Annals of Pure and Applied Mathematics Vol. 3, No. 2, 2013, 100-107 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 July 2013 www.researchmathsci.org

Annals of Pure and Applied <u>Mathematics</u>

O-Modular Nearlattice

Md. Zaidur Rahman¹, A. S. A. Noor² and Md. Bazlar Rahman¹

¹Department of Mathematics Khulna University of Engineering and Technology, Bangladesh Email- <u>mzrahman1968@gmail.com</u> ²Department of ECE, East West University, Dhaka, Bangladesh Email- <u>noor@ewubd.edu</u>

Received 4 June 2013; accepted 30 June 2013

Abstract. J.C. Varlet introduced the concept of 0-distributive and 0-modular lattices. Recently, Zaidur Rahman et al. [6] have introduced the concept of 0-distributivity in a nearlattice. In this paper, we discuss 0-modularity in a nearlattice. Here, we include several characterizations of 0-modular nearlattices. We prove that a section complemented 0-modular and 0-distributive nearlattice is semi Boolean. We also show that for two filters F and G of a 0-modular nearlattice if $F \lor G = [0)$ and $F \cap G = [x]$; $x \in S$, then both F and G are principal. Finally we show that a nearlattice S is semi Boolean if and only if S is 0-modular, every [0, x] is semi complemented and 0 is the meet of a finite number of meet primes.

Keywords. 0-distributive nearlattice, 0-modular nearlattice, Prime filter, Semi complemented nearlattice, Section complemented nearlattice, Weakly complemented nearlattice, Semi Boolean nearlattice.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

J.C Varlet [5] introduced the concept of 0-distributive and 0-modular lattices to study a larger class of non-distributive lattices. A lattice *L* with 0 is called 0-distributive if for all $a, b, c \in L$ with $a \land b = 0 = a \land c$ imply $a \land (b \lor c) = 0$. *L* is called 0-modular if for all $a, b, c \in L$ with $c \le a$ and $a \land b = 0$ imply $a \land (b \lor c) = c$. Of course, every distributive lattice is both 0-distributive and 0-modular. Every pseudocomplemented lattice is 0-distributive but not necessarily 0-modular.[1, 3, 4, 5] have studied different properties of 0-distributivity and 0-modularity in lattices. Recently, Zaidur Rahman et al. [6] have studied 0-distributive nearlattices.

A nearlattice *S* is a meet semi-lattice together with the property that any two elements possessing a common upper bound, have a supremum. This property is known as the upper bound property. *S* is called distributive if for all $x, y, z \in S$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$ provided $y \lor z$ exists. Observe that the right hand expression exists by the upper bound property of *S*. *S* is called a modular nearlattice if for all $x, y, z \in S$ with $z \le x$ and $y \lor z$ exists imply $x \land (y \lor z) = (x \land y) \lor z$. By [2], we know that a nearlattice is modular if it does not contain a sublattice isomorphic to a pentagonal lattice $R_5 = \{d, a, b, c, e \mid a < b, a \land b = a \land c = d, a \lor c = b \lor c = e\}$. Moreover, *S* is distributive if it does not contain any sublattice isomorphic to R_5 or $M_5 = \{d, a, b, c, e \mid a \land b = a \land c = b \land c = e\}$.

A nearlattice S with 0 is called 0-distributive if for all $a, b, c \in S$ with $a \wedge b = 0 = a \wedge c$ and $b \vee c$ exists imply $a \wedge (b \vee c) = 0$. Thus every distributive nearlattice with 0 is 0-distributive, Moreover, if S is section pseudocomplemented then it is 0-distributive.

