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Abstract. A conjecture on the possible connection betweentrfagin Maximum
Principle and Jaynes Maximum Entropy has been dpeel in this article. A known
manufacturing facility or plant wants to optimafigduce the sum of the variances of its
observed production process. The plant's modelsisbof known controllable state
models along with known observational models ofipdion. The selection of the plants
control vector can be described as an optimal ocbptoblem. Therefore, the Pontryagin
Maximum Principle will be used to discover a poksitonnection to Jaynes Maximum
Entropy. The conjectured connection of Pontryagimxivhum Principle to Jaynes
Maximum Entropy can be derived from each other uiedetain transformations relating
the probability space and conjugate vector spacefised in a Pontryagin Hamiltonian
system with the probability space as defined innBba’s entropy. The conjugate vector
space is used to define a known set of probalsijitdhich associates the Hamiltonian of
the system to Jaynes Maximum Entropy via the Legetrdnsformation.
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1. Introduction

The articles of Wang derived the relationship befwveaximum entropy change [1] and
maximum path information [2] with the Hamilton priple of least action for non-

equilibrium systems. Given Wang results for maximentropy implies there is

reasonable conjecture for a possible connectidghefontryagin Maximum Principle to
the Jaynes Maximum Entropy since the Pontryaginidarn Principle is an extension of
Hamilton principle of least action [3].

In this article, the plant models are based mastlgtatistical predictor-corrector
models that can be written as known state and e@en nonlinear models. Consider
an example: a known plant wants to reduce erropsaduction by minimizing the sums
of observed production variances through time. d&scription of the steps needed to
treat this nonlinear optimal control process witle tPontryagin Maximum Principle
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needs the definition of the plant states nonlimeadels and the plant sensors observation
given by known nonlinear models. This problem wilt be solved but rather the aim of
this article is to conjecture a connection betwdenPontryagin Maximum Principle and
Jaynes Maximum Principle as a mapping developedédmst the probability space and
the conjugate vector space. The Legendre tranaf@ymis used to map the Pontryagin
Hamiltonian of the maximum principle to a Pontryadiagrangian. It follows the
Pontryagin Lagrangian is just the definition ofreply as used by Jaynes Maximum
Entropy. The definition of a plant model will be #bund in Smirnov’s bookOscillation
Theory of Optimal Procesd4].

2. Known plant models and plant sensors

A manufacturing plant wants to reduce errors indpadion by minimizing the sums of
variances through time subject to the known statk @bservation model’s constraints.
The following nonlinear system of differential etjoas characterizes the known plant
state models (Eq. 1).

En() = fo (20, 1(8) n =120 N; )
Notex(t) = (p (t),p1 (t), p3 (t),p3 (t), ..., pa (£, pr (£))" and
X (t) = (pZ;(t) pZ;(t))T where T denotes transpose operatpfl (t), and p,f 3

represent the”hplant state 3-component position and 3 componelaicity row vectors.
u,(t) is the i plant parametric feature control column vectohe Tunctionf, is the i

plant state’s known nonlinear model. The senssobserves thal plants statesx(t),
with some additive environmental noise,(t), with a known probability density
function is given by (Eq. 2).
Z,(t) =S, (g(t),g(t)) + wy(t) wherek=1toK, K> N; (2)

Zi(t) = (ZE (6), zE ()T = Z;;(t) where index i equal 1 to 3 are th€ measured
plant's production position coordinates, and indesqual 4 to 6 are the observ&l
measurement plant's production rate or “velocitgctor. z[(t) is the observed™
measurement plant's production “position” vectotharespect to the common origin
with the same dimensions as the state veatpft). z!(t) is the observed™
measurement plant’s production rate or “velocitydctor. x(t) is the state vector
representindN plant states relative a common origim(t) is the combined or aggregate
known feature control parameters vectors,(t) is the K' additive noise position and
velocity with zero mean process due to the plamsee limitations, and other the
environmental conditions. Thu$; is a nonlinear sensor measurement function based o
the combined plant state vectors, and combinedaopdérameters. In this example, the
purpose of this control process is to move thdainjtlant state from(t,) = x, to a
final statex(t;) = x; with minimum observational model variance. The tR@gin
Maximum Principle method a functional is given &py, to be maximized, typically this
functional is given a negative absolute value ttoeesthe maximum is known to be zero.
The following four steps are the usual “set uppstef a dynamical system (Egs. 1 and 2)
to be solved with Pontryagin Maximum Principle [3]:

1. Differentiate (Eq. 2) the observation models widspect to timewithout the

differentiation of the control parameter vectgrtaiobtain (Eq. 3A or 3BC)
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dWi k

dztk(t) = TN 3e, fjn(x(t) u(t)) - [S; k(x(t) u(t))] — (A
Or

PO = G (®),u(0)) + T (38)
With
Guae (), w(®)) = St T i (20 u®)) 57 (S (200, u(®) )1
2. Rename the observation variables, and the hiddete striables into a new
expanded state vectb(t) , (Eq. 4).

Y =@&"®), 2" )" 4)
whereZ(t) vector is the aggregate of tkesensors observatiog? (t), ..., Zk (t))T.
3. Define the minimum error variance?, in (Eq. 5) as the process for obtaining an

optimal control which minimizing the sum of obsedigaal noise variance
defined by following equation assumingro mean noise proceﬂm} =0.

0% = 1E{(_k)2} f_ P 12 1(Wlk)2D(Wlk)dWlk (5)
In (Eq. 5)!D(Wl,k)’ are known probability density function of the,
observation noise processes. Since the noise ggéga zero mean process the
measurements of state are unbiased.

Define the sensdtto beS;, (g(t),g(t)) into a vector composed of the following
combined series of sensors
COMPONent$Sen +6x—s (X(t),g(t)), s Sensek (Z(t),g(t))} fork=1to K

§ = (S6N+1! Ry S6N+6' ey S6N+6k—5! l56N+6k' T S6N+6K—5' e 56N+6K)
Similarly defineGj (x(t),u(t)) into a vector of aggregate or combined series of
components

G = (Gen+1 -+ Gonver -+ » Gontok—5s ) Gontekr -+ Gen+ok—5:- -+ » Gon+6K)
The maximization of a functional[Y(7),u(z)], in terms of the new state
variableY and feature enhanced control parameteby a change of variables,

dw”‘ dz is given by (Eq. 6)
J=]Y(@,u@)] = —ft1 [1(Y (), u(D))ldT < 0 (6)

Note that the maximum afis zero, where the mtegraric{z,g), is given by
(Eq. 7).
I(Z, E) = RS oen (Y — Sk—6N(Z' E))ZD((Yk Sk- 6N(Z E))
Subject to the state model system of dlfferentqfnlaetlons
dYr =FE (Y(t),g(t)) wherer = 1to 6N + 6K . (8)
whereF is given as the following vectorf{,... &, G1 + d;:l LG + ) of
length 6N+6K. Note the control process is to mdwe initial plant state from

dwi,k =

dYk Gk—6N(X' E)) (7)
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Y(to) = (x"(to), 2" (to))" to a final stateY(t;) = (x"(t), 2" (t))" with
minimum sum of observational models variances,oyleér cost functions could
be used such as minimum time. An equivalent methodd be to instead use
Lagrange multipliers [3] yet the method used hersinpler since the Lagrange
multipliers introduces additional unknowns.

4. Define an additional variable

Yo(®) =~ J; (Y (@), u(®)ldr 9)
By differentiation of (Eqg. 9), we obtain (Eq. 10).
O = —1(Y@©), u®)] = Fo (YD), u(®)) (10)

Note that the |n|t|al conditions for (Eq. 10) agt,) = 0,Y,(t;) = .

For the Pontryagin Maximum Principle definitionsdamethods please refer to L.S.
Pontryagin et al,‘The Mathematical Theory of Optimal Procesgages79-80 [3] or
Smirnov’s book entitled “Oscillation Theory of Optal Processes” pages 7-8 [4].

