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1. Introduction

In graph theory, a cactus graph is a connectechgraghich any two simple cycles
have at most one vertex in common. Equivalentlgrgedge in such a graph belongs
to at most one simple cycle. Equivalently, eveckl(maximal subgraph without a
cutvertex) is an edge or cycle.

Let G=(V,E) be a finite, connected, undirected simple graph nof

vertices m edges, wheré/ is the set of vertices anfE is the set of edges. A
vertex U is called a cutvertex if removal of u and all edges incident ot
disconnect the graph. A connected graph without utvectex is called a
non-separable graph. A block of a graph is a maximal non-separable subgraph. A
cycle is a connected graph (or subgraph) in which evenex is of degree two. A
block which is a cycle is called a&ycliced block. A cactus graph is a connected
graph in which every block is either an edge oyeec A weighted graph G is a
graph in which every edge is associates with a ltelyithout loss of generality we
assume that all weights are positive. #veighted cactus graph is a weighted,
connected graph in which every block containing tetdices is an edge and three or
more vertices is a cycle.

Cactus graph were first studied under thmenaf Husimi trees, bestowed on
them by Frank Harary and George Eugene Unlenbebknour of previous work of
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these graphs by Kodi Husimi. Cactus graph has ragplications. These graphs can
be used to model physical setting where a tree dvbelinappropriate. Examples of

such setting arise in telecommunications when densig feeder for rural, suburban

and light urban regions [33] and in material hamgllhetwork when automated guided
vehicles are used [34]. Moreover, ring and busctines are often used in local area
networks. The combination of local area networkfeia cactus graph.

Because of various applications in rea §iituation and telecommunication
problem, cactus graphs have extensive studiedgllasgt decade. Some well known
problems like all-pair shortest path problem, datiom problem, coloring and
labeling problems, covering problems etc. are gbivepolynomial time on cactus
graphs efficiently. Lot of algorithms have beenigeso solve various graph theoretic
problems, some of them are available in [48-59].

To solve some problems on cactus graphs, a treenstructed, calledz.

tree, which is described below.

@
Figurel: A weighted cactus grapks.

2. Formation of thetree T,

In this thesis we use a method in which blocks autstertices of the grapls are
determined using DFS technique and there after forintermediate grapks’ i.e,
G =(V,E) where V'={B,,B,,...,B\} and E'={(B,B)):i#], ]
=1,2,...,N, B and Bj are adjacent blocks }.

I
Now the treeT,. is constructed fronG' as follows:
We discard some suitable edges fr€h in such a way that the resultant graph
becomes a tree. The procedure for such reductigivés below:
Let us take any arbitrary vertex @', containing at least two cutvertices &, as
root of the treeT,. and mark it. All the adjacent vertices of thistrage taken as

children of level one and are marked. If thereeatges between the vertices of this
level, then those edges are discarded. Each v&didevel one is considered one by
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one to find the vertices which are adjacent to tlhetnunmarked. These vertices are
taken as children of the corresponding verticelewél one and are placed at level
two. These children at level two are marked arttiéfe be any edge between them
then they are discarded. This process is continn&tall the vertices are marked.

Thus the treeT,. =(V',E") where V'={B,,B,,...,B,} and E"OE' is
obtained.
For convenience, we refer the verticesTgf as nodes. We note that each

node of this tree is a block of the grafh= (V, E) . The parent of the nod8, in the
tree T, will be denoted by Parent(B ).

3. Different Problemson Cactus Graphs and its Solutions
3.1. Computation of All-Pairs Shortest Paths on Weighted Cactus Graphs

Let G=(V,E) be a finite, connected, undirected, simple gradphnovertices and

m edges, wheré/ is the set of vertices anft is the set of edges. Apath of a
graph G is an alternating sequence of distinct verticas eages which begins and
ends with vertices ifG . The length of a path is the sum of the weights of the edges
in the path. A path from verted to v is a shortest path if there is no other path
from u to v with lower length. The distance d(u,v) between verticesl and

Vv is the length of shortest path betwegnand v in G.