A nearlattice *S* with 0 is called a 0-modular nearlattice if for all $a, b, c \in S$ with $c \leq a$, $a \wedge b = 0$ imply $a \wedge (b \vee c) = c$ provided $b \vee c$ exists. It is easy to see that this definition is equivalent to "for all $t, a, b, c \in S$ with $c \leq a$ $a \wedge b = 0$ imply $a \wedge [(t \wedge b) \vee (t \wedge c)] = t \wedge c$ ". Moreover, it is easy to show that the definition of 0-modular nearlattice coincides with the definition of 0-modular lattice when *S* is a lattice. Of course every modular nearlattice with 0 is 0-modular. By [5] we know that *S* with 0 is 0-modular if it contains no non-modular five element pentagonal sublattice including 0. Also *S* with 0 is 0-distributive if it contains no five element modular but non distributive sublattice including 0. Now we include some examples:

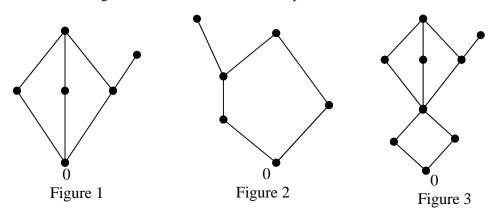
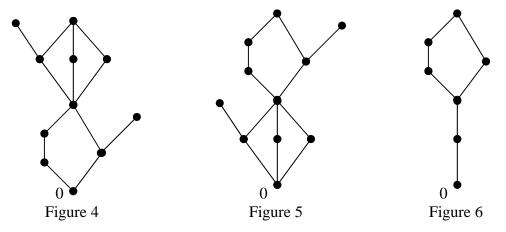


Figure 1 is 0-modular but not 0-distributive, Figure 2 is 0-distributive but not 0-modular, Figure 3 is both 0-modular and 0-distributive, figure 4 is 0-distributive but not 0-modular, Figure 5 is 0-modular but not 0-distributive, Figure 6 is both 0-modular and 0-distributive.

Md. Zaidur Rahman, A. S. A. Noor and Md. Bazlar Rahman



A lattice L with 1 is called 1-distributive if for all $a, b, c \in L$ with $a \lor b = a \lor c = 1$ imply $a \lor (b \land c) = 1$. A lattice L with 1 is called 1-modular if for all $a, b, c \in L$ with $c \ge a$ and $a \lor b = 1$ imply $a \lor (b \land c) = c$.

A lattice L with 0 is semi complemented if for any $a \in L$, $(a \neq 1)$ there exists $b \in L$, $b \neq 0$ such that $a \wedge b = 0$. Dually a lattice L with 1 is called dual semi complemented if for any $a \in L$, $(a \neq 0)$ there exists $b \in L$, $b \neq 1$, such that $a \lor b = 1$.

A lattice L with 0 and 1 is called complemented if for any $a \in L$ there exist $b \in L$ such that $a \wedge b = 0$ and $a \vee b = 1$.

A nearlattice S with 0 is called weakly complemented if for any distinct elements $a, b \in S$, there exists $c \in S$ such that $a \wedge c = 0$ but $b \wedge c \neq 0$ (or vice versa).

An element a of a nearlattice *S* is called meet prime if $b \land c \leq a$ implies either $b \leq a$ or $c \leq a$. A non-zero element *x* of a nearlattice *S* with 0 is an atom if for any $y \in S$, with $0 \leq y \leq x$ implies either 0 = y or y = x. Dually in a lattice *L* with 1, an element *x* is called a dual atom if for any $y \in L$, $x \leq y \leq 1$ implies x = y or y = 1.

A non-empty subset F of a nearlattice S is called a filter if for $x, y \in S$, $x \land y \in F$ if and only if $x \in F$ and $y \in F$.

The set of all filters of a nearlattice is just a join semi-lattice. But in case of a lattice, the set of filters is again a lattice.

2. Some Results

Theorem 1. A nearlattice *S* with 0 is 0-modular if and only if for all $a, b, c \in S$ with $c \le a$, $a \land b = 0$, $a \lor b = c \lor b$ imply a = c, provided $a \lor b$ exist.

Proof: Suppose S is 0-modular and $a, b, c \in S$ with $c \leq a$, $a \wedge b = 0$ and $a \vee b = c \vee b$. If $a \vee b$ exists then $c \vee b$ exists by the upper bound property. Then $a = a \wedge (a \vee b) = a \wedge (b \vee c) = c$.

