
Annals of Pure and Applied Mathematics 
Vol. 17, No. 2, 2018, 221-232 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 18 June 2018 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v17n2a8 
 

221 
 

Annals of 

Periodic Solutions of Gurtin-MacCamy Model and 
Extended Gurtin-MacCamy Model 

Nazia Afrin1 and  Md. Shahidul Islam2 

1Department of Mathematics and Physical Sciences, East West University 
Bangladesh. Email: n.afrin@ewubd.edu 

2Department of Mathematics, University of Dhaka 
Bangladesh. Email: mshahidul11@yahoo.com  

Received 16 April 2018; accepted 26 May 2018 

Abstract. In this paper, we attempt to bring the basic concept of Gurtin-MacCamy 
population model. We have discussed extended Gurtin-MacCamy model which is an 
extension of the renowned Gurtin-MacCamy model. We discussed the periodic solutions 
of those population models. 

Keywords: Gurtin-MacCamy model, resolvent kernel, Extended Gurtin-MacCamy model, 
Volterra Integral Equation 

AMS Mathematics Subject Classification (2010): 45E10 

1. Introduction 
In different branches of science, mathematics is often use as a tool to understand the 
static and dynamical behavior of the system. Each emerging field of sciences, with their 
own set of constraints, offers mathematician a way to understand the systematic 
behavior of the mathematical equation used to predict the dynamical behavior. 
Mathematics has always benefited from its involvement with emerging sciences. Each 
successive interaction revitalizes and enhances the field.   

Biomedical science is clearly the premier science of the foreseeable future. With 
the example of how mathematics has benefited from and influenced physics, it is clear 
that mathematicians should become involved in the biosciences which are likely to be 
the most important and exciting scientific discoveries of all time.  

The increasing study of realistic and practically useful mathematical models in 
population biology, whether we are dealing with a human population with or without its 
age distribution, population of an endangered species, bacterial or viral growth and so on, 
is a reflection of their use in helping to understand the dynamic processes involved and in 
making practical predictions [1]. 

Late 18th-century biologists began to develop techniques in population 
modelling in order to understand dynamics of growing and shrinking populations of 
living organisms. Thomas Malthus was one of the first to note that populations grew with 
a geometric pattern while contemplating the fate of humankind. One of the most basic 
and milestone models of population growth were the Logistic model of population 
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growth formulated by Pierre François Verhulst in 1838. The logistic model takes the 
shape of a sigmoid curve and describes the growth of a population as exponential, 
followed by a decrease in growth, and bound by a carrying capacity due to environmental 
pressures. Population modelling became of particular interest to biologists in the 20th 
century as pressure on limited means of sustenance due to increasing human populations 
in parts of Europe were noticed by biologist like Raymond Pearl. In 1921, Pearl invited 
physicist Lotka to assist him in his lab. Lotka developed paired differential equations that 
showed the effect of a parasite on its prey. Mathematician Vito Volterra equated the 
relationship between two species independent from Lotka. Together, Lotka and Volterra 
formed the Lotka–Volterra model for competition that applies the logistic equation to two 
species illustrating competition, predation, and parasitism interactions between species. 
There is an extensive literature for linear models of age-dependent populations, but the 
theories of nonlinear models are much more recent. The inclusion of nonlinearities in the 
equations of age-dependent population models increases considerably not only their 
mathematical difficulties, but also their reliability in the physical description of 
behaviours of a population. The purpose of this work is to describe a more general class 
of non-linear population models. 

We study the growth (or decay) in the number of individuals of a particular 
species in a given region. Immigration and emigration are assumed to play no significant 
role in the dynamics of the populations, and our model does not take into account the sex 
of the individuals. The purpose of this paper is to show the existence of periodic solution 
of the population models. To prove the existence of periodic solution of Gurtin-
MacCamy model we consider the Volterra integral equation (VIE) [2] and compare the 
models equation with this and try to prove some assumptions.  

The stability of the Gurtin-MacCamy’s age-structured population dynamics model is 
investigated in [3]. The existence of asymptotically periodic solutions of a nonlinear 
Volterra integral equation is discussed in [4] and periodic and asymptotically periodic 
solutions of a Volterra integral equations is discussed in [5]. 