For any general graph with vertices, solution to the all-pair shortest path
problem takesO(n®) time [1]. A lot of work have been done in improgithis
running time using randomization and probabilistiethods for general as well as
special kinds of graphs. Ahuja et.al. [2] have giefaster sequential using Radix
heap and Fibonacci heap for single source shgrégistproblem inO(m+ n,/logC)
time for a network withn vertices andm edges and non-negative integers are costs
bounded byC . In [47], Seidal has given af©O(M (n)logn) time sequential
algorithm for all-pair shortest path problem for andirected and unweighted
arbitrary graph withn vertices, whereM (n) is the time (best value o1 (n) is

O(n**"®) necessary to multiply twanxn matrices of small integers.

Alon et. al. [3] have reported a sub-cubic &t for computing APSP on
directed graph with edge length which requ@¢Mn’) time, where y = (3+ )/2,
a <3 and M is the largest edge length. Galil and Margalif [i#ve improved the
dependence ofM and have also given a®(M “®n“logn) algorithm for
undirected graph. Ravi et. al. [42] have givengusatial algorithm to solve all-pair
shortest path (APSP)on interval graph@{n®)time. Pal and Bhattacharjee in [41]

have given anO(n’) time algorithm for finding the distance betweeh gir of

vertices on interval graphs.
In this problem, we select a specified verteéxand find a block which contains

X. We construct a tred . taking this block as root. After constructing thee we
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first compute the distance betweenand all other vertices in this root. Then we
compute the distance from to vertices (other tharx) of the blocks corresponding
to the nodes in level one as follows. LBt be a node at level one. Then is its

entry point. We compute the distances of everyexeit of B from € and adding
d(x,e) with these distances we obtain the distance anghsaest path of the

vertices of the blockB, from X. Similarly, we compute the distance from to
other vertices of the blocks at level one. Forrtbdes, i.e., blocks of the remaining
levels, the distance fronx can be computed by the same process.

In general, let us consider a bIoB§ at level i’ and assume that the distance

betweenx and all vertices of the blocks at levé=1’ have been calculated. The
entry point of B, is €. Then d(x,e;) is known ase; belongs to a block at level

* i-1 . We now compute d(e,v) for al vOB, . Then

d(x,u) =d(x,e;)+d(e;,u) for all ulB,. This determine the distance between

X and any vertex of any block at level !
This procedure take©(n) time. Thus to compute all-pair shortest path on

weighted cactus graph€(n®) time is required.

3.2. Finding a Minimum Dominating Set
Let G=(V,E) be a finite, connected, undirected, simple graptn overtices

and m edges, where/ is the set of vertices anf is the set of edges. A subset
D of V is said to dominate V if every vertex inV —D is adjacent to at least
one vertex inD . In this caseD is called a dominating set of the graphG . The set

D is called a minimum dominating set if the cardinality of D is minimum among
all dominating sets of the grapB .

The problem of determining a minimum cardinalidgminating set has been
discussed in [11], and has obvious applicatioméndptimum location of facilities in
a network. When restricted to interval graphs,fieimum dominating set problem
along with several related variants, becomes pahyabtime solvable [6, 7]. Kratsch
et al. [32] first presented polynomial time algbnit which takesO(n®) time for
domination problems on cocomparability graphs. €hagorithms are valid for the
cardinality case only. In [43], we get a fast aitjon for domination problems on
permutation graphs which také3(m+n) time.

In this problem we construct a trdg. using the blocks and cutvertices and

applying the Euler Tour we obtain a sequence okao@onsider the nodes of that
sequence one by one and find the dominating verfioen each node.

Hence we form an algorithm which describesagersing from leaf node to the
root. If there exist any subtree on the way of ¢raing then we traverse all the
branches of the subtree from leaf to root excepbivt and meet the root when all the
branches are traversed. For any leaf node andhforterior node we apply different
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method and obtain the dominating sets for each.node
This process take®©(n) time for computing minimum dominating set on cactu

graph G.

