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1. Introduction

In different branches of science, mathematics isnofise as a tool to understand the
static and dynamical behavior of the system. Eacbrging field of sciences, with their
own set of constraints, offers mathematician a wayunderstand the systematic
behavior of the mathematical equation used to ptetie dynamical behavior.
Mathematics has always benefited from its involveimgith emerging sciences. Each
successive interaction revitalizes and enhancefiaide

Biomedical science is clearly the premier scierfahi@ foreseeable future. With
the example of how mathematics has benefited frochiafluenced physics, it is clear
that mathematicians should become involved in tbedences which are likely to be
the most important and exciting scientific discaeerof all time.

The increasing study of realistic and practicalbeful mathematical models in
population biology, whether we are dealing withuemian population with or without its
age distribution, population of an endangered sgetiacterial or viral growth and so on,
is a reflection of their use in helping to undemstéghe dynamic processes involved and in
making practical predictior4].

Late 18th-century biologists began to develop teples in population
modelling in order to understand dynamics of grawend shrinking populations of
living organisms. Thomas Malthus was one of th& fio note that populations grew with
a geometric pattern while contemplating the fatdnaiankind. One of the most basic
and milestone models of population growth were Lhgistic model of population
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growth formulated by Pierre Francois Verhulst ir388The logistic model takes the
shape of a sigmoid curve and describes the growth population as exponential,
followed by a decrease in growth, and bound byreyitey capacity due to environmental
pressures. Population modelling became of particali@rest to biologists in the 20th
century as pressure on limited means of susterdureeo increasing human populations
in parts of Europe were noticed by biologist likaygond Pearl. In 1921, Pearl invited
physicist Lotka to assist him in his lab. Lotka eleyped paired differential equations that
showed the effect of a parasite on its prey. Ma#tamian Vito Volterra equated the
relationship between two species independent frotkd. Together, Lotka and Volterra
formed the Lotka—Volterra model for competitiontthaplies the logistic equation to two
species illustrating competition, predation, andapéism interactions between species.
There is an extensive literature for linear mod#lage-dependent populations, but the
theories of nonlinear models are much more redém.inclusion of nonlinearities in the
equations of age-dependent population models isese@onsiderably not only their
mathematical difficulties, but also their reliabiliin the physical description of
behaviours of a population. The purpose of thiskwerto describe a more general class
of non-linear population models.

We study the growth (or decay) in the number ofiviildials of a particular
species in a given region. Immigration and emigradre assumed to play no significant
role in the dynamics of the populations, and oudet@oes not take into account the sex
of the individuals. The purpose of this paper istiow the existence of periodic solution
of the population models. To prove the existencepefiodic solution of Gurtin-
MacCamy model we consider the Volterra integralagign (VIE) [2] and compare the
models equation with this and try to prove somei@ggions.

The stability of the Gurtin-MacCamy's age-structumopulation dynamics model is
investigated in [3]. The existence of asymptoticalkeriodic solutions of a nonlinear
Volterra integral equation is discussed in [4] gatiodic and asymptotically periodic
solutions of a Volterra integral equations is désad in [5].

The paper is organized as follows. In section Znpestvasic mathematical tools are
discussed. In section 3, model is defined and d¢ti@e 4, periodic solution of the models
are discussed. Section 5 contains conclusions.

2. Some mathematical tools

2.1. Prefatory on integral equation

Many problems of mechanics, mathematical physiasgeting and technology lead to
consideration of an equation of the form

p(x) = A [ k(x,5)p(s)ds = f(x)
where,@(x) is an unknown function. These equations are kntintegral equations,”
since the unknown function appears in them undeirttegral sigri6].
Here,K (x, s) is called kernelf (x) is called free term or the right-hand side andddan

(A4) is called the parameter of the equation.

