Annals of Pure and Applied Mathematics Vol. 2, No. 1, 2012, 01-09 ISSN: 2279-087X (P), 2279-0888(online) Published on 24 November 2012 www.researchmathsci.org Annals of Pure and Applied <u>Mathematics</u>

Some Characterization of Semiprime n-Ideals in Lattices

M. Ayub Ali¹, A. S. A. Noor² and S. R. Poddar³

¹Department of Mathematics, Jagannath University, Dhaka, Bangladesh. Email: <u>ayub ju@yahoo.com</u> ^{2,3}Department of ECE, East West University, Dhaka, Bangladesh. Email : noor@ewubd.edu

Received 1 November 2012; accepted 19 November 2012

Abstract. The concept of semi prime ideals in lattices was given by Y. Rav by generalizing the concept of 0-distributive lattices given by J. C. Varlet. For a neutral element $n \in L$, recently Ayub, Noor and Podder have introduced the concept of *n*-distributive lattices which is a generalization of both 0-distributive and 1-distributive lattices. In a very recent paper, M. Ayub Ali and others have generalized the concept of *n*-distributive lattices and given the notion of semi prime *n*-ideals. For an element *n* in a lattice *L*, any convex sublattice containing *n* is called an *n*-ideal. In this paper, we have included several characterizations of semi prime *n*-ideals containing $\{a\}^{\perp^n}$ for $a \in L$. Finally we have included a prime Separation Theorem with the help of annihilator *n*-ideal.

Keywords. Neutral element, Semi prime n-ideal, Maximal convex sublattice, Minimal prime n-ideal.

AMS Subject Classifications (2010): 06A12, 06A99, 06B10

1. Introduction

In generalizing the notion of pseudo complemented lattice, J. C. Varlet [9] introduced the notion of 0-distributive lattices. Then [3] have given several characterizations of these lattices. On the other hand, [7] have studied them in meet semi lattices. A lattice L with 0 is called a *0-distributive* lattice if for

all $a,b,c \in L$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Let *L* be a lattice and $n \in L$. Any convex sublattice of *L* containing *n* is called an *n*-*ideal* of *L*. An element $n \in L$ is called a standard element if for all $a,b \in L, a \wedge (b \vee n) = (a \wedge b) \vee (a \wedge n)$; while *n* is called a neutral element if (i) it is standard and

(ii) $n \wedge (a \vee b) = (n \wedge a) \vee (n \wedge b)$ for all $a, b \in L$.

Set of all *n*-ideals of a lattice *L* is denoted by $I_n(L)$ which is an algebraic lattice; where $\{n\}$ and L are the smallest and largest elements. For $I \cap J$ is two *n*-ideals Ι and J,the infimum and $I \lor J = \{x \in L : i_1 \land j_1 \le x \le i_2 \lor j_2, \text{ for some } i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}.$ The *n*-ideal generated by a finite numbers of elements $a_1, a_2, ..., a_m$ is called a finitely generated *n*-ideal denoted by $\langle a_1, a_2, ..., a_m \rangle_n$. Moreover, $< a_1, a_2, \dots, a_m >_n = \{x \in L \mid a_1 \land a_2 \land \dots \land a_m \land n \le x \le a_1 \lor a_2 \lor \dots \lor a_m \lor n\}$ $= [a_1 \wedge a_2 \wedge \dots \wedge a_m \wedge n, a_1 \vee a_2 \vee \dots \vee a_m \vee n]$

Thus, every finitely generated *n*-ideal is an interval containing *n*. *n*-ideal generated by a single element $a \in L$ is called a principal *n*-ideal denoted by $\langle a \rangle_n$ and $\langle a \rangle_n = [a \land n, a \lor n]$. Moreover $[a,b] \cap [c,d] = [a \lor c, b \land d]$ and $[a,b] \lor [c,d] = [a \land c, b \lor d]$. If *n* is a neutral element, then by [6], $\langle a \rangle_n \cap \langle b \rangle_n = \langle m(a,n,b) \rangle_n$, where $m(x,y,z) = (x \land y) \lor (x \land z) \lor (y \land z)$.