3.3. Finding a Minimum 2-Neighbourhood Covering set

The k-neighbourhood-coverind {NC) problem is a variant of the domination
problem. A vertexx k-dominates another vertey if d(x,y)<k. A vertex z
is k-NC of an edge(x,y) if d(x,z)<k and d(y,z) <k i.e, the vertexz k
-dominates bothx and y. Conversely ifd(x,z) <k and d(y,z) <k then the
edge (X,y) is said to bek -neighbourhood covered by the vertex A set of
vertices C OV is a k-NC set if every edge irfE is k-NC by some vertices ifC
. The k-NC number p(G,k) of G is the minimum cardinality of alk -NC sets.

For k =1, Lehel et al. [35] have presented a linear tingewhm for computing

P(G,1) for an interval grapHG. Chang et al. [12] and Hwang et al. [22], have
presented linear time algorithms for computiggG,1) for a strongly chordal graph
provided that strong elimination ordering is knowwang et al. [22] also proved that
k—NC problem is NP-complete for chordal graphs. Monealal. [38] have

presented a linear time algorithm for computing@-problem for an interval graph.
Also a linear time algorithm for trapezoid grapts [pgesented by Ghosh et al. [17].

In this Problem we construct a trég. using blocks and cutvertices & .
Thereafter applying Euler tour on that tree we inbtéasequence of nodes. There are
two types of nodes, some are leaf nodes and samstarior nodes. Depending upon
the number of vertices of cycles and paths we dwter the number of covering
vertices from each node as well as the gréph

Thus the algorithm which finds the 2-neighboudh@overing (2-NC) set of the
graph G in O(n) time. The algorithm also take®(n) space.

3.4. FindingaMaximum Weight 2-Colour Set on Weighted Cactus Graphs

The graph colouring problem (GCP) plays a centbd m graph theory and it has
direct applications in real life problems [5], aisdrelated to many other problems
such as timetabling [13, 37], frequency assignmg®] etc. A Kk-colouring

(assignment) of an undirected gra@h=(V,E), where V is the set ofV |=n
vertices andE OV xV the set of edges, is a mappiay.V - {1,2,...,k} that

assigns a positive integer frofd,2,...,k} (representing the colours) to each vertex.
We say that a colouring is feasible if the end soafeevery edge in E have assigned
different colours, i.e, for all (u,v)OE, a(u)#a(v). We call conflict the

situation when two nodes between which an edgetsekiave the same colour
associated to them. We say that a colouring isgibde if at least one conflict occurs.
Alternatively to the formulation as an assignmeribpem, the GCP can also be
represented as a partitioning problem, in whickessible k-colouring corresponds to a
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partition of the set of nodes into k set,C,,...,C, such that no edge exists

between two nodes from the same colour class.

The graph colouring problem is NP-complete. ¢éemve need to use approximate
algorithmic methods to obtain solutions close te thbsolute minimum in a
reasonable execution time.

The maximum weight k-colourable Subgraph (MWHKi@)blem is related to the
following problem. The input to this problem consi§an integer numbek and an

undirected graphG = (V, E) , where each vertex has a non-negative weight, .
The goal is to pick a subs&t' 1V, such that there exists a colouriegof G[V']

with k colours, and among all such subsets, the v@w\,, W, is maximum.
viv'
This problem is NP-hard for general graph eversfdit graph [20].
The maximum weight k-colouring problem is saasethe maximum weight
k-independent set (MWKIS) problem. The maximum #dpendent set problem on

G is to determinek disjoint independent set§,S,,...,S, in G such that

slJs.(J...S is maximum. The MWKIS problem is NP-complete fangral
graphs [20].