The paper is organized as follows. In section 2, some basic mathematical tools are 
discussed. In section 3, model is defined and in section 4, periodic solution of the models 
are discussed. Section 5 contains conclusions. 
 
2. Some mathematical tools 
2.1. Prefatory on integral equation 
Many problems of mechanics, mathematical physics, modeling and technology lead to 
consideration of an equation of the form  

                                           ���� − � � ���, 
���
��
 = ����
�  

where, ���� is an unknown function. These equations are known “integral equations,” 
since the unknown function appears in them under the integral sign [6]. 
Here, ���, 
� is called kernel, ��� is called free term or the right-hand side and lambda 
(��	is called the parameter of the equation. 

There are basically two main classes known as Fredholm and Volterra equations. 
Fredholm equations involve definite integrals, while Volterra equations have the 
independent variable as one of the limits. Each of them can be subdivided as: 
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                  Fredholm Type 1  ��� = � ���, 
���
��
�
�     

                  Fredholm Type 2      ���� = � � ���, 
���
��
 + ����
�  

and           Volterra Type 1   ��� = � ���, 
���
��
�
�       

                 Volterra Type 2        ���� = � � ���, 
���
��
 + ����
�  

Integral equations are often easier to solve than a corresponding differential 
equation. One of the reasons is that the truncation errors of the solution tend to be 
averaged out by the process of quadrature while they tend to accumulate during the 
process of numerical integration employed in the solution of differential equations. 
 
2.2. Resolvent kernel 
Let ���, 
; ��  is the resolvent kernel of Volterra Integral Equation. The process of 
determining resolvent kernel and using the resolvent kernel the solution of the equation 
can be obtained in [7]. 
 
2.3. Fixed point theorems 
Fixed point theorems are the most important tools in analysis for proving the existence 
and uniqueness of solutions to some problems. 
 
Theorem 2.3.1. (Contraction mapping principle) 
Let ��, �� be a complete metric space and �: � → � be a contraction mapping, that is, 
there is 0 < � < 1 such that ∀��,��  X, we have      �����, ���� ≤ � · ����, ���. 
Then there exists a unique fixed point of F in X and the orbit of any point is forward 
asymptotic to that fixed point.  

The proof of this theorem can be found in any good introductory text on metric 
spaces and is based on an iterative method (see Smart [8, Theorem 1.2.2]). 
 
Definition 2.1. Let �	and #	be normed spaces. An operator $: � → #	is called compact 
if the image $�%�of every bounded subset % of � is a relatively compact subset of Y, 
that is, its closure $�%�is a compact subset of  #. 
 
Theorem 2.3.2. (Schauder-Tychonov theorem) 
Let & be a non-empty closed, convex subset of a complete metric space X. Then every 
continuous map of &  into itself has at least one fixed point. Before using Schauder-
Tychonov fixed point theorem, we would like to remind about Arzel`a-Ascoli theorem. 
For this, we first need to define the concept of equicontinuity of a family of maps under 
the supremum norm. 
 
Definition 2.2. A family � of functions on a metric space ��, �� is equicontinuous if for 
every   > 0, there exists ( > 0 such that if �, )	 	� and ���, )� 	< 	(, then|��� −�)�| <    for all  �. 
 
Theorem 2.3.3. (Arzel`a-Ascoli theorem) 
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Let ��, ��be a compact metric space and let ,���	denote the set of all continuous 
functions on  �. A closed subspace of  ,��� is compact if and only if it is uniformly 
bounded and equicontinuous.  
 
 
2.4. Integral equations 
We now established an important formula by integrating the following partial differential 
equation along characteristics. 
We denote the derivative by -. in the direction of the vector  / = �1,1� ℝ�, that is, 

-.��1, 2� = lim6→7
��1 + ℎ, 2 + ℎ� − ��1, 2�

ℎ  

 
Lemma 2.4.1. Let 9 ∶ ℝ → ℝ;be a fixed measurable function and  �	 	<�;�ℝ;�. Then 
there is a unique solution � ∶ ℝ × ℝ; → ℝ; to the partial differential equation (PDF) 

                                   -.��1, 2� = 	−µ>1, 2, 9�1�?��1, 2�,2 > 0, 1	 	ℝ			                               
(1)                        

with initial condition    ��0, 2� = 	��2�,	2 ≥ 0                                                                   
(2)                                                                         
To prove this first we need to convert the system (1) and (2) in to an equivalent system of 
an integral equation (see Corduneanu[9, ξ 3.1]). Let � ∶ ℝ × ℝ; → ℝ;be a function 
and choose a pair of arbitrary, but fixed, numbers�17, 27�	 	ℝ × ℝ;, and denote ��ℎ� = 	��17 + ℎ, 27 + ℎ�, 

µ�ℎ� = 	µ�17 + ℎ, 27 + ℎ, 9�17 + ℎ��. 
Then equation (1) can be written as  

A�
A6 = −µ�ℎ���ℎ�. 