There are basically two main classes known as Btedhnd Volterra equations.
Fredholm equations involve definite integrals, whiolterra equations have the
independent variable as one of the limits. Eadiherin can be subdivided as:
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Fredholm Type f(x) = fab k(x,s)p(s)ds
Fredholm Type 2 ¢ (x) = A fab k(x,s)p(s)ds + f(x)
and Volterra Type 1f (x) = f(f k(x,s)p(s)ds

Volterra Type 2 ¢(x) = Af;k(x, s)p(s)ds + f(x)

Integral equations are often easier to solve thatoraesponding differential
equation. One of the reasons is that the truncadiwars of the solution tend to be
averaged out by the process of quadrature whilg teied to accumulate during the
process of numerical integration employed in tHatsm of differential equations.

2.2. Resolvent kernel

Let r(x,s; A) is the resolvent kernel of Volterra Integral Edqoat The process of
determining resolvent kernel and using the resalkemel the solution of the equation
can be obtained in [7].

2.3. Fixed point theorems
Fixed point theorems are the most important toolanalysis for proving the existence
and uniqueness of solutions to some problems.

Theorem 2.3.1. (Contraction mapping principle)
Let (X, d) be a complete metric space dnd{ — X be a contraction mapping, that is,
there is0 < k < 1 such thavx,,x,€ X,we have d(Fxy,Fx;) <k -d(xq,x;).
Then there exists a unique fixed pointFoin X and the orbit of any point is forward
asymptotic to that fixed point.

The proof of this theorem can be found in any godibductory text on metric
spaces and is based on an iterative metsesdSmart [8, Theorem 1.2.2]).

Definition 2.1. Let X andY be normed spaces. An operafolX — Y is called compact
if the imagel' (M)of every bounded subskt of X is a relatively compact subset ¥f
that is, its closurd (M)is a compact subset df.

Theorem 2.3.2. (Schauder-Tychonov theorem)
Let E be a non-empty closed, convex subset of a compieteic spaceX. Then every

continuous map oF into itself has at least one fixed point. Beforgng Schauder-
Tychonov fixed point theorem, we would like to rewhiabout Arzel'a-Ascoli theorem.
For this, we first need to define the concept afiegntinuity of a family of maps under
the supremum norm.

Definition 2.2. A family F of functions on a metric spa€¥, d) is equicontinuous if for
every € > 0, there existd > 0 such that ift,y € X andd(x,y) < 6, therlf(x) —

f()| < € forall feF.

Theorem 2.3.3. (Arzel’a-Ascoli theorem)
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Let (X,d)be a compact metric space and d¢X) denote the set of all continuous

functions on X. A closed subspace of (X) is compact if and only if it is uniformly
bounded and equicontinuous.

2.4. Integral equations

We now established an important formula by intéggathe following partial differential
equation along characteristics.

We denote the derivative @, in the direction of the vectoe = (1,1)eR?, that is,
x(t+h,a+h)—x(t, a)

h

D.x(t,a) = }li_r)%

Lemma 2.4.1. Letp : R > R, be a fixed measurable function agge LT (R, ). Then
there is a unique solution: R X R, = R, to the partial differential equation (PDF)

D.x(t,a) = —u(t, a, p(t))x(t, a),a>0,teR

(1)

with initial condition x(0,a) = ¢(a),a =0
2
(Tcz prove this first we need to convert the systéjraqd (2) in to an equivalent system of
an integral equatiofisee Corduneanu[9, & 3.1]). Letx : R X R, — R be a function
and choose a pair of arbitrary, but fixed, numbigysi,) € R X R, and denote

x(h) = x(ty + h,ay + h),

A(R) = Ut + h,ao + h,p(ty + h).
Then equation (1) can be written as
dx

o= —AWEM.

This equation has the following solution:

— h_
x(h) = x(tOJ aO)eXp {_ fo U-(T)d'[}

3)

This relation gives the valuesft all points on the characteristic through, a,).

