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Abstract. This article contains the fundamental theorems defihitions of the field
derivative operator. Theorem Ejeld derivative of a field functiomnd Theorem 2,
Fundamental Theorem of Calcultar the field derivativeproven for functions defined
within a fluid velocity field, in short, a field fiction. The field derivative has the same
properties and rules as the material derivative #rel total derivative. The field
derivative is neither a covariant derivative ndri@ derivative since it does not involve
parallel transport of vectors, but field derivatigean ordinary directional derivative in
phase-space-time domain (7 dimensions). The fieti/ative of the Bernoulli equation
yields the addition of the fluid components mulggl by its respective Navier Stokes
equations and therefore is constant throughoutyepeint in the fluid 1-dimensional
stream. Additionally, the definition and exampléshe field derivativeare demonstrated,
which are essential to demonstrate the first itiegf the Navier Stokes is the Bernoulli
equation for viscous fluids through a sampling sebd he development of the Hamilton
Jacobi partial differential equation of incompréssifluids is based on the theorem of
Gelfand and Fomin’s bookalculus of Variationswas adapted to fluid mechanics
notation using the field derivative operator ingted the total derivative used in this
theorem.When considering the Bernoulli formulas in this mseript, the Eulerian
coordinates were used for small volumes with a sagscheme. By construction of the
sampling scheme and the use of the induction mettiua Eulerian stream control
volume tended to zero, since the stream contralmek became Lagrangian fluid parcels
or particles within a 1-dimensional stream. Therefthe integral of the field derivative
of the Bernoulli function is integrable and depemdsy on the time limits of the line
integral.

Keywords: Bernoulli's principle, incompressible viscous flgjd field derivative,
Hamilton-Jacobi PDE

AMS Mathematics Subject Classification (2010): 76A02

1. Introduction

The article entitled "A variational principle fondompressible viscous fluids" was
presented at the Twenty-First Southeastern Corderen Theoretical and Applied
Mechanics in Orlando, Florida [1]. The innovatioithis article was to add half of the
fluid's internal mechanical energy into the Lagriamgof the incompressible fluid to
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derive the Navier-Stokes equations via the calcalusariations technique using the
epsilon-delta continuity definition for continuousinctions. The Hamiltonian was
obtained via the use of the Legendre transformatiehthe resulting Hamiltonian is no
longer the total mechanical energy per unit maaier, it is a different thermodynamic
guantity. The article’s thermodynamic consideratisaection showed that the total
mechanical energy becomes a constant, in otherswdha first integral of motion,
similar to Bernoulli’s principle for inviscid fluisl The difficulty centered on treating the
fluid's Lagrangian and Hamiltonian integrands withaising the fluid’s volume integral
and the understanding the nature of the total divie of the Bernoulli equation (see
Appendix A and reference [6]). The aim of this msenpt is to demonstrate how
Bernoulli's principle for incompressible viscousuifls can be formally obtained.
Additionally, the definition and examples of tlield derivative are demonstrated in
Section 2. One of the examples demonstratesitaritegral of the Navier Stokes is the
Bernoulli equation for incompressible viscous fliidhe Einstein summation convention
is used throughout this manuscript with indicesngl @ equal to 1, 2 and 3, unless
otherwise noted. Note the capital letferdenotes Eulerian coordinates, and the small
letterx denotes Lagrangian coordinates in this manuscript.

2. Mathematical theorems for the field derivative

“The concept of a total derivative of a function eéveral
independent variables does not exist in mathentatics
“Therefore, introducing the concept of a total deative with
respect to time in a strict mathematical sensenipdssible. An
additional physics-based idea postulating what igppatoordinates
should be fixed and how to identify them is neédedvanova et
al, [6] page 5

The definition of the material derivative as usedSerrin's excellent article entitled
“Mathematical Principles of Classical Fluid Mechesii [10], Batchelor's book
Introduction to Fluid Dynamic$7] and definition 6, equations 46 in referencé [6
reproduced below with slight notation changes ie #@rgument and order of the
arguments, below.