This equation has the following solution: 

                  ��ℎ� = 	��17, 27�exp	{−� µ�F��F6
7 }                                         

(3) 
This relation gives the values of x at all points on the characteristic through	�17, 27�. 
In particular, if we take	27 = 2 − 1, 17 = 0 and h=t, using condition (2), we obtain,  

                        ��1, 2� = ��2 − 1�exp	{−� H>F, 2 + F − 1, 9�F�?�F}I
7                                     

(4) 
 (4) is the unique solution of the differential equation (1) with initial condition (2). 
 
 3. The model 
3.1. Non-linear age-time dependent Gurtin-Maccamy model (GMC Model) 
Lotka’s and Leslies’s models cannot be used for long term projections since, just 
Malthus’s model; they predict population explosion or extinction. The main reason for 
this type of long time behavior is that all these models are represented by linear 
equations. In contrast, Verhulst’s model-created to remedy the inability of Malthus’s to 
capture the long-term behaviour of natural population is nonlinear. It is generated by 
assuming that the growth rate of population depends on the total population. In particular 
this means that the per capita birth rate and the per capita death rate are assumed to 



Periodic Solutions of Gurtin-MacCamy Model and Extended Gurtin-MacCamy Model 

225 
 

 

depend on the total population. Following this idea Morton Gurtin and Richard 
MacCamy [10] modified the McKendrick-Vonforester model so that the per capita age 
structured birth rate and the per capita age structured death rate depend on the total 
population.  

In this paper, we consider a model based on the paper [11] in the age-time 
continuum in which the dependence of natality and mortality rates on age, time and 
population size incorporated. Thus, the model under consideration is an extension of the 
non-linear model of Gurtin and MacCamy. 

The Gurtin-MacCamy’s age-structured population dynamics model has been 
studied in Gurtin, et al. (1974). The model is based on the following initial value 
problem: -��2, 1� 	+ 	μ�2, K�1����2, 1� 	= 	0,					2 > 0, 1 > 0 

��0, 1� = 	L M>2, K�1�?��2, 1��2,					N
7

1 > 0 

��2, 0� = ��2�, 2 ≥ 0	 
where, K�1� = � ��2, 1��2,N

7 	1 > 0 

The parameter		� is the initial age distribution,  is the mortality function and	M 
is the natality function, where, 	��2, 1� is the density of the population with respect to the 

chronological age	2O0,∞� at time 1 ≥ 0; K�1� = � ��2, 1��2N
7  is the total population 

size at time t; M>2, K�1�?; H>2, K�1�? are respectively, the birth rate i.e. the average 
number of offspring per unit time, produced by an individual of age 2  when the 
population size is	K�1� , and the mortality rate i.e. the death rate at age 2 , per unit 
population when the population size is	K�1�;	 

��0, 1� = L M>2, K�1�?��2, 1��2
N

7
 

is the number of births per unit time, when the population size is K�1�. 
For Gurtin-MacCamy model birth rate of a population is not defined for past but 

the model has a unique solution in the past under certain additional conditions on the 
birth rate of the population.  
We can write the above initial value problem as Q��2, 1�

Q2 + Q��2, 1�
Q1 + 	μ>2, K�1�?��2, 1� = 	0, 1 > 0, 2 > 0 

��0, 1� = 	L M>2, K�1�?��2, 1��2,					N
7

1 > 0 

��2, 0� 	= 	��2�,										2 ≥ 0 

where, K�1� 	= � ��2, 1��2,N
7 1 > 0  the parameters �, μ  and M  being the same as 

before. 
 