Conversely, let the stated conditions are satisfied in S. Let $a, b, c \in S$ with $c \le a$, $a \land b = 0$ and $b \lor c$ exists. Here $c \le a \land (b \lor c)$ and $b \land [a \land (b \lor c)] = b \land a = 0$.

Now $a \wedge (b \vee c) \leq b \vee c$, so $b \vee [a \wedge (b \vee c)] \leq b \vee c$. Also $c \leq a \wedge (b \vee c)$ implies $b \vee [a \wedge (b \vee c)] \geq b \vee c$ and so $b \vee c = b \vee [a \wedge (b \vee c)]$, so by the given conditions $c = a \wedge (b \vee c)$, which implies *S* is 0-modular.

Theorem 2. A nearlattice *S* with 0 is 0-modular if and only if the interval [0, x] for each $x \in S$ is 0-modular.

Proof: If *S* is 0-modular then trivially [0, x] is 0-modular for each $x \in S$.

Conversely, let [0, x] is 0-modular for each $x \in S$. Let $a, b, c \in S$ with $a \wedge b = 0$, $c \leq a$ and $b \lor c$ exists.

Choose $t = b \lor c$. Then $a \land (b \lor c) = a \land [(t \land b) \lor (t \land c)] = (t \land a) \land [(t \land b) \lor (t \land c)] = t \land c = c$ as the interval [0, t] is 0-modular. \bullet

In a similar way we can easily prove the following result.

Corollary 3. A nearlattice *S* with 0 is 0-distributive if and only if the interval [0, x] for each $x \in S$ is 0-distributive.

Theorem 4. For a nearlattice S with 0, if I(S) is 0-modular, then S is 0-modular, but the converse need not be true.

Proof: Suppose I(S) is 0-modular. Let $a, b, c \in S$ with $a \wedge b = 0$, $c \leq a$ and $b \vee c$ exist. Then $(a] \wedge ((b] \vee (c]) = (c]$ as I(S) is 0-modular. Thus $(a \wedge (b \vee c)] = (c]$ and so $a \wedge (b \vee c) = c$, which implies S is 0-modular.

For the converse, we consider the nearlattice S given below which is due to [2].

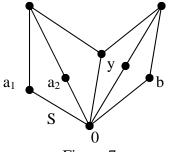


Figure 7

Here S is 0-modular. But in I(S), $\{(0], (a_1], (a_1, y], (a_2, b], S\}$ is a pentagonal sublattice including 0. So I(S) is not 0-modular.

Theorem 5. A nearlattice *S* with 0 is 0-modular if and only if the lattice of filters of the interval [0, x] for each $x \in S$ is 1-modular.

Md. Zaidur Rahman, A. S. A. Noor and Md. Bazlar Rahman

Proof: Let S be 0-modular. Choose any $x \in S$. Then [0, x] is also 0-modular. Let F, G, H be filters of the lattice [0, x] such that $H \supseteq F$, $F \lor G = [0]$.

Then $F \lor (G \cap H) \subseteq H$ is obvious. Let $h \in H$. Now $F \lor G = [0)$ implies $0 = f \land g$ for some $f \in F$ and $g \in G$. Thus $h \land f \leq f$ and $f \land g = 0$ implies $f \land [g \lor (h \land f)] = h \land f$ as S is 0-modular. So $h \land f \in F \lor (G \cap H)$ and hence $h \in F \lor (G \cap H)$. Therefore, $F \lor (G \cap H) = H$ and so the lattice of filters of [0, x] is 1-modular.

Conversely, suppose the lattice of filters of [0, x] is 1-modular. Let $a, b, c \in [0, x]$, $(x \in S)$ such that $c \leq a$, $a \wedge b = 0$. Then $[a) \subseteq [c)$ and $[a] \vee [b] = [0)$. So by 1-modular property, $[a] \vee ([b] \wedge [c)) = [c)$. Thus $[a \wedge (b \vee c)) = [c)$ and hence $a \wedge (b \vee c) = c$. This implies [0, x] is 0-modular. Therefore by Theorem 2, S is 0-modular.

Theorem 6.