DF(tX() F(t+At,X +AS) - F (t,)?(t))

pr Mo At

whereX is a coordinate vectos$ is a displacement vector, andis a time interval it
took for the displacement of coordinate In this manuscript we will usB/Dt to
represent material derivative, since the symbotugee[6] is a similar notation to the
variational derivative notation.

Consider the following definition of a time derixat operator defined below and where
_ Xm'(t)

the fluid velocity is defined ag (¢, x;(t)) = £

dF (t,)?(t)) o F (t + At X(t + At)) —F (t,)?(t))
T = llmltAt_,O At
F(t + At, X(t) + At dX(t)/dt + O(At?)) — F (t,)?(t))
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By Taylor's Theorem [5], we can take the Tayloriegrof the spatial argumeni(t +
At), then perform the Taylor series of the function,

F(t + At, X(t) + At dX(t)/dt + 0(At?)), about the poir(t t, Xj(t)) we obtain the following
approximations, where it is clear thef = At dX(t)/dt + 0(At?) by comparing with the
material derivative definition above

F(t + At, X(t) + At dX(t)/dt + 0(At?))

( )
J

) OF
=F(t,X(t))+E(t+At—t)+ (X()+ At — X;(£)) + 0(At?)

Simplifying, keeping only terms lower than or eqtcalsecond degree i, and using the

definition of the fluid velocityy; (t,X (t)) d)f;t(t)

F(t + At X(t) + At dX(t)/dt + O(At?)) — F (t )?(t))

(gi +u (t X; (t)) or )At +0(At?)

Substitute into the limit above

dF (t,)?(t)) F(t +At, X(t) + At dX(t)/dt + O(At?)) — F (t,)?(t))
—_— = llmitAt_)O
dt At
dF (X))  (oF e i oae — (OF o) OF
T = (E + uj (t, (t)) E) + lmltAt_,O ( t) = <E + ‘U.j (t, (t))a_XJ>

_DF (t,)?(t))

Dt
As an example, consider the scalar function tchieekinetic energy per unit mass of the
fluid.

1du? ou

Eﬁz (at +u}(tX(t)) )
There seems to be more to this calculation thatltsmﬁlrther study, especially since
reference [6] stated the “total derivative” does erist as a mathematical concept, we
agree with this statement since the total derieativses asingle Taylor series
approximation. Thus, call this derivative a tdiald derivative orfield derivative, the
latter is the term used in this manuscript. Whatissing as lvanova et apoints out is
to provide the additionglhysics-based ideaf the field derivative operator defined from
a slight modification of the above concept, which we willlicthe field derivative
postulated on the works of lvanowt,al [6], Serrin [10], Batchelor [7], and Levi-Cevita
[8] and formalizing thefield derivative with a single Taylor series limit tediure by
including the changes of the fluid field velocitytd the limit itself. Thdield derivative
is practically mathematically defined except for thienportant physically based
restrictions advanova et almentions in[6], which are necessary in order to avoid
confusion. By introducing an additional variabilkee fluid field velocity,u;, into the
argument list of the function or formula we cannfioitate this intuitive differentiation
process of the field derivative. Although capl&tter is used for coordinates, they need
not to be Eulerian coordinates, these definitigmglias also to Lagrangian coordinates
too.
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The limit definition and functional arguments wenedified to include the fluid velocity
field, rearranged, and reinterpreting the diffeia@atas defined in Levi-Cevita's book [8]
“The Absolute Differential Calculus”, section Syste of Total Differential Equations.
Unfortunately, Levi-Cevita did not provide the dgfion of the differentiation limit in his
book. Additionally, Levi-Cevita did not providedlradded description of restrictions on
the differentiation) to make clear the differeritiat intent, which can be confusing
without it, this type of description is common uge Physics, especially fluid's
thermodynamics (see Serrin [10]). Typically, but mabdwvays, in fluid mechanics if a
function has the fluid velocity field on the rigsitle of the equal sign it typically does not
include the fluid velocity field as part of funcatial arguments. Following the intuitive
approach above, we introduce of an additional b&jahe fluid velocity fieldu;, into

the argument list of a functidh(t,)?(t)), or now a field functiom (t,)?(t),ﬁ(t,)?(t))),