The model: Basic equations 

K�1� = L R�2 − 1�	S�2, 1; K��2I
7

+L ��2 − 1���2, 1; K��2N
I
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																																																						= 	� T�2, 1; K�R�2��2I
7 + � U�2, 1; K���2��2	N

7 		                       
(5) R�1� = 	� M>2, 1; K�1�?R�1 − 2�S�2, 1; K�I

7 �2		 + 			� M>2, 1; K�1�?��2 −N
I1���2, 1; K��2	 	= � M>1 − 2, 1; K�1�?T�2, 1; K�R�2�I

7 �2	 + � M>1 +N
72, 1; K�1�?U�2, 1; K���2��2																					 (6) 

where, T�2, 1; K� = S�1 − 2, 1; K� 	= 	/�9{−� μ�F − 	2, F, K�F���F}I
�  

and, 	U�2, 1; K� = ��1 + 2, 1; K� 	= /�9{−� μ�F + 2, F, K�F���F}I
7  . 

This is the required non-linear integral equation.  
In the paper [12], Existence of the solution of the integral equation has been 

discussed on the basis of Banach’s Fixed Point theorem. 
 
3.2. Extended Gurtin-Maccamy model  (EGMC Model) 
To overcome the deficiency of Sharpe-Lotka and Gurtin-MacCamy models, we study 
different models in which natality and mortality moduli are simultaneously age, time and 
population dependent. Nonlinear age-time dependent models of population provide a 
biologically more realistic description of the behaviour of the population when the past 
history of the population is considered. The problem can be stated as the following 
initial-boundary value problem: -��1, 2� + μ�1, 2, K�1����1, 2� = 0,					2 > 0, 1	 ∈ 	ℝ 

��1, 0� = L M>1, 2, K�1�?��1, 2��2,					N
7

1 ∈ ℝ 

��0, 2� = ��2�,										2	 ≥ 	0 
the parameters �, μ		and		M	being the same as before. 

Extended Gurtin-MacCamy model solution for �μ, M� ∈ W ×X   is a pair �R, K� ∈ ,� satisfying the equations 

																					R�1� = � M>1, 1 − 
, K�1�?I
YN 	exp{−� μ>F, F − 	
, K�F�?I

Z �F}R�
��
                       
(7) 

and     K�1� = � /�9	{−� μ>F, F − 
, K�F�?�F}R�
��
				I
Z

I
YN                                             

(8) 
                    where 1 ∈ ℝ. 
 
4.  Periodic solution of GMC and EGMC model 
We consider the integral equation 

                       			��1� = �1� +	� ��1, 
���
��
I
YN ,			−∞ < 1 < ∞							                                  

(9) 
and compare the Gurtin-MacCamy model and Extended Gurtin-MacCamy model 
equation with (9). 

We discuss the periodic solution of the model equation by using the resolvent 
kernel and the contraction mapping principle. 
 
Periodic solution using resolvent kernel 
From equation (5) and (6), we have 
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R�1� = L M�1 − 2, 1, K�1��exp	{−L H>F	 − 2, F, K�F�?�F}I
�

I
7

R�2��2		 
																																					+ � M��1	2, 1, K�1��N

7 /�9	{−� H>F +I
72,			F, K�F�?�F} ��2��2               (10) 

K�1� = � 	/�9	{−� H>F − 2, F, K�F�?�F}I
� R�2��2I

7 + � /�9	{−� H>F +I
7

N
72, F, K�F�?�F} ��2��2   

                                                                                                                                       (11)                     
Lemma 4.1. If K�1� is a solution of (11) then K�1 + $� is also a solution of (11). 
To prove this, we need to find its solution by using resolvent kernel for both time at 1 and 1 + $. Then we will take the difference between them which is very small (say  ) 
Proof: We have R = [K 
From (11), we get 

K�1� = � 	/�9	{−� H>F − 2, F, K�F�?�F}I
� [K�2��2I

7 + � /�9	{−� H>F +I
7

N
72, F, K�F�?�F} ��2��2                                      

                                                                                                                                         (12) 
which is Volterra Integral Equation (VIE) of second kind with � = 1. 
Comparing (12) with VIE we get, 

�1� = 	L /�9	{−L H>F + 2, F, K�F�?�F}I
7

��2��2N
7

 

       and 								��1, 2� = [/�9{−� H>F − 2, F, K�F�?�F}I
�                                                   

(13) 

