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Abstract. A conjecture on the possible connection between Pontryagin Maximum 
Principle and Jaynes Maximum Entropy has been developed in this article. A known 
manufacturing facility or plant wants to optimally reduce the sum of the variances of its 
observed production process. The plant’s models consist of known controllable state 
models along with known observational models of production. The selection of the plants 
control vector can be described as an optimal control problem.  Therefore, the Pontryagin 
Maximum Principle will be used to discover a possible connection to Jaynes Maximum 
Entropy. The conjectured connection of Pontryagin Maximum Principle to Jaynes 
Maximum Entropy can be derived from each other under certain transformations relating 
the probability space and conjugate vector space as defined in a Pontryagin Hamiltonian 
system with the probability space as defined in Shannon’s entropy.  The conjugate vector 
space is used to define a known set of probabilities, which associates the Hamiltonian of 
the system to Jaynes Maximum Entropy via the Legendre transformation.  
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1. Introduction 
The articles of Wang derived the relationship between maximum entropy change [1] and 
maximum path information [2] with the Hamilton principle of least action for non-
equilibrium systems.  Given Wang results for maximum entropy implies there is 
reasonable conjecture for a possible connection of the Pontryagin Maximum Principle to 
the Jaynes Maximum Entropy since the Pontryagin Maximum Principle is an extension of 
Hamilton principle of least action [3].   

In this article, the plant models are based mostly on statistical predictor-corrector 
models that can be written as known state and observation nonlinear models.   Consider 
an example: a known plant wants to reduce errors in production by minimizing the sums 
of observed production variances through time.  The description of the steps needed to 
treat this nonlinear optimal control process with the Pontryagin Maximum Principle 
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needs the definition of the plant states nonlinear models and the plant sensors observation 
given by known nonlinear models.   This problem will not be solved but rather the aim of 
this article is to conjecture a connection between the Pontryagin Maximum Principle and 
Jaynes Maximum Principle as a mapping developed between the probability space and 
the conjugate vector space.  The Legendre transformation is used to map the Pontryagin 
Hamiltonian of the maximum principle to a Pontryagin Lagrangian.  It follows the 
Pontryagin Lagrangian is just the definition of entropy as used by Jaynes Maximum 
Entropy.  The definition of a plant model will be as found in Smirnov’s book “Oscillation 
Theory of Optimal Process” [4].  
 
2. Known plant models and plant sensors 
A manufacturing plant wants to reduce errors in production by minimizing the sums of 
variances through time subject to the known state and observation model’s constraints.  
The following nonlinear system of differential equations characterizes the known plant 
state models (Eq. 1). 

������ = �� 		����, �����
 	� = 1	��	�;      (1) 

Note ���� = �������, �������, ������, �������, … , ������, ��������� and  ����� = �������, ��������� ,  where T denotes transpose operator; ������, ���	������� 
represent the nth plant state 3-component position and 3 component velocity row vectors.  ����� is the nth plant parametric feature control column vector.  The function �� is the nth 

plant state’s known nonlinear model.  The sensors, ��, observes the N plants states,		����, 
with some additive environmental noise, ����� , with a known probability density 
function is given by (Eq. 2). 

����� = �� 	����, ����
 +	�����		where	# = 1	��	$, $ > 	�	;  (2) 

����� = �&�����, &�������� 	 = 	�',����  where index i equal 1 to 3 are the kth measured 
plant’s production position coordinates, and index i equal 4 to 6 are the observed kth 
measurement plant’s production rate or “velocity” vector.  &�����  is the observed kth 
measurement plant’s production “position” vector with respect to the common origin 
with the same dimensions as the state vector, ����� .  	&������  is the observed kth 
measurement plant’s production rate or “velocity” vector.  ����	 is the state vector 
representing N plant states relative a common origin.  ���� is the combined or aggregate 
known feature control parameters vectors.  ����� is the kth additive noise position and 
velocity with zero mean process due to the plant sensor limitations, and other the 
environmental conditions.  Thus  �� is a nonlinear sensor measurement function based on 
the combined plant state vectors, and combined control parameters.  In this example, the 
purpose of this control process is to move the initial plant state from ���(� = 	�( to a 
final state ����� = 	��  with minimum observational model variance. The Pontryagin 
Maximum Principle method a functional is given a priory, to be maximized, typically this 
functional is given a negative absolute value therefore the maximum is known to be zero.   
The following four steps are the usual “set up” steps of a dynamical system (Eqs. 1 and 2) 
to be solved with Pontryagin Maximum Principle [3]: 