A non-empty subset I of a lattice L is called a *down set (up set)* if for $a \in I$ and $x \le a$ $(x \ge a), (x \in L)$ imply $x \in I$. I is called an *ideal* if it is a down set and for all $a, b \in I$, $a \lor b \in I$. A non-empty subset F of L is called a filter of L if it is an *up set and for* $a, b \in F$, $a \land b \in F$. A subset Tof L is called *convex* if for $a \le x \le b$ with $a, b \in T$ imply $x \in T$. Of course all the ideals and filters of a lattice are convex sublattices. Moreover, for every convex sublattice C of L, $C = (C] \cap [C)$.

A proper convex sublattice M of a lattice L is called a maximal convex sublattice if for any convex sublattice Q with $Q \supseteq M$ implies either Q = M or Q = L. A proper convex sublattice M is called a prime convex sublattice if for any $t \in M$, $m(a,t,b) \in M$ implies either $a \in M$ or $b \in M$. Similarly, an n-ideal P of L is called a prime n-ideal if $m(a,n,b) \in P$ implies either $a \in P$ or $b \in P$. Equivalently, P is prime if and only if $\langle a \rangle_n \cap \langle b \rangle_n \subseteq P$ implies either $\langle a \rangle_n \subseteq P$ or $\langle b \rangle_n \subseteq P$. Moreover, by

[4], we know that every prime convex sublattice P of L is either an n-ideal or a filter.

By [2] *L* is called an *n*-distributive lattice if for all $a,b,c \in L$, $\langle a \rangle_n \cap \langle b \rangle_n = \{n\}$ and $\langle a \rangle_n \cap \langle c \rangle_n = \{n\}$ imply $\langle a \rangle_n \cap [\langle b \rangle_n \lor \langle c \rangle_n] = \{n\}$. Equivalently, *L* is called *n*-distributive if $a \land b \le n \le a \lor b$ and $a \land c \le n \le a \lor c$ imply $a \land (b \lor c) \le n \le a \lor (b \land c)$.

By Y. Rav [8] an ideal I of a lattice is called a *semi prime ideal* if for all $x, y, z \in L, x \land y \in I$ and $x \land z \in I$ imply $x \land (y \lor z) \in I$. Thus, a lattice L with 0, is called *0-distributive* if and only if (0] is a semi-prime ideal. Let *n* be a neutral element of a lattice L. An *n*-ideal J of L is called a semi prime *n*-ideal if for all $a, b, c \in L, \langle a \rangle_n \cap \langle b \rangle_n \subseteq J$ and $\langle a \rangle_n \cap \langle c \rangle_n \subseteq J$ imply $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq J$. In a distributive lattice every n-ideal is semi prime. Moreover, every prime n-ideal is semi prime. Lattice itself with an element n is of course a semi prime n-ideal. It is easy to see that a lattice with the element n is n-distributive if $\{n\}$ is a prime *n*-ideal. In the pentagonal semi lattice $\{0, a, b, c, n; a < b, a \lor c = b \lor c = n, a \land c = b \land c = 0\}, n$ is neutral. Here $\{n\}$ and $\langle 0 \rangle_n = L$ are semi prime but not prime. Moreover, $\langle a \rangle_n, \langle c \rangle_n$ are prime but $\langle b \rangle_n$ is not even semi prime. Again in $M_{3} = \{0, a, b, c, n; a \land b = b \land c = c \land a = 0; \qquad a \lor b = b \lor c = c \lor a = n\},$ $<0>_n = L$ is semi prime. But $\{n\}, <a>_n, _n, <c>_n$ are not semi prime.

Throughout the paper we will consider n as a neutral element.

Following result is easy to prove.

Lemma 1. Let F be a filter (ideal) of L disjoint to an n-ideal J. Then F is a maximal filter (ideal) if and only if L-F minimal prime down set (up set) containing J. \blacksquare

Following results are due to [1]

Lemma 2. Every convex sublattice disjoint from an n-ideal I is contained in a maximal convex sub lattice disjoint from I.

Lemma 3. Let I be an n- ideal of a lattice L. A convex sublattice M disjoint from I is a maximal convex sublattice disjoint from I if and only if for all $a \notin M$, there exists $b \in M$ such that $m(a,n,b) \in I$.

Let *L* be a lattice with neutral element *n*. For $A \subseteq L$, we define $A^{\perp_n} = \{x \in L : m(x, n, a) = n \text{ for all } a \in A\}$. A^{\perp_n} is always a convex sub set containing *n* but it is not necessarily an *n*-ideal.