In particular, if we taker, = a — t, t, = 0 andh=t, using condition (2), we obtain,

x(t,a) = p(a — t)exp {— fot,u(r, a+1—tp())dr}
(4)

(4) is the unique solution of the differential atjon (1) with initial condition (2).

3. Themode

3.1. Non-linear age-time dependent Gurtin-Maccamy model (GM C Model)

Lotka’'s and Leslies’s models cannot be used fomgléerm projections since, just
Malthus’'s model; they predict population explosimnextinction. The main reason for
this type of long time behavior is that all thesed®is are represented by linear
equations. In contrast, Verhulst's model-createdetnedy the inability of Malthus'’s to
capture the long-term behaviour of natural popafatis nonlinear. It is generated by
assuming that the growth rate of population depemndthe total population. In particular
this means that the per capita birth rate and #recppita death rate are assumed to
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depend on the total population. Following this ideerton Gurtin and Richard
MacCamy [10] modified the McKendrick-Vonforester deb so that the per capita age
structured birth rate and the per capita age stredtdeath rate depend on the total
population.

In this paper, we consider a model based on therpHd] in the age-time
continuum in which the dependence of natality anattality rates on age, time and
population size incorporated. Thus, the model urdesideration is an extension of the
non-linear model of Gurtin and MacCamy.

The Gurtin-MacCamy’'s age-structured population dyita model has been
studied in Gurtin, et al. (1974). The model is basam the following initial value
problem:

Dx(a,t) + u(a,P(t))x(a,t) =0, a>0, t>0
x(0,t) = f v(a,P(t))x(a,t)da, t>0

x%a, 0) =¢(a),a=0
where,P(t) = fooox(a, t)da, t >0
The parameterp is the initial age distribution, is the mortality function and
is the natality function, wherex(a, t) is the density of the population with respecthie t

chronological agea[0, ) at timet > 0; P(t) = fooox(a, t)da is the total population

size at timet; v(a,P(t));u(a,P(t)) are respectively, the birth rate i.e. the average
number of offspring per unit time, produced by amlividual of agea when the
population size iP(t), and the mortality rate i.e. the death rate at mgeer unit
population when the population sizePiét);

x(0,t) = f v(a,P(t))x(a,t)da
0
is the number of births per unit time, when theydation size isP (t).

For Gurtin-MacCamy model birth rate of a populatismot defined for past but
the model has a unique solution in the past undemin additional conditions on the
birth rate of the population.

We can write the above initial value problem as
dx(a,t) N dx(a,t)
da dt
x(0,t) = f v(a,P(t))x(a,t)da, t>0

x(a,OO) = ¢(a), a=0

x(a,t)da,t > 0 the parameterg,u andv being the same as

+ uw(a,P®)x(a,t)=0, t>0,a>0

[oe]

where, P(t) = fo
before.

The modd: Basic equations

[oe]

P(t) = th(a —t)lI(a,t; P)da + f p(a—t)A(a,t; P)da
0 t
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= [, A(a,t; P)B(a)da + [;"I'(a,t; P)p(a)da
®)B®) = [, v(at;P(®))B(t - (a,t;P)da + [ v(at;P(®))ela—
)A(a,t;P)da = [v(t — a,t; P(t))A(a, t; P)B(@) da + [, v(t +
a, t;P(t))F(a, t;P)p(a)da (6)
where, A(a,t; P) = II(t — a,t; P) = exp{— f: w(t — a,7, P(1))dt}

and, I'(a,t; P) = At + a,t; P) = exp{— [, u(t + a,7, P(t))dt} .
This is the required non-linear integral equation.