We know that  ���1, 2� 	= 	��1, 2�, 		�\�1, 2� = 	� ��1, ]��\Y��], 2��]I
�                            

(14) 
Substituting ̂ = 2, 3, 4… in the relation (14), we have  

        ���1, 2� = 	� ��1, ]����], 2��]I
�  

														= L [/�9{−L μ>F − 2, F, K�F�?�F}		I
c

I
�

	[/�9{−L μ>Fc
�− 2, F, K�F�?�F} �] 

														= 	 [� L /�9	{−L μ>F − 2, F, K�F�?�F}	I
�

�]I
�

 

															= 	 [� L /�9{−HI
�

�1 − 2�}�] 

															= [� /�9{−H	�1 − 2�}	�1 − 2� 
∴ ���1, 2� = [� /�9{−H �1 − 2�}�1 − 2�	 
Now, for	^ = 3,   	�e�1, 2� = 	 [e /�9{−H 	�1 − 2�}	 �IY��f

�!  

Similarly, for	^ = 4,  �h�1, 2� = 	 [h /�9{−H 	�1 − 2�}	 �IY��i
e!  
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 By mathematical induction we can show that 

�\�1, 2� = 	 [\ /�9{−H	�1 − 2�}	�1 − 2�\Y�
�^ − 1�!  

Resolvent kernel, 

��1, 2� = 	j�\�1, 2�
N

\k�
=	j [\ /�9{−H �1 − 2�}	�1 − 2�\Y�

�^ − 1�!
N

\k�
 

					= 	j [ /�9{−H 	�1 − 2�}	{[�1 − 2�}\Y�
�^ − 1�!

N

\k� = 	[ /�9{−H �1 − 2�} exp{ [ �1 − 2�} 
The solution of equation (12) is, 

                 K�1� = 	�1� +	� ��1, 2��2��2I
7  

                        = 	�1� +	� [ /�9{−H	�1 − 2�}I
7 		/�9{ [ �1 − 2�}	�2��2 = l + ll           

(15)                                                                  Here, 

l = 	L exp	{−L H>F + 2, F, K�F�?�F}I
7

��2��2N
7

= L /�9�−H 1�	��2��2N
7

		 
≤ L ��2��2	N

7
O/�9�− H 1� 	≤ 1	] = n 

ll = L [ /�9{−H	�1 − 2�} /�9{ [ �1 − 2�}	�2��2I
7

= 	L [ /�9{−H 	�1 − 2�} /�9{ [ �1 − 2�}I
7

n	�2 

≤ L [ /�9{ [ �1 − 2�}n	�2I
7

 

From (15), we get 

                     K�1� ≤ n + � [ /�9{ [ �1 − 2�}n	�2I
7                                                             

(16) 
From (11), we get for 1 + $ 

K�1 + $� = L /�9{−L H>F − 2, F, K�F�?�F}I;o
�

[K�2��2I;o
7

 

 																																		+ � /�9	{−� H>F + 2, F, K�F�?�F}I;o
7 ��2��2N

7                                       
(17) 
which is also Volterra Integral Equation (VIE) of second kind with � = 1. 
Comparing (17) with VIE we get, 

�1 + $� = 	L /�9	{−L H>F + 2, F, K�F�?�F}I;o
7

��2��2N
7

 

and																																														��1 + $, 2� = [/�9{−� H>F − 	2, F, K�F�?�F}I;o
�                      

(18) 
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We know that 

���1 + $, 2� = 	��1 + $, 2�,			�\�1 + $, 2� 	= 	� ��1 + $, ]��\Y��], 2��]I;o
�                       

(19) 
Substituting ̂ = 2, 3, 4… in the relation (19), we have 

���1 + $, 2� = L ��1 + $, ]����], 2��]
I;o

�
 

																= L [/�9{−L μ>F − 2, F, K�F�?�F}.I;o
c

	I;o
�

			[/�9{−L μ>Fc
�− 2, F, K�F�?�F} �] 

																																					= [� L /�9	{−L μ>F − 2, F, K�F�?�F}I;o
�

�]I;o
�

 

= [� /�9{−H 	�1 + $ − 2�}	�1 + $ − 2� 
∴ ���1 + $, 2� = [� /�9{−H	�1 + $ − 2�}	�1 + $ − 2� 
Now, for	^ = 3,    �e�1 + $, 2� = 	 [e /�9{−H	�1 + $ − 2�}	�I;oY��f

�!  