Many work on colouring problem has been dorevipusly. Local search in
large neighbour and iterated local search for G@P described in [9, 4]. The
maximum weight 2-colouring problem or the maximuraigiit 2-independent set
(MW2IS) problem, which is a special case of the (KM¥) problem, is also
NP-complete for general graphs and it applicatibage been studied in the last
decade [23, 24, 36]. In [23], Hsiao et.al. havevesthl the two-track assignment
problem by solving the M2IS problem on circular graph. In [36], Lou et. al. have
solved the maximum 2-chain problem on a given ps@f which is the same as the
MW?2IS problem on permutation graph.

In this problem we find odd and even blocks famch block-cutvertex graptG"
using the odd blocks only from the graph G. NexresentG" in terms of edge
weight(weight of the cutvertex) and vertex weighgight of the minimum weight

vertex) and form a tredg, . The method of finding maximum weight 2-coloured s
is to delete such a vertex from each odd blockhab minimum weight is dicarded.
Also in this problem we find minimum weight feedkagertex set. Here we select

minimum weight vertices or cutvertex from both ewenl odd blocks.
Thus the algorithm which finds the 2-colourest as well as the minimum

feedback vertex of the grapG takes O(n) time. The algorithm also take®(n)
space.

3.5. Finding a Maximum Independent Set and M aximum 2-I ndependent Set
Let G=(V,E) be a finite, connected, undirected, simple grapinovertices and

m edges, wheré/ is the set of vertices anf is the set of edges. A subset of the
vertices of a graptG = (V, E) is an independent set if no two vertices in thisset
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are adjacent. The maximum independent set (MI)leno on G is to determine a

maximum size independent set &. The MIS problem is NP-complete for general
graphs [18], but it can be solved in polynomialdifor many special graphs [28].
The maximum k-independent set (MKIS) problem @Gnis to determinek

disjoint independent setsS,S,,...,S, in G such that S| JS| J...S is
maximum. The MKIS problem is NP-complete for gehgraphs [20].

The maximum 2-independent set (M2IS) problemmictvis a special case of the
MKIS problem, is also NP-complete for general gsaphd it applications have been
studied in the last decade [23, 36]. In [23], Hsioal. have solved the two-track
assignment problem by solving the M2IS problemiocutar arc graph. In [36], Lou
et. al. have solved the maximum 2-chain problena @iven point set, which is the
same as the M2IS problem on permutation graph.

In this problem, MKIS problem is consideredaonon-weighted cactus graph for
k=1and k=2.

In this problem a tredy. is constructed using blocks and cutvertices of the

graph G . There after apply Euler Tour to find a sequerfades to consider one by
one from leaf to root node. For leaf nodes andimténodes separate techniques are
used to find vertices for independent set. For 2hadependent set problem one
vertex from each odd cycle is removed so thatradtervertices from cycles and paths
of the graphG form 2-independent set.

Thus the algorithms for the above two probleake O(n) time.

3.6. Finding Maximum and Minimum Height Spanning Trees
Let G=(V,E) be a finite, connected, undirected, simple grdplnovertices and

m edges, wherd/ is the set of vertices anl is the set of edges. A tree is a
connected graph without any circuits. A tréeis said to be a spanning tree of a
connected graptc if T is a subgraph of5 and T contains all vertices 065.
The longest distance |d(u,v) and distance d(u,v) between two verticesl
and v are the lengtip(u,v) and p(u,v) in G if such paths exist.
Note thatld(u,u) =0, Id(u,v) =Id(v,u) and Id(u,v) <ld(u,w)+Id(w,V).
Also d(u,u) =0, d(u,v) =d(v,u) and d(u,v) <d(u,w)+d(w,v).

The €elongation of a vertexu in a graphG is the longest distance from vertex
u to a vertex furthest fromu i.e, e(u) =max{ld(u,v):vV}. Vertex v is
said to be afurthest vertex of u if Id(u,v) =€l (u).

The eccentricity of a vertexu in a graphG is the longest distance from the
vertex U to a vertex furthest fromu i.e, eu) = maxd(u,v):vOV}.