In the paper [12], Existence of the solution of th&egral equation has been
discussed on the basis of Banach’s Fixed Pointéneo

3.2. Extended Gurtin-Maccamy model (EGMC Model)

To overcome the deficiency of Sharpe-Lotka and i@tMacCamy models, we study
different models in which natality and mortality chdi are simultaneously age, time and
population dependent. Nonlinear age-time dependwdels of population provide a
biologically more realistic description of the belwaur of the population when the past
history of the population is considered. The problean be stated as the following
initial-boundary value problem:

Dx(t,a) + u(t,a, P(t))x(t,a) =0, a>0,t € R
x(t,0) =f v(t, a,P(t))x(t, a)da, teR

0
x(0,a) = ¢(a), a=0
the parameterg, 1 and v being the same as before.
Extended Gurtin-MacCamy model solution fGu,v) € M X N is a pair

(B, P) € C? satisfying the equations

B(®) = [*_v(t,t —s,P(V)) exp{— [, u(z, — s,P(x)) dT}B(s)ds
(7
and P(t) = f_too exp {— fst w(zr,t — s, P(x))dr}B(s)ds

(8)
where € R.

4. Periodic solution of GMC and EGM C modél
We consider the integral equation

x(t) = F(O) + [°_K(t,s)x(s)ds, —0 <t <o
(9)

and compare the Gurtin-MacCamy model and ExtendemtiraMacCamy model
equation with (9).

We discuss the periodic solution of the model dquaby using the resolvent
kernel and the contraction mapping principle.

Periodic solution using resolvent kernel
From equation (5) and (6), we have
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B(t) = ftv(t —a,t,P(t))exp {— ftu(r —a, T,P(T))dT}B(a)da
0 a

+ [y v((t a,t, P(D)) exp {— [y u(r +
a, 7,P(1))dt}p(a)da (10)

P(t) = fot exp {— fat,u(r —a,7,P(1))dt} B(a)da + fooo exp {— fot,u(‘c +
a,rt, P(T))dr} p(a)da
(11)
Lemmad4.l. If P(t) is a solution of (11) theR(t + T) is also a solution of (11).
To prove this, we need to find its solution by gsiesolvent kernel for both time @aaind

t + T. Then we will take the difference between them Whgcvery small (say)
Proof: We have

B =(P
From (11), we get
P(t) = fot exp {— fat,u(r —a,7,P(1))dt} {P(a)da + fooo exp {— fot,u(r +
a,rt, P(T))dr} p(a)da

(12)
which is Volterra Integral Equation (VIE) of secokidd withA = 1.
Comparing (12) with VIE we get,
%) t
f) = J exp {—j u(t+a,1,P(x))dt} p(a)da
0 0
and K(t,a) = (exp{— fat,u(‘c —a,7,P(7))dr}

(13)
We know thatK, (t,a) = K(t,a), K,(t,a) = f;K(t, wK,_,(u, a)du
(14)
Substitutingn = 2, 3,4 ... in the relation (14), we have
K (t,a) = [ K(twk (ua)du

t t u
=f (exp{—f u(T—a,T,P(T))dT} Cexl’{_f U(T
—a,7,P(7))dt}du

= {2 jtexp {— ftp(r —a,7,P(1))dt} du

= {ZJ exp{—p (t — a)}du
={exp{—u (t—a)} (t—a)
= Ky(t,a) = exp{—p (t —a)}(t — a)
Now, forn = 3, K3(t,a) = {3 exp{ —p (t —a)} (t_z_?)z

(t-a)®
3!

Similarly, forn = 4, K,(t,a) = {*exp{—u (t — a)}
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By mathematical induction we can show that

. (t _ a)n—l
Kn(t,a) = (" exp{ —p (t—a)} (n —1)!
Resolvent kernel,
[e%s) 00 . (t _ a)n—l
r(t,a) = ;Kn(t, a) = ;{ exp{ —u (t — a)} -1

N -y
= ;(exp{—g (t—a)} BCE

= (exp{—pu(t —a)}exp{{ (t —a)}
The solution of equation (12) is,
P(t) = f(®) + J, r(t,a)f (a)da
= fO+ [;Cexp{—pu (t— )} exp{{(t—a)} f(a)da=1+1II
(15) Here,