Similarly, for	^ = 4,      �h�1 + $, 2� = 	 [h /�9{−H	�1 + $ − 2�}	 �I;oY��i
e!  

 By mathematical induction we can show that 

�\�1 + $, 2� = 	 [\ /�9{−H	�1 + $ − 2�}	�1 + $ − 2�\Y�
�^ − 1�!  

Resolvent kernel, 

��1 + $, 2� = 	j�\�1 + $, 2�
N

\k�
 

= 	j[\ /�9{−H �1 + $ − 2�}	�1 + $ − 2�\Y�
�^ − 1�!

N

\k�
 

					= 	j[ /�9{−H	�1 + $ − 2�}	{[�1 + $ − 2�}\Y�
�^ − 1�!

N

\k�
 

= [ /�9{−H	�1 + $ − 2�} /�9{ [ �1 + $ − 2�} 
The solution of equation (17) is, 

K�1 + $� = 	�1 + $� +	L ��1 + $, 
��2��2I;o
7

 

= �1 + $� + � [ /�9{−H �1 + $ − 2�}I;o
7 /�9{ [ �1	 + $ − 2�}�2��2 = lll +

lp              (20)                         
Here, 

lll = 	L /�9	{−L H>F + 2, F, K�F�?�F}I;o
7

��2��2N
7
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= L /�9{−H� 1 + $�}	��2��2	N
7

	≤ L ��2��2	N
7

O/�9{−H� 1 + $� 	≤ 1	] ≤ n 

lp = L [ /�9{−H	�1 + $ − 2�}I;o
7

/�9{ [ �1 + $ − 2�}	�2��2 

																																																							
= 	L [ /�9{−H	�1 + $ − 2�}I;o

7
. /�9{ [ �1 + $ − 2�}n	�2 

≤ L [ /�9{ [ �1 + $ − 2�}n	�2I;o
7

 

 From (20), we get 

																							K�1 + $� ≤ n + � [ /�9{ [ �1 + $ − 2�}n	�2I;o
7                                                

(21)                                         
 Now, |K�1 + $� − K�1�|

≤ |	n	[OL exp	{ [ �1 + $ − 2�}�2 − L exp	{ [ �1 − 2�}	�2]I
7

I;o
7

| 
≤ |	n	[ q1 − /�9{[�1 + $�}

[ − 1 − /�9{[1}
[ r | ≤ n|O/�9�[1� − /�9{[�1 + $�}]| 

																																≤ n	|	[1 − [1 − [$| [|/� − /s| ≤ |� − )| ] = n| − [$| =
n	[$	 ≤   [ n	 ≤ ∈

to	] |K�1 + $� − K�1�| ≤   
We have   R�1� 	= 	[K�1�     and    R�1 + $� 	= 	[K�1 + $� 
Then |R�1 + $� − R�1�| = |[K�1 + $� − [K�1�| ≤ 	[|K	�1 + $� − K	�1�| ≤ [ ≤   |R�1 + $� − R�1�| ≤  . 
 
 Proof of Lemma 4.1 (For Extended Gurtin-MacCamy model) 
 From (8) we have  

  
 
 

				= � /�9	{− � μ>F, F − 
, K�F�?�F}R�
��
I
Z

7
YN + � /�9	{−� μ>F, F −I

Z
I
7
, K�F�?�F}R�
��
  

 
We have R = [K 
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∴ K�1� = � /�9	{−� μ>F, F − 
, K�F�?�F}[K�
��
I
Z

7
YN + � /�9	{−� μ>F, F −I

Z
I
7
, K�F�?�F}[K�
��
                                                                                                                               

(22) 
which is Volterra Integral Equation(VIE) of second kind with � = 1. 
Comparing (22) with VIE we get, 

�1� = L /�9	{−L μ>F, F − 
, K�F�?�F}[K�
��
I
Z

7
YN

 

                 and							��1, 
� = [/�9{−� μ>F, F − 
, K�F�?�F}	I
Z                                             

(23) 
We know that 

      ���1, 
� = ��1, 
�  and  						�\�1, 
� = 	� ��1, ]��\Y��], 
��]I
Z                                    

(24) 
Substituting ̂ = 	2, 3, 4… in the relation (24), we have 

���1, 
� = 	L ��1, ]����], 
��]
I

Z
=	[� /�9{−H	�1 − 
�}	�1 − 
� 

Now, for	^ = 3,  �e�1, 
� = � ��1, ]����], 
��]I
Z   = 	[e /�9{−H	�1 − 
�}	 �IYZ�f

�!  