In a tree, a vertex is said to be atlevel | if v is at a distancd from the
root. The height of a tree is the maximum level which is occurmethie tree.

A graph may have more than one spanning tree h€ight of a spanning treg
of a graphG is denoted byH(T,G). A maximum height spanning tree is a
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spanning tree whose height is maximum among ahrspg trees of a graph. The
height of the maximum height spanning tree of aplgrd> is denoted by
H, . (G) = max{el(u) :ulV}.

Supposev be the vertex for whictH,, (G) is attained andV' its furthest

vertex, then the longest path.e., Ip(v,V) is called as maximum height path
(v,v) and denoted byMHP(v,V).

A minimum height spanning tree is a spanning tree whose height is minimum
among all spanning tree of a graph. The heighh@fminimum height spanning tree
of a graphG is denoted byH ; (G) = min{e(u) : uJV} . The vertex x for which

H ., (G) = e(X) is called the center of G.
Some related works are discussed here: In fdgpanning tree of maximal weight
and bounded radius is determined from a completeoniented graphG = (V, E)

with vertex setV and edge seE with edge weight inO(n?) time, n is the total

number of vertices inG . In [39], the minimum spanning tree problem issidared

for a graph withn vertices andm edges. They introduced randomized search
heuristics to find minimum spanning tree in polynainttime with out employing
global techniques of greedy algorithms. In [26§ #uthors find a spanning trde

that minimizes D, = Max;; ;,-¢d; (i, ]) where d, (i, j) is the distance betweein

and j in a graphG=(V,E). The minimum restricted diameter spanning tree
problem is to find spanning tre€ such that the restricted diameter is minimized. It
is solved inO(logn) time. In [27], the minimum diameter spanning fpeablem on
graphs with non-negative edge lengths is determividdh is equivalent for finding
shortest paths tree from absolute 1-center probietime general graph is solvable in
O(mn+n®logn) time [34].

In this Problem, we find the maximum height spag tree by finding the
elongation and the longest paMHP(u, V) . Then deleting one edge from each cycle
which is not consider during the calculation of rgjation and MHP(u,v) the
maximum height of the spanning tree is obtained sehdeight is equal to
MHP(u,v) . Also we find the minimum height spanning tree firyding the
eccentricity and the radius of the grafh and deleting one edge from each cycle so

that the radius is the minimum height of the spagtiee.
These algorithms find the maximum height spannirg tand minimum

height spanning tree i©(n) time.

3.7. L(2,1)-labelling of cactus graphs
The L(2,1)-labelling of a graphG is an abstraction of assigning integer

frequencies to radio transmitters such that thestratters that are one unit of distance
apart receive frequencies that differ by at least and transmitters that are two units
of distance apart receive frequencies that diffeattleast one. The span of &r(2,1)
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-labelling is the difference between the largest e smallest frequences assigned to
the vertices. Thel(2,1)-labelling number of a grapks, denoted byA(G), is the

least integerk such thatG has anL(2,1)-labelling of spank .
Several results are known fdr(2,1)-labelling of graphs, but, to the best of our

knowledge no result is known for cactus graph.
The lower bound ford(G) is A+1, which is achieved for the staf, , . Griggs

and Yeh [15] prove thatl(G) < Y + 2 for general graph and improve this upper
bound to A(G) < A* +2A -3 when G is 3- connected andl(G) < A* when G
is diameter 2 (diameter 2 graph is a graph whémodles have either distance 1 or 2
each other). Jonas [29] improves the upper bound(8) < A’ +2A -4 if A>2,
by constructive labelling schemes. Chang and K@ flrther decrease the bound to
[N +A\ . Further, Kral and Skrekovski [31] improves thisuhd A(G) < A’ +A-1

for any graphG . The best known result till date i8(G)<A*+A-2 due to

Goncalves [14]
To label the vertices of a cactus graph, wa fabel the vertices of all induced
subgraphs of the cactus graph. We obtained the/filg results.