with the order of arguments follows Gelfand & Fomihook Calculus of Variations [11]
style. The introduction of the fluid velocity field the argument of the function provides
a way to introduce the changes of the fluid’'s viéjofield at the same moment the
function changes in a combined phase space-tingetarspace, thus yields a Calculus of
Variation’s style limit concept in function phasgase-time domain. Note that it differs
from the usual calculus of variations limit in thdtere is no functional, and the
independent variable is also varied, therefore itat a variational derivative. THield

derivativeof a field functionF (¢, £(¢), (¢, (t)) ) is given by the theorem below.

Theorem 1.Field derivative of afield function.
If thefield derivativeof a field functionr (t,)?(t),ﬁ(t,)?(t))) on a continues curve (or 1-

dimensional stream) of a fieit{t, X(¢)) is defined by the limit below,

ORI (0N
F(t + At, X(t + At), 1t + At, X(t + At))) — F(£, X (t), 6(t, X (¢)))
At

= limpg

Thenthe limit of thefield derivativeof the field functionF (¢, X(¢),%(t, X)), results in the
tangent plane of phase-space-time domain is giyeghebfollowing equation
d - - -
EF (t,X(t),u(t,X(t)))
OF(t, X (1), u(t, X (t)))
= at ]fixea)?&ﬁ’
A oF (t,X’(t),ﬁ (t,)?(t)))
+ t’X(t) [ ] ixe
J ( ) ) ] 0x; ] fixedt
ou; (6, X()) OF (£, X(),u(t, X (1))
+ It [ aui ]fixed t

The field function can be a scalar fiekj,a vector fieldFy , or tensor density field.
The calculus time derivative operator symbol isdufee simplicity and since the field
derivative becomes calculus’s total derivative @fraction (i.e. using chain rule) if there
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are no field components 61(t,)?(t)) on both side of the equal sign in the definitién o

the function being differentiated. Thus, the fiditivative has the same properties or
rules as calculus total derivative.

Proof of Theorem 1.Field derivative of a field function.

The mathematical definition of tHield derivativeis given as
d S -

EF(t,X(t). u(t, X()))

F(t + At, X(t + At),6(t + At, X(t + At))) — F(t, X (t), i(t, X (¢)))
At

= limpg

Lett = t(r) ar parameter in the real line, then relabeled theviohg variables, for

j=0, Yo (7) = t(2),
and for

jwithin3>j>1,Y(7) = Xj(t(r)), and for iwithin6 =i >4,Y,(t) = u;_5 (t(r), Y~(T))

Then the functional difference maybe written askfed to 6, then the numerator can be
written as

F(t + At, X(t + At),U(t + At, X(t + At)) — F (t,)?(t),ﬁ(t,)?(t)))
=F(Y(t + A1) - F(Y,. (D)
By Taylors Theorem for multi-dimensional spacesthe Taylor series about point
(%D, ¥,(0), ... Ye(1)) be given by

F(Y (1 + A7) = F(Y, (D) + Z 7 i +87) = V(D) + 0(((i(r + ) = V(1))
Now, the limit is simply an ordlnary time derivagilimit about pointy, (t), in Y space.

dF (Y, (1)) _ _ F(Y(z + AT)) -F(¥(™)

dt ATt—-0
Substituting the expansmn of the Taylor serles(owﬁ (r + A7)) results in

dF(Yk(T)) Z —— (Yk(‘r+ AZZ Yk(T)) + 0(limyyoo (Y (T + A7)

) (Yk (T + AZ_ Vi (T)))

Sincelimy,o (Y (t + AT) — Y, (1)) = 0, and— = limp,o W”Azw due to the fact some of
the functions may depend on both tlme and cooteinaot shown.
dF (Y,(1)) OF Y,

Now lett =1, Y,(t) =t + t,, a linear function where the constant offsgtmaybe 0,
thenay,/at=1

dF (YD) _ " OF oY,
dt LY, ot
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By taking into account each variable contributidecp brackets on the terlfy%to hold
the labeled variables fixed provided by physicai®and for clarity.