Similarly, for	^ = 4,    �h�1, 
� = 	 [h /�9{−H 	�1 − 
�}	 �IYZ�i
e!  

By mathematical induction we can show that 

�\�1, 
� = 	 [\ /�9{−H 	�1 − 
�}	�1 − 
�\Y�
�^ − 1�!  

Resolvent kernel, 

��1, 
� = 	j�\�1, 
�
N

\k�
					= 	j [\ /�9{−H �1 − 
�}	�1 − 
�\Y�

�^ − 1�!
N

\k�
 

						= 	j [ /�9{−H	�				1	 − 
�}		{[�1 − 
�}\Y�
�^ − 1�!

N

\k� = [ /�9{−H	�1 − 
�} /�9{ [ �1 − 
�} 
The solution of equation (8) is, 

K�1� = 	�1� +	� ��1, 
��
��
I
7 = 	�1� +	� [ /�9{−H 	�1 − 
�} /�9{ [ �1 −I

7
�}	�
��
 	= l + ll                                                                                                                              
(25)                          
 
Here, 

l = L /�9	{−L μ>F, F − 
, K�F�?�F}[K�
��
I
Z

7
YN

= L /�9{−H 	�1 − 
�}	[K�
��
7
YN
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≤ L [K�
��
7
YN

O/�9{−H 	�1 − 
�} 	≤ 1	] ≤ L R�
��
7
YN

 

ll = L [ /�9{−H	�1 − 
�} /�9{ [ �1 − 
�}	�
��
I
7

 

= L O[ /�9{−H 	�1 − 
�} /�9{ [ �1			 − 
�}I
7

{L /�9{−H	�
	7
YN− 	]�}	[K�]��]}]�
 

≤ L [ /�9{ [ �1 − 
�}O	L [K�]��]]�
7
YN

I
7

 

≤ L [ /�9{ [ �1 − 
�}O	L R�]��]]�
7
YN

I
7

 

From (25)  

           K�1� ≤ � R�
��
	7
YN +	� [ /�9{ [ �1	
�}O	� R�]��]]�
7

YN
I
7                                         

(26) 
 Now, we will try to find the solution for 1 + $	then the equation (8) becomes 

              K�1 + $� = � /�9	{−� μ>F, F − 
, K�F�?�F}R�
��
I;o
Z

I;o
YN 		                                    

(27) 

= L /�9	{−L μ>F, F − 
, K�F�?�F}	[K�
��
I;o
Z

I;o
YN

 

= L /�9	{−L μ>F, F − 
, K�F�?�F}	[K�
��
I;o
Z

7
YN

+	L /�9	{−L μ>F, F − 
, K�F�?�F}	[K�
��
I;o
Z

I;o
7

 

Again, comparing with VIE, we get 

�1 + $� = L /�9	{−L μ>F, F − 
, K�F�?�F}	[K�
��
I;o
Z

7
YN

 

��1 + $, 
� = [/�9	{−L μ>F, F − 
, K�F�?�F}				I;o
Z

 

We know that 

���1 + $, 
� = ��1 + $, 
�			and 			�\�1 + $, 
� = 	� ��1 + $, ]��\Y��], 
��]I;o
Z                  

(28) 
Substituting ̂ = 2, 3, 4… in (28), we get 

���1 + $, 
� = 	L ��1 + $, ]����], 
��]
I;o

Z= [� /�9{−H	�1 + $ − 
�}	�1 + $ − 
� 
Now, for	^ = 3,                                      

�e�1 + $, 
� = � ��1 + $, ]����], 
��]I;o
Z = [e /�9{−H	�1 + $ − 
�}	 �I;oYZ�f

�!  
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Similarly, for	^ = 4,  �h�1 + $, 
� = [h /�9{−H 	�1 + $ − 
�}	 �I;oYZ�i
e!  