Theorem 4. J is a semi prime n-ideal of a lattice L if and only if (J] is a semi prime ideal and [J) is a semi prime filter.

Proof. Let $x \lor y \in [J]$ and $x \lor z \in [J]$. Then $x \lor y \ge j_1$ and $x \lor z \ge j_2$ for some $j_1, j_2 \in J$. Thus $j_1 \wedge n \leq (x \vee y) \wedge n \leq n$ implies $(x \vee y) \wedge n \in J$ by convexity. So $m(x, n, y \land n) = (x \lor y) \land n \in J \text{ implies} < x >_n \cap < y \land n >_n \subseteq J.$ Similarly, $\langle x \rangle_n \cap \langle z \wedge n \rangle_n \subseteq J$. Since J is semi prime, SO $\langle x \rangle_n \cap (\langle y \land n \rangle_n \lor \langle z \land n \rangle_n) = [x \land n, x \lor n] \cap [y \land z \land n, n] =$ $[(x \lor (y \land z)) \land n, n] \subseteq J$ implies $(x \lor (y \land z)) \land n \in J$, and SO $x \lor (y \land z) \in [J]$. Therefore, [J] is a semi prime filter. Similarly, we can

 $x \lor (y \land z) \in [J]$. Therefore, [J] is a semi prime filter. Similarly prove that (J] is a semi prime ideal.

Conversely, let $\langle x \rangle_n \cap \langle y \rangle_n \subseteq J$ and $\langle x \rangle_n \cap \langle z \rangle_n \subseteq J$. That is $[(x \lor y) \land n, (x \land y) \lor n] \subseteq J$ and $[(x \lor z) \land n, (x \land z) \lor n] \subseteq J$. It follows that $(x \land y) \lor n \in J$ and $(x \land z) \lor n \in J$. Thus $(x \lor n) \land (y \lor n) \in J$ and $(x \lor n) \land (z \lor n) \in J$ as n is neutral. Then $x \land (y \lor n) \in (J]$ and $x \land (z \lor n) \in (J]$. So $x \land (y \lor z \lor n) \in (J]$ as (J] is a semi prime ideal. This implies $(x \land (y \lor z)) \lor (x \land n) \in (J]$ and so $(x \land (y \lor z)) \lor (x \land n) \leq j_1$ for some $j_1 \in J$. Then $n \le (x \land (y \lor z)) \lor n \le j_1 \lor n$ implies

 $(x \land (y \lor z)) \lor n \in J$. Similarly, we can prove that $(x \lor (y \land z)) \land n \in J$ as [J) is a semi prime filter. Therefore, $\langle x \rangle_n \cap (\langle y \rangle_n \lor \langle z \rangle_n) \subseteq J$ = $[(x \lor (y \land z)) \land n, (x \land (y \lor z)) \lor n] \subseteq J$, and so J is semi prime.

Theorem 5. If the intersection of all prime n-ideals of a lattice L is equal to J, then J is a semi prime n-ideal.

Proof. Let $\langle a \rangle_n \cap \langle b \rangle_n \subseteq J$, $\langle a \rangle_n \cap \langle c \rangle_n \subseteq J$. This implies $[(a \lor b) \land n, (a \land b) \lor n] \subseteq J$, $[(a \lor c) \land n, (a \land c) \lor n] \subseteq J$.

Let *P* be any prime *n*-ideal. If $a \in P$, then $\langle a \rangle_n \subseteq P$ and so $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq P$. If $\langle a \rangle_n \Box P$ then $\langle b \rangle_n \subseteq P, \langle c \rangle_n \subseteq P$ as *P* is prime. Thus $\langle b \rangle_n \lor \langle c \rangle_n \subseteq P$. That is, in either case $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq P$ for all prime *n*-ideals *P* containing *J*. Therefore, $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq \cap P = J$. Hence *J* is semi-prime.