I = j exp {—j u(t +a,1,P())dr} p(a)da :f exp(—ut) p(a)da
0 0 o 0
Sf ¢(a)da [exp(—put) <1]=¢
0
t
11 = | Gewp(-p (¢ - @) exp(¢ (¢ - @) f@)da
0
t
= [ ¢expi-p ¢~ apex(s ¢ - a)e da
0

t
< [ ¢exn(c - ) da
0
From (15), we get
P(t) < ¢+ J, exp{{ (t — @)} da
(16)
From (11), we get fot + T

t+T t+T
P(t+T) = f exp{—f u(‘c —a, T,P(T))d‘[} {P(a)da

0 a

+ fooo exp {— fOHTu(T +a,7,P(1))dt} p(a)da
17)
which is also Volterra Integral Equation (VIE) &c®nd kind withd = 1.
Comparing (17) with VIE we get,

o t+T
f+7T)= f exp {—f ,u(r +a, T,P(T))d‘[}(p(a)da
0

0
and K(t+T,a) = {exp{— f:+T,Ll(T — a,1,P(1))dr}
(18)
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We know that

Ki(t+T,a) = K(t+T,a), K,(t+T,a) = [, K(t +T, WKy (u,a)du
(19)

Substitutingn = 2, 3,4 ... in the relation (19), we have

t+T
K,(t+T,a)= j K(t+T,u)K,(u,a)du
a

t+T t+T u
=] Cexp{—j u(r—a,T,P(T))dT}. (exp{—j u(r
—a,1,P (T))d‘[} du

t+T t+T
= {? f exp {—f u(r -a,rT, P(T))d‘[} du

a

=exp{—p t+T-a)} (t+T —a)
Kyt +T,a) =3P exp{—pu t+T—-a)}(t+T—a)

2
Now, forn =3, Ks;(t+T,a)= {3 exp{ —u (t+T —a)} (Gl

2!

' —a)3
Similarly, forn = 4,  K,(t +T,a) = {*exp{—u (t +T —a)} %
By mathematical induction we can show that '
. t+T—-a)*?
K,(t+T,a)= ¢ exp{—p (t+T —a)} =D
Resolvent kernel,
r(t+T,a) = Z K,(t +T,a)
o n=1
B . (t+T—-a)*?
= ) Cepl-u(t+T - ) —o o
n0=01
3 {ZE+T—-a)}" !
—Zfexp{—ﬁ(t+T—a)} =D

n=1
=Jexp{—p (t+T —a)}exp{¢ (t +T — a)}
The solution of equation (17) is,
t+T

Pt+T)= f(t+T)+ f r(t+T,s)f(a)da

0
=f+T)+ [, Cexp{—pu(t +T — a)yexp{{ (¢t +T — a)}f (@da = I1I +

v (20)
Here,

o t+T
1 = f exp {—f ,u(T + a,‘r,P(r))dr}q)(a)da
0 0
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= f exp{—u(t+ N} ¢p(a)da < f p(a)da [exp{—p(t+T) <1]<¢
0 0
t+T

IV = f Jexp{—p (t+T —a)}exp{{(t +T —a)} f(a)da

t+T
f Cexpl—p (¢ +T — @)} .exp( (t+T — a)}p da

t+T

j Cexp{{(t+T—a)}¢da
From (20), we get

PE+T) <+ [, Cexp{{(t+T —a)}¢da
(21)
Now,
|P(t +T)— P(0)]
t

t+T
< |¢>c[f exp{é(t+T—a>}da—f0exp{((t—a)}dau
1-— exp{((t + T)}

1- exP{{ }] | < pllexp(qt) — exp{¢(t + T)}]I

<E¢|<t—<t—cT|[|e —e¥| < |x—yl]=¢| 4TI =
T <el¢p <]

_I¢>€[

|[P(t+T)—P(t)| <€
We have
B(t) = {P(t) and B(t+T) = {P(t+T)
Then
|[Bt+T)—B@)|=|P(t+T)—{Pt)|< {P(t+T)—P((t)|<{e<e€
|IB(t+T)—B(t)| <e.