 By mathematical induction we can show that 

�\�1 + $, 
� = [\ /�9{−H	�1 + $ − 
�}	�1 + $ − 
�\Y�
�^ − 1�!  

Resolvent kernel, 

��1 + $, 
� = 	j�\�1 + $, 
�
N

\k�
=	j[\ /�9{−H	�1 + $ − 
�}	�1 + $ − 
�\Y�

�^ − 1�!
N

\k�
 

						= 	j [ /�9{−H	�1 + $ − 
�}	{[�1 + $ − 
�}\Y�
�^ − 1�!

N

\k� = [ /�9{−H	�1 + $ − 
�} /�9{ [ �1 + $ − 
�} 
The solution of equation (27) is, 

K�1 + $� = 	�1 + $� +	L ��1 + $, 
��
��
I;o
7

 

= �1 + $� + � [ /�9{−H �1 + $ − 
�} /�9{ [ �1				 + $ − 
�}�
��
I;o
7 = lll +

lp             (29) 
where, 

lll = L /�9	{−L μ>F, F − 
, K�F�?�F}[K�
��
I;o
Z

7
YN

= L /�9{−H	�1 + $ − 
�}	[K�
��
7
YN

 

											≤ � [K�
��
7
YN [/�9{−H 	�1 + $ − 
�} 	≤ 1	]   ≤ � R�
��
7

YN  

lp = L [ /�9{−H	�1 + $ − 
�} /�9{ [ �1 + $ − 
�}	�
��
I;o
7

 

= L [ /�9{−H	�1 − 
�} /�9{ [ �1 + $ − 
�}I;o
7

	OL /�9{−H 	�
 + $7
YN− ]�}	[K�]��]]�
 

≤ L [ /�9{ [ �1 + $ − 
�}O	L [K�]��]]�
7
YN

I;o
7

≤ L [ /�9{ [ �1 + $ − 
�}O	L R�]��]]�
7
YN

I;o
7

 

From (29)  

              K�1 + $� ≤ � R�
��
7
YN + � [ /�9{ [ �1 + $ − 	
�}O	� R�]��]]�
7

YN
I;o
7 				               

(30) 
Now, |K�1 + $� − K�1�| 
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≤ | 	L [ /�9{ [ (1 + $ − 
)}[	L R(])�]]�

7

YN

I;o

7
−L [ /�9{ [ (1 − 
)}[	L R(])�]]�
	

7

YN

I

7
 

																							≤ |uL [ /�9{ [ (1 + $ − 
)}�

I;o

7
− uL [ /�9{ [ (1 − 
)�
|

I

7
 

Taking			u = � R(])�]7
YN , u > 0. 

|K(1 + $) − K(1)| ≤ |u[/�9{[(1 + $)} − 	1] + u[1 − /�9{[1}]| 
≤ |u[/�9{[(1 + $)} − /�9	{[1}]| ≤ |u[{[(1 + $) − [1}]| ≤ |u[[$]| 		≤              

[ u	 ≤ 	 v
to] 

|K(1 + $) − K(1)| 			≤  				   
Similarly, we can prove for R(1). 
From this theorem we get unique solution for all time. That is at time 1 and time		1 + $. 
Since the solution is unique it means that the solution is same for every time. The 
solution at time 1 is K(1) and the solution at time 1 + $	is	K(1 + $). Now, we can write  
K(1 + $) = K(1), for all		$ > 0. 
So, we can say that the population model has periodic solution. 
 
5. Conclusion  
Mathematical models have been developing step by step. Success of modelling of 
physical or biological phenomena depends on how much appropriately it describes the 
population in future as well as past. Gurtin-MacCamy model is much more complicated 
and describes the population sophistically because its parameter depends not only on age 
and time but also on populations. In this paper, our endeavor was to describe periodic 
solutions of Gurtin-MacCamy model and extended Gurtin-MacCamy model. We find that 
these two models have unique solution for some time t and for some time 1 + $, where 
$	 is a arbitrary constant and $ > 0 , we can also find a unique solution. Difference 
between these two solutions is very small so they are almost same. Since in time	1, the 
model has unique solution so we can say that these two solutions are same. Periodic 
solution of Gurtin-MacCamy model depends on the total initial population size and 
periodic solution of Extended Gurtin-MacCamy model depends on the birth rate of the 
population.  
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