For j=0,

Need to fix both coordinates and the velocitydjedince the partial time derivative is
with respect to time

oF Y, aF(t,)?(t),ﬁ(t,)?(t)))

aY, ot = ot ]fixed 7(&171
For j=1to 3,
Need to fix time since the partial derivative iglwiespect to the coordinates
oF 3Y, oF (t,X’(t),ﬁ(t,)?(t))) 2x,
6_}’115_ an ]fixedt?
Fori=1to 3,
Need to fix time since the partial derivative iglwiespect to the velocity field
OF Y,s  OF(t,X(t),(t, X(1)) A
s Ot ou; fixedt 5

Use the definition of the velocity fielé%:dxd;ft)s u; (t,X’(t)), since the Eulerian

coordinates are a function of time only, for Lagjian velocity a partial time derivative
on the Lagrangian coordinates is more applicagggég = u;(%(t,),t), results in the
following definition of thefield derivative of a field function,,kvhich was defined by a 7
dimensions directional derivative or “field” dertixge from point (t,X(t),U(t,X(t))) to
point (t+at,X(t+at),U(t+at,X(t+at)) within a 1-dimensional stream or curue phase-
space-time during the time intervat, as the time interval goes to Ghere in the Taylor
series we treat each variable as if they were firddent” coordinates of a point X(t),
U(t, X(t))) within a curve in phase-space-time.

e (t,)?(t),ﬂ (t,)?(t)))

dt
OF(t, X(6),7(t, X(2)))
= [ ot ]fixed)?,ﬁ'

oF (t,X(0), 4 (t, X(0)
+u; (t,)?(t)) [ ( 6)1:1( ))]fixed t

du; (t,f(t)) aF(t, X (1), u(t, X(t)))
ot aui fixed t
The innovation in fluid mechanics, with this lindéfinition is that the dynamic changes
of the fluid flow field are included in the tangespace of the field function,
F(t,X(t),u(X,t)) , in the phase-space-time domain (7 dimensioRe). elementary
properties or rules of the field derivative, please Section 2.1.
Q.E.D.
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Theorem 2.Fundamental Theorem of Calculus for the field derivative.
If the time integral ofield derivativeof a field functionr (t,)?(t),ﬁ(t,)?(t))) ona

continues curve (or 1-dimensional stream) of f"w(d,)?(t)) from time O to time t is
defined by the line integral
tdF(s,)?(s),ﬁ(s,)?(s)))
fo s ds
Then the line integral result is given by the difiiece field function evaluated at the
integral limits, t and 0.

J-t dp(s’)?(s), ‘ZZ(S,)_()(S))) d
0

s = F(t,X(t),4(t, X(t))) — F(0,X(0),%(0,X(0)) = AF|}

ds

Proof of Theorem 2.Fundamental Theorem of Calculusfor the field derivative.
By definition of thefield derivativelimit in Theorem 1,

dF (¢, X(£),3(t, X(1)))
dt

F(t + At, X(t + At), h(t + At, X (t + At))) — F (t,)?(t),ﬂ(t,)?’(t)))
At

= limyg_o

Lett = ty_q, At =ty —t)_1 = €

dF (£, X(1),i(t, X(1)))
dt

F( tkﬂ)?(tk)'ﬂ(tk')?(tk))) —-F (tk—li)?(tk—l): a(tk—l:)?(tk—l)))
€k

From the definition of a line integral [5], thusah point in the line integral is in a

continues curve of the field (or 1-dimensional aitneof the fluid velocity)

= limekqo

ft dp(s’f(s),ﬁ(s,)?(S))) d
o ds s

(n+1) - = - - = >
) ) F(t X (t), U(ti, X(t))) = F (tk—li X (tye-1), U(tpe-1, X(tk—l)))
= lim,_o Z lime, o €k
k=1 €k

The sum is finite; the epsilon limit commutes witle finite summation,

tdF (s, X(s), (s, X(5)))
fo I ds
(n+1)