Proof of Lemma 4.1 (For Extended Gurtin-MacCamy model)
From (8) we have

Pty = J‘ exp {— J‘ H{T T —5 P{ﬂ}d’r}ﬂ{s}ds

—==

= f_w exp {— fst w(zr,t —s,P(1))dr}B(s)ds + fot exp {— fst w(r,t—
s, P (T))dT}B (s)ds

We have

=
I

(P
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~ P(t) = f_ooo exp {— fst w(r, T —s,P(1))dr}{P(s)ds + fot exp {— fst w(r,t—
s, P(T))dr}( P(s)ds

(22)

which is Volterra Integral Equation(VIE) of secokidd withA = 1.

Comparing (22) with VIE we get,
0

f@) = j exp {—j u(r,r—s,P(r))dr}(P(s)ds

and K(t,s) = {exp{— fst w(zr,r — s, P(1))dr}
(23)

We know that

K, (t,s) = K(t,s) and K,(t,s) = fStK(t, wK,_1(u,s)du
(24)
Substitutingn = 2, 3, 4 ... in the relation (24), we have
t
K,(t,s) = f Kt WK, (u,s)du = {*exp{—p (t —$)} (t—5)

S
Now, forn = 3, K;3(t,s) = fStK(t, WK, (u, s)du = ¢ exp{—u (t - s)}
(t=5)3

3!

(t-5)?
2!

Similarly, forn = 4, K,(t,s) = {(*exp{—pu (t — )}
By mathematical induction we can show that

. (t—s)" 1
Ka(t,s) = {"exp{—p (t — 5)}

(n—=1)!
Resolvent kernel,

N S _ n-1
r(ts) = n§=1Kn<t, s) = nzlcn exp{ —u (t — 5)} —(t(n _5)1)!
Eoo gt —s)ymt
) n:lgexp{_“ e oo

= (exp{—p (t —s)}exp{{ (t —s)}

The solution of equation (8) is,

P = f(O) + [r(t,)f(s)ds = f(t) + f, Cexp{—p (t —s)}yexp{{ (¢ —
)} f(s)ds =1+11

(25)

Here,
0

t
I = f exp {—f u(r,r —s,P(T))dT}ZP(s)ds

0
:f exp{—p (t — )} (P(s)ds
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0

0
Sf {P(s)ds [exp{—p (t—s)} <1] Sf B(s)ds

— 00

1= [ Gexp(-p (¢ - exp(s ¢ = )} FG$)ds
0

t 0
= j gexp-u (c=exp(¢c -] ewl-p G
— w)} {P(u)du}]ds

t 0
< f ¢ exp({ (t — j ¢P(w)dulds
0 —00

t 0
< [ cemwis -1 Beodulds
0 —00
From (25)
P(t) < f_OOOB(s)ds + fotfexp{f(t s)}[f_oooB(u)du]ds
(26)
Now, we will try to find the solution fot + T then the equation (8) becomes

P(t+T) = f_t:oT exp {— fSHT u(t,r —s,P(1))dr}B(s)ds
(27)

t+T t+T
= f exp {—j |,J.(T,T — S,P(T))d‘[} (P(s)ds

— 00

0 t+T
= f exp {— f u(r,r — s,P(r))dT} (P (s)ds

t+T t+T
+ f exp {— f u(r, T — S,P(T))d‘[} {P(s)ds
0 N

Again, comparing with VIE, we get

0 t+T
f+7T)= f exp {—f u(r,‘r -5, P(T))d‘[} {P(s)ds
—® s t+T
K(t+T,s) = (exp {—f u(r,r -5, P(T))dr}