1. Differentiate (Eq. 2) the observation models with respect to time without the 
differentiation of the control parameter vector, u, to obtain (Eq. 3A or 3BC)    



A Note on a Possible Connection between Pontryagin Maximum Principle and 
Jaynes Maximum Entropy 

235 
 

 

)*+,,�-�)- = ∑ ∑ �/,� 	����, ����
 0
012,3 [�',� 	����, ����
]67/8�9�8� +	):+,,)- 		  (3A) 

Or 
)*+,,�-�)- = ;',������, ����� +	):+,,)-     (3B) 

 
With 

;',������, ����� = ∑ ∑ �/,� 	����, ����
 0
012,3 [�',� 	����, ����
]67/8�<�8�    

2. Rename the observation variables, and the hidden state variables into a new 
expanded state vector =��� , (Eq. 4). 

=��� = ������, �������     (4) 
where Z(t) vector is the aggregate of the K sensors observations �������,… , �>������. 
3. Define the minimum error variance, ?�, in (Eq. 5) as the process for obtaining an 

optimal control which minimizing the sum of observational noise variance 

defined by following equation assuming zero mean noise process, @A��B = 0. 

?� = ∑ @A�����B>�8� = D ∑ ∑ ��',���E�7'8�>�8� �',����',�FGF    (5) 
In (Eq. 5), E��',�� , are known probability density function of the �',� 
observation noise processes.  Since the noise process is a zero mean process the 
measurements of state are unbiased.   

Define the sensor k to be �� 	����, ����
 into a vector composed of the following 

combined series of sensors  

components	{�79I7�GJ 	=���, ����
 , … , �79I7� 	=���, ����
} for k = 1 to K. 

� = ��79I�, … , �79I7, . . . , �79I7�GJ, … , �79I7� , . . . , �79I7>GJ, … , �79I7>� 
Similarly define ;������, ����� into a vector of aggregate or combined series of 
components  ; = �;79I�, … , ;79I7, . . . , ;79I7�GJ, … , ;79I7� , . . . , ;79I7>GJ, . . . , ;79I7>� 
The maximization of a functional, M[=�N�, ��N�] , in terms of the new state 
variable Y and feature enhanced control parameters u by a change of variables, 

��',� = ):+,,)O �N is given by (Eq. 6)   

M = M[=�N�, ��N�] = −D |RS=�N�, ��N�T|�N ≤ 0-V-W   (6) 

Note that the maximum of J is zero, where the integrand, RS=, �T, is given    by 
(Eq. 7). RS=, �T = ∑ �=� − ��G79S=, �T��E��=� − ��G79S=, �T7>I79�8�I79 ��)X,)O − ;�G79S=, �T�  (7) 

Subject to the state model system of differential equations: )XY)- = Z[ 	=���, ����
 		�ℎ]^]	^ = 1	��	6� + 6$	.    (8) 

where F is given as the following vector ( f1,… ,fN, ;� +	`aV`b ,…,;> +	`:c`b ) of 

length 6N+6K. Note the control process is to move the initial plant state from 
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=��(� = 	 �����(�, ����(���  to a final state =���� = 	 �������, �������� 	 with 
minimum sum of observational models variances, yet other cost functions could 
be used such as minimum time.  An equivalent method would be to instead use 
Lagrange multipliers [3] yet the method used here is simpler since the Lagrange 
multipliers introduces additional unknowns.  

4. Define an additional variable 

=(��� = −D |RS=�N�, ��N�T|�N--W          (9) 

By differentiation of (Eq. 9), we obtain (Eq. 10).   
)XW�-�)- = −|RS=���, ����T| = Z(S=���, ����T     (10) 

Note that the initial conditions for (Eq. 10) are	=(��(� = 0, =(���� = M.   
For the Pontryagin Maximum Principle definitions and methods please refer to L.S. 
Pontryagin et al, “The Mathematical Theory of Optimal Process” pages79-80 [3] or 
Smirnov’s book entitled “Oscillation Theory of Optimal Processes” pages 7-8 [4].  