Let $A \subseteq L$ and J be an n-ideal of L. We define $A^{\perp^{n_{J}}} = \{x \in L : m(x, n, a) \in J \text{ for all } a \in A\}$. This is clearly a convex subset containing J. In presence of distributivity, this is an n- ideal. $A^{\perp^{n_{J}}}$ is called an n- annihilator of A relative to J. We denote $I_{J}(L)$, the set of all n-ideals containing J. Of course, $I_{J}(L)$ is a bounded lattice with J and L as the smallest and the largest elements. If $A \in I_{J}(L)$, and $A^{\perp^{n_{J}}}$ is an n- ideal, then $A^{\perp^{n_{J}}}$ is called an annihilator n- ideal and it is the pseudo complement of A in $I_{J}(L)$.

Theorem 6. Let A be a non-empty subset of a lattice L and J be an n-ideal of L. Then

 $A^{\perp^{n_{J}}} = \bigcap (P : P \text{ is a minimal prime convex subset containing } J$ but not containing A

Proof. Suppose $X = \bigcap (P : A \Box P, P)$ is a minimal prime convex set). Let $x \in A^{\perp_J}$. Then $m(x, n, a) \in J$ for all $a \in A$. Choose any P of right hand expression. Since $A \Box P$, there exists $z \in A$ but $z \notin P$. Then $m(x, n, z) \in J \subseteq P$. So $x \in P$, as P is prime. Hence $x \in X$.

Conversely, let $x \in X$. If $x \notin A^{\perp^{n_{J}}}$, then $m(x, n, b) \notin J$ for some $b \in A$. Thus $[(x \lor b) \land n, (x \land b) \lor n] P \Box J$. This implies either $m(x \land n, n, b \land n) = (x \land n) \lor (b \land n) \notin J$ or

 $m(x \lor n, n, b \lor n) = (x \land b) \lor n \notin J$. This implies either $x \land n \notin \{b \land n\}^{\perp^{n_{j}}}$ or $x \lor n \notin \{b \lor n\}^{\perp^{n_{j}}}$. Suppose $(x \land b) \lor n \notin J$. Set $D = [(x \land b))$. Then D is a filter disjoint to J. Then by lemma 3, there exists a maximal filter $F \supseteq D$ and disjoint to J. Then L - M is a maximal prime down set containing J. Now $x \notin L - M$ as $x \in D$ implies $x \in M$. Moreover, $A \Box L - M$ as $b \in A$ but $b \in M$ implies $b \notin L - M$, which is a contradiction to $x \in X$. Therefore, $x \in A^{\perp^{n_{j}}}$.

Following result is due to [1].

Theorem 7. Let L be a lattice and J be an n-ideal of L. The following conditions are equivalent.

(i) J is semi prime.

(ii) $\{a\}^{\perp^{n_{J}}} = \{x \in L : x \land a \in J\}$ is a semi prime *n*-ideal containing J.

(iii) $A^{\perp^{n_{J}}} = \{x \in L : x \land a \in J \text{ for all } a \in A\}$ is a semi prime n-ideal containing J.

(iv) $I_J(L)$ is pseudo complemented

(v) $I_{I}(L)$ is a 0-distributive lattice.

(vi) Every maximal convex sublattice disjoint from J is prime. ■

Theorem 8. Let L be a lattice and J be an n-ideal. Then the following conditions are equivalent.

(i) J is semi-prime.

(ii) Every maximal convex sublattice of L disjoint with J is prime.

(iii) Every minimal prime down set (up set) containing J is a minimal prime *n*-ideal containing J.

(iv) Every filter (ideal) disjoint with J is disjoint from a minimal prime nideal containing J.

(v) For each element $a \notin J$, there is a minimal prime n-ideal containing J but not containing a.

(vi) For each $a \notin J$, (a] is contained in a prime ideal and [a) is contained in a prime filter disjoint to J.

Proof. (i) \Leftrightarrow (ii) follows from Theorem 7.

(ii) \Rightarrow (iii). Let A be a minimal prime down set (up set) containing J. Then L - A is a maximal filter (ideal) disjoint with J. Then by (ii) L - A is prime and so A is a minimal prime ideal (filter) containing J and so it is a minimal prime *n*-ideal.

(iii) \Rightarrow (ii). Let F be a maximal convex sublattice of L disjoint to J. Then by [4], F is either an ideal or a filter. Suppose F is a filter. Then L-F is a minimal prime down set containing J. Thus by (iii), L-F is a minimal prime ideal and so F is a prime filter and so is a prime convex sublattice.