We know that ’
Ki(t+T,5) =K(t+T,5) and K,(t+T,s)= [ K(t+T,u)Ky_1(u,5)du
(28)
Substitutingn = 2, 3,4 ... in (28), we get

t+T
K,(t+T,s) = f K({t+T,uwK,(u,s)du

N
=exp{—p (t+T—95)}(E+T—5)
Now, forn = 3,

Ki(t +T,s) = fS”T K(t+T, WK, (w,s)du = {3 exp{—p (t +T —s)} (HTZ!_S)Z
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(t+T-s)3

Similarly, forn = 4, K,(t +T,s) = {*exp{—p (t + T — 5)} 5

By mathematical induction we can show that
(t+T—s)"1

Kn(t +T,s) ={"exp{—p (t +T —5)} =D

Resolvent kernel,
[0/0)

r(t+T,s) = ZKn(t+T,s) = Z("exp{—& (t+T-s)}
n= n=1

t+T—-s)"1
(n—1)!

Ge+1-—9)3"
(n—=1)!
=(exp{—pu (t+T —s)}exp{{(t+T—5s)}

The solution of equation (27) is,
t+T

P(t+T) = f(t+T) + jﬂ Pt +T,5)f(s)ds

0

=f(t+T)+ fOHT{exp{—E(t +T—s)}exp{{(t +T—s)}f(s)ds =1+
v (29)

= Y ewl-p (t+T-5))

n=1

where,

0 t+T
111 =f exp {—f u(‘c,‘r— s,P(r))dT}{P(s)ds

0
= f exp{—p (t +T — )} {P(s)ds

<f0 {P(s)dslexp{—p (t+T—5s)} <1] < fo B(s)ds

t+T
IV = f Jexp{—pu (t+T —s)}texp{{(t+T —s)} f(s)ds

t+T

0
f Cexp(—p (¢ = ewp(S c+T =)} [ expl-p (4T
—u)} (P(u)du]ds

t+T 0
< f Cexp{{(t+T— s)}[f {P(u)du]ds
0 —00 0

t+T
< f Cexp{{(t+T— s)}[f B(u)dulds
0

—00

From (29)
P(t+T)< f_oooB(s)ds + fOHT{exp{( (t+T— )} f_oooB(u)du]ds
(30)
Now,
|P(t+T) — P(0)]
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t+T 0
<| f Cexp{{(t+T— s)}[f B(u)dulds
0 —00

t 0
- f { exp(T (¢ — ) f B(w)du]ds
0 o)
t+T

<y cexp{c<t+T—s>}ds—¢j ¢ exp{g (¢ — 5)ds]
0 0

Taking ¥ = [°_B(u)du, > 0.

|P(t +T) — P(O)| < |[lexp{C(t + T)} — 1] + [1 — exp{(t}]|
< [$lexp{¢(t + 1)} — exp ({B}]] < [PL{S(e + T) = {3]| < WICT]| <e
[ < ]
[Pt +T)—P(t)] <€

Similarly, we can prove faB (t).

From this theorem we get unique solution for alldi That is at timé and timet + T.
Since the solution is unique it means that the tmmluis same for every time. The
solution at time is P(t) and the solution at time+ T is P(t + T). Now, we can write

P(t+T)=P(t),foral T > 0.
So, we can say that the population model has gersmdution.

5. Conclusion

Mathematical models have been developing step bp. sBuccess of modelling of
physical or biological phenomena depends on howhmappropriately it describes the
population in future as well as past. Gurtin-Mac@amodel is much more complicated
and describes the population sophistically bec@#aggrameter depends not only on age
and time but also on populations. In this paper, endeavor was to describe periodic
solutions of Gurtin-MacCamy model and extended i@tvMacCamy model. We find that
these two models have unique solution for some tiared for some timeé + T, where

T is a arbitrary constant affd> 0, we can also find a unique solution. Difference
between these two solutions is very small so theyadmost same. Since in timethe
model has unique solution so we can say that thesesolutions are same. Periodic
solution of Gurtin-MacCamy model depends on thealtdtitial population size and
periodic solution of Extended Gurtin-MacCamy modepends on the birth rate of the
population.
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