= lim,, o limg, o Z F( e, X(t), it X(t)) — F (tk_l,)?(tk_l), ﬂ(tk_l,)?(tk_l)))

k=1
Summing the finite sum, cancelling terms out, akdihg the epsilon limit. As -
oo, With t, — t,,_; = €, = 0,as € - 0 thus, thelimit, ot = limit,(n+ 1)é=t
converges by construction.
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ds
= limpooF ( trets X (Ensa), ﬂ(tn+1,f(tn+1))) - F (to’i(to)'a(to'f(to)))

ftdF(s, X(s),1(s,X(s))) 4
S
0

Definet, = 0. Thus, the line integral along a 1-dimensional strear curve result is
given by the difference field function evaluatedred integral limits. (See Section 3.3 for
a more complete proof with the induction method).
tdF(s,)?(s),ﬁ(s,)?(s)))
| d
o ds

s = F(t,X(0),1(t, (1)) — F (0,£(0),(0,£(0)) ) = AF§
Q.E.D.

2.1. Examples of field derivative
Example 1.Field derivative of the fluid velocity field.

Let F, (t,)?(t),ﬁ(t,)?(t))) = (t,)?(t)), the fluid velocity field, then

aF (X (OU(tX(1)))
° [T]fixed Xn = 0
R aFE(tX(©)H(tX (D)) 7 duk(LX(®)
IR (G) [IC(T,-)]"""W = (6. X (t))%
. oweE) PP(FOI(E0)) _ ou(eX0) 0u(tX W) _ owfeX®) o owfeX®)
o g fixed t = at ou; - at LA ot

whereé, ; is the Kronecker Delta discrete function. Thie, mathematical definition of
the field derivative of the fluid velocity vectoives same result as the material derivative
fluid velocity

duy (t,X(6) oou (6X@®) ou (6,X@®)  Du (t,X(@®)
—uk(dt )=O+uj(t,X(t)) uk(axj )+ uk(at )= uk(Dt )

This proves the statement that the field derivatiedined in the phase-space-time is
identical to the material derivative as defined\mnovaet al [6].

Example 2.Field derivative of Eulerian space coordinates.

Let F, (t,)?(t),ﬁ (t,)'(’(t))) = X,(t) , a function of Eulerian space coordinate

aFk(t,)?(t),ﬁ(t,;?(t)))
* [ Jfixeaxa =0
R aFE(tX(®)a(t,X(t) R R
-y (LX) [%] fixeat = U (t,X(t))%ij(t) =y (6.X(0) 6 =
Uy (t,)'(’ (t))
. utE®) 6Fk(t.)?(t).ﬁ(t.)?(t))) Coy(tR®)
ot oy fixear = 5 0=0

Thus, the result is identical to the elementanetitifferentiation.
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w0 (1500)

Example 3.Field derivative of a tensor density field.

S R ou t,)?(t)
Let Fim (t,X (0,4 (t,X(t))) = %
m
. aFk,m(t,)?(t),ﬁ(t,X(t))) g ou(t7®) | otueio)
at fixed X0 — 3¢ 3% = owox,
R aFk,m(t,)?(t),ﬁ(t,X(t))) ~ . > ou(sR®)
c (t,X(t)) [ ox; ]fixed t =Y (t'X(t))a_XjT —
N azuk(t,)?(t))
. OwtX@®) aFk(t,)?(t),ﬁ(t,)?(t))) _ aui(t,)?(t)) .9 auk(t,)?(t)) _ au,-(t,)?(t)) a 5 =0
at du; fixedt — ot m o = — m i =

i _a 2 (0T0)_PulTO) | o (170)
4o (e50)_ "

dt dt 09X, atox,, 9X;0X,,

Example 4.Field derivative product rule

dF (t,)?(t),ﬁ (t,)?(t))) G (t,)?(t),ﬁ (t,)?(t)))
dt

F (t + AL X(t+ A, U (t + At X (¢ + At))) G (t +ALX(t+AD), T (t + At X (e + At)))

, —F(t, X(6),u(t, X(£)))G (¢, X (), 1t X (1))
= llmAtaO At

1 ) ) ) R
= limyg o [ (F (t + AL X(E+ AL, T (t + ALK+ At))) G (t + AL X(E+ AL, (t + ALK+ At)))
-F (t,)?(t),ﬂ (t,)?(t))) G (t + AL R+ AL, T (t + AL R+ At)))