Let H be a subgraph o6, then obviouslyA(H) < A(G) [10].
If G and H are two graphs and N/GWH = @ then
A(GUH) =max{A(G),A(H)} and
A(G+H) = max{| V,, |1, A(G)} +max{] V;, | -1, A(H)} +2 [10].
Also,
AGJH)=max{A(G), A(H)}, where{} =V, V.

For any star graphK, ., A(K,,)=A+1, which is equal ton, where n is the
number of vertices.

For any cycleC, of lengthn, A(C )=4=A+2 [15].
Suppose a graph G contains two cyces and C_, joined by a cutvertew,, then
/I(CHUVOCm) =5=A+1.

Let a graphG, containsn number of triangles with a common cutvertex. Then
A(G,)) =A+1lor A+2 according asn is even or odd, wherd is the degree of
the cutvertex.

Let a graphG containsn number of cycles of lengtl and m number of
cycles of length4 . If they have a common cutvertex with degrée, then
A(G)=A+1.

Let G be a graph which contains finite number of cydfany length and finite
number of edges. Ify, be the common cutvertex with degre& then

A(G)=A+1.
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Let G be a graph, contains a cycle of any length aritefmumber of edges, they
have a common cutvertex, . If A be the degree of the cutvertex then,
A(G)=A+1.

Let G be a graph contains a cycle of any length and earhkx of the cycle has
another cycle of length three. & is the degree of5 then A(G) = A +3.

For any caterpillar graph the value 4f lies betweenA +1 and A+2.

Let G, and G, be two cactus graphs. IfA,+1<A(G))<A;+3 and
A, +1<A(G,) <A, +3, then, A+1< A(G) < A+3, where G =G| JG,.

The time complexity of the proposed algorithm &bdl a cactus graph using
L(2,1)-labelling technique take®(n) time, where n is the total number of vertices
of the cactus graph.

3.8. L(0,1)-labelling of cactus graphs
An L(0,1)-labelling of a graphG is an assignment of nonnegative integers to the

vertices of G such that the difference between the labels asdign any two
adjacent vertices is at least zero and the differdretween the labels assigned to any

two vertices which are at distance two is at least The span of ah.(0,1)-labelling
is the maximum label number assigned to any vesfes . The L(0,1)}labelling
number of a grapiG, denoted by/,,(G), is the least integek such thatG has

an L(0,1)-labelling of spank . This labelling has an application to a computetec

assignment problem. The task is to assign integatral codes to a network of
computer stations with distance restrictions.

Some results are available dr{h,k) -labelling problem. Here we discuss
some particular cases. Wheam=0 and k=1 then we getL(0,1)-labelling

problem. Several results are known faf0,1)-labelling of graphs, but, to the best of

our knowledge no result is known for cactus grdphhis section, the known result
for general graphs and some related graphs of €gcayph are presented.

The upper bound fon,,(G) of any graphG is /onl(G)sAz—A [30],

where A is the degree of the graph.
Here we label the vertices of a cactus graphl¥0,1)-labelling and have

shown that,A-1<A,,(G) <A for a cactus graph, wherd is the degree of the

graph G . Here we start the labelling by the labelling $ubgraphs of the cactus
graph. And we obtained some results which aredstadow.

If we label a star graphK,, by L(0,1) -labelling, then we get
Ao1(K ) =A-1. For any cycleC, of lengthn, A, ,(C ) =1, when n=4k,
where K is a positive integer, and,,(C,) = 2 for other cases [8].

Let G be a graph which contains two cycles and they haveommon
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cutvertex. If A be the degree of G, ther, ,(G) = A, when two cycles are of length

3 and A -1, for others. This result is true for the graphtaoms N number of cycles
of any lengths, joined with a common cutvertex.
For the graph which contains finite numbercyéles of any length and finite

number of edges, thed, ,(G) = A -1.1f the graph is a sun graph witBn vertices,
then we proved tha#l,,(S,,) =2=A-1. SupposeG contains a cycle of any
length and each vertex of the cycle has anothetecpd any length, then
A-1<1,,(G)<A.