The Pontryagin Maximum  Principle converts a very ffidilt
observational/control problem to an operations aege problem in which we know the
optimal results are at the edges or vertices ofothendary that intercept of the control
parameter volume by the “cost” or Hamiltonian fiuoet The Pontryagin Maximum
Principle finds the minimum observational noiseiaace given the known plant states
and observation models as constraints; Pontryagirifium Principle maps the control
process problem into an Operations Research proflgmThe Pontryagin Hamiltonian
is defined with the help of the conjugate vectaa¥, (t), in (Eq. 11) [3].

H(2®,Y(0),u() = TN v (0)F, (Y(©),u) (12)
where the equality holds almost everywhere.  FPbetryagin Hamilton equations [3]
are given by (Egs. 12AB).

=2 =R (r(Ou®) (12A)
a¥y _ _OH _ — YONt6K (¢ )M (12B)

at oy, oY,
Index r is within the integers 0 &N\ + 6K The characteristic functiois (Z(t),g(t))

will hopefully be sparse in the functional dependken the state variablg,, therefore
. Fa(Y(©Ou(D))
the matrixfy , = —————=
sufficient conditions to perform the maximizatidintloe Hamiltonian.

The least upper bound value or supremum of therfPagin Hamiltonian,

M (Y(0),u(®)) = supyerH (2(0), Y (6), 1)
typically lies in the boundary of the control spac&here are numerical methods such as
steepest descent which could be used to find thimalpobservational control parameters
u(t) to move the initial plant state to a final statehwminimum observational model
variance. But this is not the aim of this artidet to conjecture a possible connection of
Pontryagin Maximum Principle with Jaynes Maximumntrgpy.

will be sparse. Using the usual calculus necgssad
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2. Conjecture: Jaynes maximum entropy can be derived from Pontryagin maximum
principle

We can conjecture the relationship between Poritnylaximum Principle and Jaynes
Maximum Entropy can be achieved by mapping of tbejugate vector¥,, to a
probabilistic space;,. The exact definition of the probabilistic mappisgiot defined
in this article since its part of the conjecturattat least one such mapping exists.
Given randondisjoint eventsk,, in a known probability space, whefe= USNF6K E,
and the probabilities, (t), can be defined by a conjectured probability mapmf the
eventsE,, by a functionp of the conjugate vector and finite norpt), of the conjugate
vector:

p(®) = |[2®)] >> 1t in [t t,]

The probability of event;,, due to its disjoint property of the members igegi by
6N+6K 6N+6K

P(S) = Z P(E,t) = Z P,(6) = 1

The above constraint equatlon plays the role asuheof probabilities of all events that
yields to one. An example of a probability mappipg, is the exponential mapping
found in [1,2].

Then by settind, (t) as a conjugate vector into a new Hamiltonian fdation could be

defined as an expectationlgf(x(t), g(t)).
6N+6K

A(PO.YOu®) = ) PO (Y©,u0) = EE}
a=0

With the constraint

Since the following relation holds for all conjugatector and conjugate probabilities by
inspection.

()

(P, Y®u®) >H<—() Y, (t)) ot (EOXO.u0)

Then the least upper bound of the Hamiltonian &mation of the control parametar
holding the state vectoy(t), and conjugate vector consta#it) , thereforep(t) and the
probability of stateP, , are also held constant then

1 (Y(6),u(®)) = supyey p(A(P(), Y (£), 1)

> M (Y(6),u(t)) = supyey H(¥(6), Y (), )
Since the Hamiltonian is defined as a linear fuorctvith respect to the conjugate vector
in the Pontryagin Maximum Principle, note that tMaximum Principle may be
considered the negative of the Hamiltonian useHamilton’s Least Action (with unit
mass, i.e. probability space). Now a questioseari What the Pontryagin Lagrangian
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can be functionally defined? In Theorem 1, with kielp of the Legendre transformation
[7] the Pontryagin Lagrangian can be defined im&of the Pontryagin Hamiltonian.

Theorem 1. Pontryagin Lagrangian

If the conjugate probabilities are well defineddahe Legendre transformation (Eq. 13)
of the Pontryagin Lagrangian is a valid transfoiorathen the Legendre transformation
can be re-interpreted as a partial diﬁerentiala&imm of the Pontryagin Lagrangian.

