, 2,3........n = . From the initial condition (4), the values of U  is known at 

.0=τ  During any one time step, the coefficients  jiU ,  and jiV ,  appearing in equations 

(13)-(16) are created as constants. Then at the end of  any time-step τ∆  the new 
velocity U′ , the new induced magnetic field V ′ at all interior nodal points may be  
obtained  by  successive  applications  of   equations  (14) - (16)  respectively.  This  
process is repeated in time and provided  the time-step is sufficiently small, VU, should  
eventually  converge  to  values which    approximate the  steady-state solution of 
equations  (14)-(16). These converged solutions are shown graphically in figures (13) – 
(14). 
 
4. Results and Discussion 
The main goal of the computation is to obtain the steady state solutions for the non-
dimensional velocity U , temperature T  and concentration C  for different values of 
Magnetic parameter (M), Prandtl number (Pr) , Grashof number ( ),Gr  Modified Grashof 

number ( ) ,Gm Schmidt number ( ) ,Sc  Heat source parameter ( )α and with the angle  

and . For this purpose computations have been carried out up to dimensionless time 
τ  = 80. Thus the solution for dimensionless time τ =80 is essentially steady state 
solutions. Along with the steady state solutions the solutions for the Velocity U  versusY , 
Temperature T  versusY , Concentration C  versus Y  are shown in below for different 
values of parameters. Here figures have been drawn for dimensional time τ = 10, 20 and 
30. 

Fig. 3 represents the velocity distributions for different values of Magnetic 
parameter ( 0.5,1.0,1.5)M = , the values of Pr 0.71= ( Prandtl number for saltwater 
at C020 ) and another parameters Grashof number ( 3.00)Gr = , Modified Grashof 
number ( 2.00),Gm =  Schmidt number ( 0.60)Sc = , Heat source parameter ( 0.2)α =  
are constant and with an inclined angle 00 . In this figure, it is observed that velocity 
distribution increases with the increases of Magnetic parameter. 
 
 
 
 
 
 
 
(a)                                                                    (b) 
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                                        (c) 
 
 
 
 
 
 
Fig. 3.  Velocity profile different values of Magnetic number when Gm = 1, Gr= 2,  = 
0.5, Sc =  0.60, Pr = .71 and cos  = 1 at time (a)  = 10, (b)  = 20 and (c)  = 30. 

Fig.4 represents the velocity distributions for different values of Grashof 
number ( 2.0,3.0, 4.0)Gr =  and the values of Pr 0.71,=  0.5,M =  2.00,Gm =  

0.60Sc = , 0.2α =  are constant with an inclined angle 00 . In this figure, it is observed 
that velocity distribution increases with the increases of Grashof number. 
 
 
 
 
 
         (a)                                                              (b) 
 
 
 
 
 
 
 
 
 
                                      (c) 
 
 
 
                                      
 
 
Fig. 4.  Velocity profile different values of Grashof number when Gm = 2, M= 0.5,  = 
0.2, Sc = 0.60, Pr = .71 and cos  = 1 at time (a)  = 10, (b)  = 20 and (c)  = 30 
 
Fig. 5 represents the velocity distributions for different values of Prandtl 
number (Pr 0.71,1.0, 7.0)=  and the values of 1.0,M = 3.00Gr = , 2.00,Gm =  

0.60Sc = , 0.2α =  are constant with an inclined angle 00 . In this figure, it is observed 
that velocity distribution decreases with the increases of Prandtl number. 
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         (a)                                                                 (b) 
                                                                          
 
 
 
  
 
 
 
 
 
 
 
 
                                   (c) 
 
 
 
 
 
 
Fig. 5.  Velocity profile different  values of Pandlt number when Gm = 2, Gr= 2, M= 1, 
Sc = 0.60,  = 0.2and cos  = 1 at time (a)  = 10, (b)  = 20 and (c)  = 30 
 

Fig.6 represents the velocity distributions for different values of Modify Grasshof 
number 0.3,0.2,0.1=Gm  and the values of when Gr = 2, M= 0.5,  = 0.5, Sc = 0.60, Pr 
= .71 are constant with an inclined angle 00 . In this figure, it is observed that velocity 
distribution increases at  = 10 and remain constant at  = 20 and  = 30. 

Fig. 7 represents the temperature distributions for different values of Heat source 
parameter ( )0.20,0.50,0.70α =  and the values of Pr 0.71,=  0.5,M =  1.00,Gm =  

2.00Gr = , 0.60Sc =  are constant with an inclined angle 00 . In this figure, it is 
observed that temperature distribution increases with the increases of Heat source 
parameter. 
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         (a)     (b) 
 
 
 
   
 
 
 
 
 
 
 
 
 
                                   (c)  
 
 
 
 
 
Fig. 6. Velocity profile different values of Modify Grasshof number when Gr = 2, M= 0.5, 

 = 0.5, Sc = 0.60, Pr = .71 and cos  = 1 at time (a)  = 10, (b)  = 20 and (c)  = 30 
 
 
 
 
 
 
 

(a)                                                             (b)  
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                                            (c)  
 
 
 
 
 
 
 
Fig. 7. Temperature  profile  for different  values of Heat Source  number when Gr = 2, 
Gm = 1,M= .5, Pr = .71 , Sc = 0.60 and cos  = 1 at time (a)  = 10, (b)  = 20 and (c)  = 
30 
 

Fig.8 represents the temperature distributions for different values of Grashof 
number ( 2.0,3.0, 4.0)Gr =  and the values of Pr 0.71,=  0.5,M =  2.00,Gm =  

0.60Sc = , 0.2α =  are constant with an inclined angle 
00 . In this figure, it is observed 

that temperature distribution fluctuate with the increases of Grashof number. 
 
 
 
 
 

(a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
                                    (c) 
 
 
 
 
 
Fig. 8. Temperature  profile  for different  values of Grassof  number when  = 0.2, Gm = 
2,M= .5, Pr = .71 , Sc = 0.60 and cos  = 1 at time (a)  = 10, (b)  = 20 and (c)  = 30 
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Fig. 9 represents the concentration distributions for different values of Magnetic 
parameter ( 0.5,1.0,1.5)M =  and the values of Pr 0.71,=  3.00Gr = , 2.00,Gm =  

0.60Sc = , 0.2α =  are constant with an inclined angle . In this figure, it is observed 
that there are no effects with the increase of Magnetic parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Concentration profile different values of Magnetic number when Gm = 2, Gr= 3,  
= 0.2, Sc = 0.60, Pr = 0.71 and cos  = 1 at time   = 30 and   = 60. 
 
5. Conclusion 
In this report, it has been the studied equation of continuity and derived the Navier-Stoke 
equation of motion for viscous compressible and incompressible fluid flow. The 
boundary layer equation in two-dimensional flow, energy equation, mass transfer 
equations are obtained by boundary layer approximation. The velocity distribution 
increases with the increases of magnetic parameter while the temperature and 
concentration distribution increase with increase of Magnetic parameter. The velocity 
distribution increases with increases of Grashof number while temperature and 
concentration distribution decrease with increase of Grashof number. The velocity and 
temperature distribution increase with increase of Heat source parameter. 
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