(i) \Rightarrow (iv). Let *F* a filter of *S* disjoint from *J*. Then by Theorem 7, there is a prime (maximal) convex sublattice $Q \supseteq F$ and disjoint to *J*. Then L - Q is a minimal prime ideal containing *J* and disjoint to *F*. Since $n \in J$ so L - Q is a minimal prime *n*-ideal.

 $(iv) \Rightarrow (v)$. Let $a \in L$, $a \notin J$. Then by (iv) there exists a minimal prime nideal A containing J disjoint from [a]. Thus $a \notin A$.

 $(v) \Rightarrow (vi)$. Let $a \in L$ and $a \notin J$. Then by (v) there exists a minimal prime n-ideal containing J such that $a \notin P$ this implies $a \in L - P$. By [4], we know

that P is either an ideal or a filter. Thus L-P is a prime ideal or a prime filter disjoint to J.

 $(vi) \Rightarrow (i)$. Suppose J is not semi prime. Then there exist $a, b, c \in L$ such that

 $\langle a \rangle_n \cap \langle b \rangle_n \subseteq J, \langle a \rangle_n \cap \langle c \rangle_n \subseteq J$ but $\langle a \rangle_n \cap (\langle b \rangle_n \vee \langle c \rangle_n) \Box J$ Then $[(a \lor b) \land n, (a \land b) \lor n] \subseteq J, [(a \lor c) \land n, (a \land c) \lor n] \subseteq J$ and $[(a \lor (b \land c)) \land n, (a \land (b \lor c)) \lor n] \Box J$. Then either $(a \lor (b \land c)) \land n \notin J$ or $(a \land (b \lor c)) \lor n \notin J$. Suppose $(a \lor (b \land c)) \land n \notin J$, which implies $a \land (b \lor c)) \notin J$. Then by (vi) there exists prime filter Q disjoint to J such that $[a \land (b \lor c)) \subseteq Q$. Then $a \in Q$ and $b \lor c \in Q$. Since Q is prime, so either $b \in Q$ or $c \in Q$. Thus either $a \land b \in Q$ or $a \land c \in Q$ which implies $(a \land b) \lor n \in Q$ or $(a \land c) \lor n \in Q$ gives a contradiction to the fact that $Q \cap J = \varphi$. Therefore, J must be semi prime.

Theorem 9. Let J be a semi-prime n-ideal of a lattice L and $x \in L$. Then a prime - ideal P containing $\{x\}^{\perp^{n_{j}}}$ is a minimal prime n-ideal containing $\{x\}^{\perp^{n_{j}}}$ if and only if for $p \in P$, there exists $q \in L - P$ such that $m(p,n,q) \in \{x\}^{\perp^{n_{j}}}$.

Proof: Let *P* be a prime ideal containing $\{x\}^{\perp^{n_j}}$ such that the given condition holds. Let *K* be a prime *n*-ideal containing $\{x\}^{\perp^{n_j}}$ such that $K \subseteq P$. Let $p \in P$. Then there is $q \in L - P$ such that $m(p,n,q) \in \{x\}^{\perp^{n_j}}$. Hence $m(p,n,q) \in K$. Since *K* is prime and $q \notin K$, so $p \in K$. Thus, $P \subseteq K$ and so K = P. Therefore, *P* must be a minimal prime *n*-ideal containing $\{x\}^{\perp^{n_j}}$.

Conversely, let *P* be a minimal prime *n*-ideal containing $\{x\}^{\perp^{n_{j}}}$. Let $p \in P$. Suppose $m(p,n,q) \notin \{x\}^{\perp^{n_{j}}}$ for all $q \in L - P$. Thus $[(p \lor q) \land n, (p \land q) \lor n] \Box \{x\}^{\perp^{n_{j}}}$. So either $(p \lor q) \land n \notin \{x\}^{\perp^{n_{j}}}$ or $(p \land q) \lor n \notin \{x\}^{\perp^{n_{j}}}$. Suppose $(p \lor q) \land n \notin \{x\}^{\perp^{n_{j}}}$. Let $D = (L - P) \lor [p)$. We claim that $\{x\}^{\perp^{n_{j}}} \cap D = \varphi$. If not, let $y \in \{x\}^{\perp^{n_{j}}} \cap D$. Then $p \land q \leq y \in \{x\}^{\perp^{n_{j}}}$ for some $q \in L - P$. Thus $n \leq (p \land q) \lor n \leq y \lor n$ implies $(p \land q) \lor n \in \{x\}^{\perp^{n_{j}}}$ gives a contradiction. Then by Theorem [7], there exists a maximal (prime) convex sublattice $Q \supseteq D$ and disjoint to $\{x\}^{\perp^{n_{j}}}$.