26N+6K {P (t) 7 (t)} Z (13)
Proof: Assuming the conjugate probabilities are well dedirand we have a valid
Legendre transformation of the conjugate probaslithen we can use the Legendre
transformation (Eq. 13) to find the equivalent Pgagin “Lagrangian” functionL,
where we re-interpret the Legendre transformatitn (L3) as a valid partial differential

equation with respect to the conjugate probalslifig(t), coordinates.
6N+6K 6N+6K

z {P F T (t)} Z Pa(DF (Y0, u(®)) = =

This equatlon can be solved for a partlcular sotutdf the PontryagirLagrangianby
induction [8] and neglect the homogeneous solutions
Case 0

Po(®) 55 dP (t) = L= =Py (0)Fo (L(0),u()

This is a linear differential equation of the Pgatin LagrangianL, its elementary
solution is

L = =Fo (Y(6),u(t)) Po(t)Log (Po(t))
TheLog function is the natural logarithm function to thesee.
AssumeCase nholds, that id = Y, —F; (Z(t),g(t)) P;(t)Log(P;(t)) is a particular
solution of the Legendre transformation (PDE). eTdase n+1 needs to be proven as

follows.

Case n+1
n+1

Z{ P(O) 5 (t)} I= Z PL(OF, (Y(®),u()) = —H = ~E(F)

a=0
By construction
n+1

= R (®.u®) P®Log(Pi(®)
i=0
Differentiate the Pontryagin Lagrangian with reggedhe known probability to obtain
oL
3hp = e (LO.u®) 1+ Log(Pa()}
Substituting into the Legendre transformation psotree n+1 case.
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n+1
Z{P (t)ap (t)} L=
n+1
= Z =P ((0,u(®) {1 + Log ()]
nEt n+1
z Y (), u(®)) P(B)Log (Pe(D)) = — ZP ©)F (Y(0),u(0))
= —E{F} =—

Therefore, we have shown it holds for all integers Therefore, the Pontryagin
Lagrangian has the form

N+6K
=- Z Fi (X(t)rﬂ(t))Pi(t)Log(Pi(t))

=0
The time integral of the Pontryagin Lagrangianii@g as
t16N+6K

> =R (Y©,u0) Pi(OLog(Pi(t)) dt

to =0
o 6N+6K

=f Z —P;Log(P;)aY;
—® =0

due to the following change of integration varighlgdt = %dt = dY;. Replacd;

(gl

t1~
to

with its equivalent vectof—2 :",d;l, ...,%’V,%, . OlZK) of length6N+6K+1.
6N
t
o= -Porogepien Shar
to =1
¢ 6N+6K
b 6N
+ f Z —Py(6)Log (P (£)) TSN ¢
to j=6N+1

t
+ [ =RyoLogPo(e) Gt
to

With a change of variables (t ='{x(t)), etc.) the action integral can be seen toshtha
maximization of entropy in terms of state or phsigace, observational probability space,
and for the sum of the variances in the observajiate.

6N+6K
]L—f Z —P;Log(P;) dx; + f

~PiLog(P) dzign + | ~Plog(Py) d¥,
i=6N+ -
Since the above mathematical method is reversibreby the reverse of above steps
could be shown: the maximization of entropy of aboaction functional of the
Pontryagin Lagrangian below

239



Javier Rivera
6N+6K

L= ) ~FA(X®Ou®)PwLegrw)

=0
is equivalent to the Pontryagin Maximum Principléthwthe use of the Legendre
Transformation.  Additionally, any other constraintan be dealt with Lagrange
multipliers.
For methods of Jaynes Maximum Entropy please refenis 1957 and 1982
papers [5,6].
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3. Conclusion

The conjecture of a connection of Pontryagin MaximBrinciple to Jaynes Maximum

Entropy can be derived from each other under eettansformations relating the phase
space conjugate vector as defined in a Hamiltosyemtem with the probability space as
defined in Shannon’s entropy. This connection betwehe Pontryagin Maximum

Principle and Jaynes Maximum Entropy was shownhia hote for a manufacturing

facility or plant wants to optimally reduce the swh the variances of its observed
production process. The conjugate vector was usedidfine a uniform set of

probabilities, which associates the Hamiltoniantloé system to Jaynes Maximum
Entropy via the Legendre transformation.
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