The Pontryagin Maximum Principle converts a very difficult 
observational/control problem to an operations research problem in which we know the 
optimal results are at the edges or vertices of the boundary that intercept of the control 
parameter volume by the “cost” or Hamiltonian function.  The Pontryagin Maximum 
Principle finds the minimum observational noise variance given the known plant states 
and observation models as constraints; Pontryagin Maximum Principle maps the control 
process problem into an Operations Research problem [3].   The Pontryagin Hamiltonian 
is defined with the help of the conjugate vector space, de���, in (Eq. 11) [3]. 

f 	d���, =���, ����
 			= ∑ de���Ze 	=���, ����
79I7>e8(      (11) 

where the equality holds almost everywhere.    The Pontryagin Hamilton equations [3] 
are given by (Eqs. 12AB). )XY)- = 0g

0hY = Z[ 	=���, ����
		      (12A) 

)hY)- = − 0g
0XY = −∑ de��� 0ij	X�-�,k�-�
0XY79I7>e8(    (12B) 

Index r is within the integers 0 to 6N + 6K.  The characteristic functions Ze 	=���, ����
 

will hopefully be sparse in the functional dependence on the state variable, =[, therefore 

the matrix Ze,[ = 0ij	X�-�,k�-�

0XY  will be sparse.   Using the usual calculus necessary, and 

sufficient conditions to perform the maximization of the Hamiltonian.   
The least upper bound value or supremum of the Pontryagin Hamiltonian,  

l	=���, ����
 = m��6nofSd���, =���, �T 
typically lies in the boundary of the control space.   There are numerical methods such as 
steepest descent which could be used to find the optimal observational control parameters 
u(t) to move the initial plant state to a final state with minimum observational model 
variance.  But this is not the aim of this article, but to conjecture a possible connection of 
Pontryagin Maximum Principle with Jaynes Maximum Entropy. 
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2. Conjecture: Jaynes maximum entropy can be derived from Pontryagin maximum 
principle 
We can conjecture the relationship between Pontryagin Maximum Principle and Jaynes 
Maximum Entropy can be achieved by mapping of the conjugate vector, de , to a 
probabilistic space, @e. The exact definition of the probabilistic mapping is not defined 
in this article since its part of the conjecture that at least one such mapping exists.  
Given random disjoint events, @e, in a known probability space, where � = pe8(79I7>	@e 
and the probabilities, qe���, can be defined by a conjectured probability mapping of the 
events, @e , by a function r of the conjugate vector and finite norm, s���, of the conjugate 
vector:   s��� = tud���ut >> 1, �	v�	[�(, ��] qe��� = q�@e , �� = re�s���, d���� ≥ 0 
The probability of event, @e, due to its disjoint property of the members is given by 

q��� = x q�
79I7>

e8(
@e , �� = x qe���

79I7>

e8(
= 1 

The above constraint equation plays the role as the sum of probabilities of all events that 
yields to one.  An example of a probability mapping, re, is the exponential mapping 
found in [1,2].  
 
Then by setting qe��� as a conjugate vector into a new Hamiltonian formulation could be 

defined as an expectation of Ze 	=���, ����
.    
fy 	q���, =���, ����
 			= x qe���Ze 	=���, ����
 = 	@{Z}.		

79I7>

e8(
 

With the constraint  

x qe���
79I7>

e8(
= 1 

Since the following relation holds for all conjugate vector and conjugate probabilities by 
inspection. 

fy 	q���, =���, ����
 		≥ f zd���s��� , =���, ����{ = 1s���f 	d���, =���, ����
. 
Then the least upper bound of the Hamiltonian as a function of the control parameter u 
holding the state vector, Y(t), and conjugate vector constant, d��� , therefore s��� and the 
probability of state, q∝ , are also held constant then 

ly 	=���, ����
 = sup6no s���fySq���, =���, �T
≥ l 	=���, ����
	= sup6nofSd���, =���, �T 

Since the Hamiltonian is defined as a linear function with respect to the conjugate vector 
in the Pontryagin Maximum Principle, note that the Maximum Principle may be 
considered the negative of the Hamiltonian used in Hamilton’s Least Action (with unit 
mass, i.e. probability space).   Now a question arises: What the Pontryagin Lagrangian 
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can be functionally defined?  In Theorem 1, with the help of the Legendre transformation 
[7] the Pontryagin Lagrangian can be defined in terms of the Pontryagin Hamiltonian. 
 
Theorem 1.  Pontryagin Lagrangian 
If the conjugate probabilities are well defined, and the Legendre transformation (Eq. 13) 
of the Pontryagin Lagrangian is a valid transformation then the Legendre transformation 
can be re-interpreted as a partial differential equation of the Pontryagin Lagrangian. 