It is proved for caterpillar, lobster and ttee value ofA,, is A-1.

Finally, by arranging all the results, we aamclude that for a cactus graph
A-1<4,,(G)<A.

3.9. (2,1)-total labelling of the cactus graph
A (2,1)-total labelling of a grapls = (V,E) is an assignment of integers to each

vertex and edge such that: (i) any two adjacenticesy of G receive distinct

integers, (ii) any two adjacent edges@f receive distinct integers, and (iii) a vertex
and its incident edge receive integers that diffgrat least 2. The span of a
(2,1)-total labelling is the maximum difference weén two labels. The minimum

span of a (2,1)-total labelling d& is called the (2,1)-total number and denoted by
2,(G).

Motivated by frequency channel assignment prablériggs and Yeh [15]
introduced the L(2,1) -labelling of graphs. The notation was subsequently

generalized to thelL(p,q) -labelling problem of graphs. Lep and g be two
non-negative integers. Ab(p, q) -labelling of a graphG is a functionc from its
vertex setV(G) to the sef{0,1,...,k} such that|c(X)—c(y)E p if x and y
are adjacent andic(X)—c(y)[2q if x and y are at distance 2. The(p,q)
-labelling numberA, (G) of G is the smallesk such thatG has anL(p,q)
-labelling ¢ with max{c(v)|vOV(G)} =K.
This labelling is called (2,1)-total labelling graphs which introduced by Havet

and Yu [21] and generalized to tH{el,1)-total labelling, whered =1 be an integer.

A k-(d,1)-total labelling of a graptG is a functionc from V(G) O E(G) to
the set {0,1,...,k} such thatc(u)#c(v) if u and v are adjacent and
|c(u)—c(e)[=d if a vertexu is incident to an edge. The (d,1)-total number,
denoted by A, (G), is the least integek such thatG has ak - (d,1)-total

labelling.
It is shown in [40] that for any cactus grapis+1< A, , <A+3. Now in this

section, we label the vertices and edges of a sagtaphsG by (2,1)-total
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labelling and it is shown thaf +1< A, < A+2 [21].

We label the vertices and edges of a cactushdrg$2,1)-total labelling procedure
and have shown thatl +1< /1t2(G) <A+2 for a cactus graph, wherA is the
degree of the grapks . First we label the vertices of different subgrapl cactus
graph by (2,1)-total labelling.

If H is a subgraph oG, then A,(H) < A,(G). For any star graptK,,,

A (K a) =A+2. If we label the cycleC,, then we get, 4, (C,) = 4.

When a graph contains two or more cycles joimitd a common cutvertex, then
the value 0f/1‘2 equal toA+2, if all cycles are of even lengths adil+1, for
others.

Let G be a graph, contains a cycle of any length antkfirumber of edges
and they have a common cutvertex. If A be the degree of the cutvertex, then

/1t2(G) =A+2, if the cycle is of even length anfl +1, for other cases.
For any sunS,,, the value of A, is A+2. If graph is obtained fron§,,

by adding an edge to each of the pendent verte$,pf then A, = A+ 2 for that
graph. For a graph which contains a cycle of angtle and each vertex of the cycle
contain another cycle of any length, thdh equal toA+2. The A, value of the

path, caterpillar graph and lobster are same aundlég A + 2. One of the important
result of (2,1)-total labelling of cactus graph is described below

Let G, and G, be two cactus graphs. I\, +1< A,(G,) <A, +2 and
A, +1< A(G,) <A, +2, then A+1< A, (G)<A+2, G is the union of two
graphs G, and G, , they have only one common vertax and max{A;,A,}
SA<SA +A,.
Combining all the results, we conclude that
If A is the degree of a cactus grafh, then A+1< A, (G) < A+2.
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