prove that $x \in Q$. If $x \notin Q$ then $(Q \lor [x]) \cap \{x\}^{\perp^{n_{j}}} \neq \varphi$. Suppose $t \in (Q \vee [x)) \cap \{x\}^{\perp^{n_{J}}}$. This implies $t \ge q_1 \wedge x$ and $m(t, n, x) \in J$ for some $q_1 \in Q$. Thus $q_1 \wedge x \leq t \wedge x$ and $(x \wedge t) \vee n \in J$. It follows that $(q_1 \wedge x) \lor n \in J$. So $q_1 \lor n \in Q$ as Q is a filter. Again $m(q_1 \lor n, n, x) = (q_1 \land x) \lor n \in J$ implies $q_1 \lor n \in \{x\}^{\perp^{n_J}}$, which is again a contradiction. Hence $x \in Q$. Let M = L - Q. Then M is a prime ideal, infact *n*-ideal. Since $x \in Q$, so $x \notin M$. Let $r \in \{x\}^{\perp^n J}$. Then prime $m(r,n,x) \in J \subseteq M$. This implies $r \in M$ as M is prime. Thus, $\{x\}^{\perp^{n_{J}}} \subseteq M$. Now $M \cap D = \varphi$. This implies $M \cap (L - P) = \varphi$ and hence $M \subseteq P$. Also $M \neq P$, because $p \in D$ implies $p \notin M$ but $p \in P$. Hence M is a prime nideal containing $\{x\}^{\perp^{n_j}}$ which is properly contained in P. This gives a contradiction to the minimal property of P. Therefore the given condition holds.

We conclude the paper with the following prime Separation theorem for semi prime n-ideals

Theorem 10. Let *J* be an *n*-ideal of a lattice *L*. Then the following conditions are equivalent:

(i) *J* is semi prime

(ii) For any proper convex sublattice F disjoint to J there is a prime convex sublattice Q containing F such that $Q \cap J = \phi$.

Proof. (i) \Rightarrow (ii). Since $F \cap J = \phi$, so by Lemma 2, there exists a maximal convex sublattice $Q \supseteq F$ such that $Q \cap J = \phi$. Then by Theorem 7, Q is prime.

(ii) \Rightarrow (i). Let *F* be a maximal convex sublattice disjoint to *J*. Then by (ii) there exists a prime convex sublattice $Q \supseteq F$ such that $Q \cap J = \phi$. Since *F* is maximal, so Q = F. This implies *F* is prime and so by Theorem 7, *J* must be semi prime.

REFERENCES

- 1. M. Ayub Ali, A. S. A. Noor and Sompa Rani Podder, *n-distributive lattice*, to appear in *Journal of Physical Sciences*, 16 (2012).
- Ayub Ali, R.M.Hafizur rahman, A.S.A.Noor and M.Mizanur Rahman, On semiprime n-ideals of lattice, Annals of Pure and Applied Mathematics, 2(1) (2012) 10-17.

- 3. P. Balasubramani and P. V. Venkatanarasimhan, *Characterizations of the* 0- Distributive Lattices, *Indian J. Pure Appl. Math.*, 32(3) (2001) 315-324.
- 4. R. M. Hafizur Rahaman, Ph. D. Thesis, Rajshahi University, Rajshahi. 2000.
- 5. M.A.Latif and A.S.A.Noor, A generalization of Stone's representation theorem, *The Rajshahi University Studies (Part B)* 31 (2003) 83-87.
- 6. A.S.A.Noor and M.A.Latif, Finitely generated n-ideals of a lattice, *SEA Bull. Math.*, 22(1998) 469-475.
- 7. Y.S.Powar and N.K.Thakare, 0-Distributive semilattices, *Canad. Math. Bull.*, 21(4) (1978) 469-475.
- 8. Y.Rav, Semi prime ideals in general lattices, *Journal of Pure and Applied Algebra*, 56 (1989) 105-118.
- 9. J. C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37(1968) 149-158.