−fy = ∑ �qe��� 0��
0�j�-��79I7>e8( − ��      (13) 

Proof: Assuming the conjugate probabilities are well defined and we have a valid 
Legendre transformation of the conjugate probabilities then we can use the Legendre 
transformation (Eq. 13) to find the equivalent Pontryagin “Lagrangian” function, �� , 
where we re-interpret the Legendre transformation (Eq. 13) as a valid partial differential 
equation with respect to the conjugate probabilities, qe���, coordinates. 

x �qe��� ����qe����
79I7>

e8(
− �� = − x qe���Ze 	=���, ����


79I7>

e8(
= −fy 

This equation can be solved for a particular solution of the Pontryagin Lagrangian by 
induction [8] and neglect the homogeneous solutions. 
Case 0:  

q(��� d��dq(��� − �� = −q(���Z( 	=���, ����
 
This is a linear differential equation of the Pontryagin Lagrangian, �� , its elementary 
solution is 

�� = −Z( 	=���, ����
 q(�������q(���� 
The Log function is the natural logarithm function to the base e. 

Assume Case n holds, that is �� = ∑ −Z' 	=���, ����
q'�������q'�����'8(  is a particular 

solution of the Legendre transformation (PDE).   The case n+1 needs to be proven as 
follows. 
Case n+1: 

x�qe��� ����qe����
�I�

e8(
− �� = −xqe���Ze 	=���, ����
 = −fy = −@{Z}

�I�

e8(
 

By construction  

�� = −xZ' 	=���, ����
q'�������q'����
�I�

'8(
 

Differentiate the Pontryagin Lagrangian with respect to the known probability to obtain ����q∝��� = −Z∝ 	=���, ����
 {1 + ����q∝����} 
Substituting into the Legendre transformation proves the n+1 case. 
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x{q∝��� ����q∝���
�I�

e8(
} − �� =
= x �−q∝���Z∝ 	=���, ����
 A1 + ���Sq∝���TB�

�I�

∝8(
+ xZ∝ 	=���, ����
 q∝������Sq∝���T

�I�

∝8(
= −xq∝���Z∝ 	=���, ����


�I�

∝8(= −@AZB = −fy 
 
Therefore, we have shown it holds for all integers n. Therefore, the Pontryagin 
Lagrangian has the form 

�� = − x Z' 	=���, ����
q'�������q'����
79I7>

'8(
 

The time integral of the Pontryagin Lagrangian is given as 

M� = � ���� = � x −Z' 	=���, ����
q'�������q'����
79I7>

'8(
��-V

-W
-V
-W

=� x −q'����q'��='
79I7>

'8(
F
GF  

due to the following change of integration variables, Z'�� = `X+`b �� = �=' .  Replace Z' 
with its equivalent vector �`XW`b , )1V)- , … , )1�)- , `�V`b , … , `��`b ) of length 6N+6K+1. 

M� = � x−q'�������q'����
79

'8�
��'�� ��-V

-W
+� x −q'�������q'����

79I7>

'879I�
dz�G7�dt ��-V

-W
																																																				

+ � −q(�������q(����-V
-W

d=(dt �� 
With a change of variables (t = f--1

i(xi(t)), etc.) the action integral can be seen to be as the 
maximization of entropy in terms of state or phase space, observational probability space, 
and for the sum of the variances in the observation space.  

M� = � x−q'����q'�
79

'8�
��' +� x −q'����q'�

79I7>

'879I�
�&'G79F

GF
F
GF +� −q(����q(�F

GF �=( 

Since the above mathematical method is reversible, thereby the reverse of above steps 
could be shown: the maximization of entropy of above action functional of the 
Pontryagin Lagrangian below 
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�� = x −Z' 	=���, ����
q'�������q'����
79I7>

'8(
 

is equivalent to the Pontryagin Maximum Principle with the use of the Legendre 
Transformation.  Additionally, any other constraints can be dealt with Lagrange 
multipliers. 

For methods of Jaynes Maximum Entropy please refer to his 1957 and 1982 
papers [5,6]. 
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3. Conclusion 
The conjecture of a connection of Pontryagin Maximum Principle to Jaynes Maximum 
Entropy can be derived from each other under certain transformations relating the phase 
space conjugate vector as defined in a Hamiltonian system with the probability space as 
defined in Shannon’s entropy. This connection between the Pontryagin Maximum 
Principle and Jaynes Maximum Entropy was shown in this note for a manufacturing 
facility or plant wants to optimally reduce the sum of the variances of its observed 
production process. The conjugate vector was used to define a uniform set of 
probabilities, which associates the Hamiltonian of the system to Jaynes Maximum 
Entropy via the Legendre transformation.    
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