- a) If a nearlattice S is 0-distributive and the interval [0, x] for each $x \in S$ is semi complemented, then the interval [0, x] is 1-distributive for all $x \in S$.
- b) If a dual nearlattice S with 1 is 1-distributive and [x,1] is dual semi complemented for each $x \in S$, then the interval [x,1] is 0-distributive for each $x \in S$.

Proof: a) Let $a, b, c \in [0, x]$ with $a \lor b = x = a \lor c$. Suppose $a \lor (b \land c) \neq x$. Then there exists $p \neq 0$ in [0, x] such that $p \land (a \lor (b \land c)) = 0$. Then $a \land p = 0 = (b \land c) \land p$. Thus $p \land b \land a = 0 = (p \land b) \land c$ which implies $(p \land b) \land (a \lor c) = 0$ as *S* is 0distributive. This implies $0 = p \land b \land x = p \land b$. Then using the 0-distributivity of *S* again, $p \land (a \lor b) = 0$. That is, $0 = p \land x = p$, which gives a contradiction. Therefore, $a \lor (b \land c) = x$ and so [0, x] is 1-distributive.

b) This is trivial by a dual proof of (a).

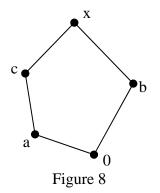
A nearlattice S with 0 is called a semi Boolean lattice if it is distributive and the interval [0, x] for each $x \in S$ is complemented.

Theorem 7. If a section complemented 0-modular nearlattice *S* is 0-distributive, then it is semi Boolean.

Proof: Let a < b for some $a, b \in S$. Then $0 \le a < b$. Since [0, b] is complemented, so there exists $c \in [0, b]$ such that $c \land a = 0$, $c \lor a = b$. Now if $b \land c = 0$, then by the 0-modularity of *S*, $b = b \land (c \lor a) = a$, which is a contradiction. Therefore, $b \land c \neq 0$. This implies *S* is weakly complemented. Since *S* is also 0-distributive. Therefore, by

Corollary 3 and [5, Corollary2.2] [0, x] is Boolean for each $x \in S$ and so S is semi Boolean. \bullet

Theorem 8. Let S be a 0-modular nearlattice and F, G are two filters such that $F \lor G = [0]$ and $F \cap G = [x]$ for some $x \in S$. Then both F and G are principal filters. **Proof:** Suppose $F \lor G = [0]$ and $F \cap G = [x]$. Then $0 \ge f \land g$ for some $f \in F$ and $g \in G$. That is, $f \land g = 0$. Let $b = x \land f$ and $c = x \land g$. Then $b \in F$ and $c \in G$. We claim that F = [b] and G = [c]. Indeed if for instance $G \neq [c]$, then there exists $a \in G$ such that a < c. Then $\{0, a, c, b, x\}$ is a pentagonal sublattice of S. This implies S is not 0-modular and this gives a contradiction.



Therefore, G = [c]. Similarly F = [b] and so both F and G are principal.

Lemma 9. In a bounded semi complemented lattice *L*, every meet prime element is a dual atom.

Proof: Suppose x is a meet prime element. Let $x \le y < 1$. Then $0 \le y < 1$. Since L is semi complemented, so there exists $t \ne 0 \in L$ such that $t \land y = 0$. Since $x \le y$, so $t \land x = 0$. Since x is meet prime so this implies either $t \le x$ or $y \le x$. Now $t \le x$ implies $t = t \land x = 0$, which is a contradiction. Thus $y \le x$ and so x = y. Therefore x is a dual atom.

Lemma 10. Let L be a bounded semi complemented lattice. If 0 is the meet of a finite number of meet prime elements of L, then L is dual semi complemented and 0-distributive.

Proof: Let x be a non-zero element of L. Then by hypothesis, there is a meet prime element p in L such that $x \leq p$. Since L is semi complemented, so by Lemma 9 is a dual atom and $x \vee p = 1$. Therefore, L is dual semi complemented. Now suppose

 $a \wedge b = 0 = a \wedge c$ for some $a, b, c \in L$. Let us assume that $0 = \bigwedge_{i=1}^{n} p_i$ where p_i are

Md. Zaidur Rahman, A. S. A. Noor and Md. Bazlar Rahman

meet prime elements in *L*. Observe that for each i, $p_i \ge a \land b$ and $p_i \ge a \land c$. Then for each *i*, $p_i \in [a)$ or $p_i \in [b) \cap [c)$. Therefore for each *i*, $p_i \in [a) \lor ([b) \cap [c))$. This implies $[a) \lor ([b) \cap [c)) = [0)$, consequently, $a \land (b \lor c) = 0$, and so *L* is 0-distributive.

Lemma 11. Let L be a bounded 0-modular lattice. If $b \in L$ is a dual atom and $a \wedge b = 0$ for some $a \neq 0$, $(a \in L)$, then a is an atom.

Proof: Suppose $0 < c \le a$ for some $c \in L$. As $c \le a$ and $a \land b = 0$, so by 0-modularity, $a \land (b \lor c) = c$. Since 0 < c, it follows that $b < b \lor c$ and so $b \lor c = 1$ as *b* is a dual atom. Consequently, $a = a \land 1 = a \land (b \lor c) = c$ by 0-modular. Therefore, *a* is an atom. \bullet

Lemma 12. Let *S* be a 0-modular nearlattice and [0, x] is semi-complemented for each $x \in S$. If for each $x \in S$, 0 is the meet of a finite number of meet prime elements in [0, x]. Then *x* is the join of finite number of atoms in [0, x].

Proof: Let $0 = \bigwedge_{i=1}^{n} p_i$, where p_i 's are meet prime elements in [0, x]. Observe that by Lemma 9, each p_i is a dual atom in [0, x]. Since each $p_i \neq x$, and [0, x] is semi complemented, so there exists $q_i \in [0, x]$ such that $p_i \wedge q_i = 0$, i=1,2,..., n. Also by Lemma 11, each q_i is an atom in [0, x]. Now let $c = \bigvee_{i=1}^{n} q_i$. Then $c \lor p_i = x$ as p_i is a dual atom for each *i*. As [0, x] is bounded semi complemented and 0 is the meet of finite number of meet primes, by Lemma 10, [0, x] is 0-distributive and so by theorem5, [0, x] is 1-distributive. Therefore, $c \lor \begin{pmatrix} n \\ \wedge i = 1 \end{pmatrix} = x$. That is, $c = c \lor 0 = x$. Hence $\bigvee_{i=1}^{n} q_i = x$.

Theorem 13. A nearlattice *S* with 0 is a semi Boolean lattice if and only if the following conditions are satisfied

- (i) [0, x] for each $x \in S$ is 1-distributive.
- (ii) S is 0-distributive.
- (iii) F([0, x]) is semi complemented for each $x \in S$.

Proof: By [3, Theorem 3], every [0, x], $x \in S$ is a finite Boolean algebra. Therefore, S is semi Boolean.

We conclude the paper with the following result which also trivially follows from [3, Theorem 4].

Theorem 14. For a nearlattice S with 0, S is semi-Boolean if and only if the following conditions are satisfied.

- (i) [0, x] is semi complemented for each $x \in S$.
- (ii) S is 0-modular.
- (iii) 0 is the meet of a finite number of meet primes. \bullet

REFERENCES

- 1. P. Balasubramani and P.V. Venkatanarasimhan, *Characterizations of the 0-Distributive Lattice*, Indian J. Pure Appl. Math., 32(3) (2001), 315-324.
- 2. M. Bazlar Rahman, *A study on distributive nearlattices*, Ph.D Thesis, Rajshahi University, Bangladesh (1994).
- 3. C. Jayaram, 0-modular semilattices, Studia Sci. Math. Hung., 22 (1987), 189-195.
- 4. Y. S Pawar and N. K. Thakare, 0-distributive semilattices, *Canad*. *Math. Bull.*, 21(4) (1978), 469-475.
- 5. J.C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull.Soc. Sci. Liege*, 37 (1968), 149-158.
- 6. Md. Zaidur Rahman, Md. Bazlar Rahman and A.S.A. Noor, 0-distributive nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012), 177-184.