+ A%(F (t,)?(t).ﬁ (t, Y(t))) G (t + At K (e + 80,7 (£ + At X (e + At)))
_F (t, X),u (t,Y(t))) G (t,i(t),ﬁ (t, Y(t))))]

dF (t, X6, (t, Y(t)))
- G

.
(

t,?(t),ﬁ(t,?(t)))

+F (t,i(tm (t,Y(t)» aG t,X(t);: (t, X(t)))
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Example 5.Field derivative Integration by Parts

fdu (s, X

f u; (s, X(s ))M =u; (s,)?(s)) su;(s, X(s))|§ — f u(ji—S(S))Sui(s,X)(s))ds
0
Proof: ’
ft duils, X(s);ju i X(S))) u; (s,)?(s)) su;(s, X(s))|5 by Theorem 2

0

td(u;(s, X(s))) du (s X (s)) R R R
[ S (5, K(59) + = s (s, () s = w; (5,8()) S, Kl

0

by Theorem 1, and dif ferentiation product rule, example #4. Rearranging gives

t -
ds = u; (s,)?(s)) Su;(s, X)) —fM&ui(s,f(s))ds

0

[t Rty LK
0

Example 6.Integral of the field derivative of the LagrangiBernoulli Scalar Field

For the scalar field example use the Lagrangiam@al formula. Time integral of the
field derivativeof the Lagrangian Bernoulli scalar field,

T ds = B(t, %(t),u(t, x(t))) — B(0,%(0),1(0,%(0)) = AB|§

f dB(s, X(s), U(s, ¥(s)))
0
The change in total mechanical energy per unit roagise fluid in the stream cylindrical
control volumegV,_;, is the volume integral below in Eulerian coordésa Where the
Jacobian for k and k-1 times are the same or anstant equal to unity due to fluids
incompressibility. Since the total mechanical gges the same for the stream line for
small interval of times then,

Er(ti) — Er(ti-1)

= _Uf[B(tk,f(tk)'a(tk'f(tk)))
V-1
S TCRE CORICHNE T ) P lai iy
. o 0(Ry, Ry, R3)
By taking the limit as the radius of the cylindentrol volume goes to zeréy,_, — 0.

The length of the cylinder only diminishes withrieasing number of samples.
1 S - N
m%mﬂw57—jﬂuxqmaumabaan>
KL e

— B(ty_1, X(tg_1), U(tr—1, X (tx—1))) 100 ﬁdv 0

9(x1,X2,X3)

> 0, thus,
9(R1,R2,R3)

Sincep,
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B(ty, X(t), U(X(tx), tx)) — B(ty—1, X(tg—1), U(ti—1,X(tx—1))) = 0

where the Eulerian Bernoulli formula is defineddwelfor k=1, small time;,
B(ty, X(t), u(ty, X(t1))) — B(to, X(to), U(to, X(to))

1
= (Euf(%f(tl)) —Su?(to, 2(te)) + $(2(t)) — p(%(te)) + ———= p(x(tl))

t1
x(t 1 ou;
_M+_f I.j_ds+1 =0
Po Po ) Ox

Thus, for simplicity, letv((t)) = ("“))+¢(x(t)) to obtain the difference sample

Bernoulli equations for each difference k.
B(ty, X(ty), U(ty, X(t))) — B (-1, X(t—1), U(te—1, X(tx—1)))

1 R 1 R N R 1 . ou;
= ) = 30 i0) + V) V) + o [ v Tl
By the proof of Theorem 2 Fundamental Theorem &futas and prookflby induction in
Section 3.3, thus,

ff dB(s, %(s),U(s, X(s)))
0

T ds = B(t,%(t),u(t, #(t))) — B(0,%(0),1(0,%(0))) = AB|§

See Section 3.2 for more details on the derivatibthe Bernoulli principle using the
field derivative. Although the functional argumemitation used in sections 3.0, 3.1, and
3.3 is the same as Appendix A, i.e. the velocigfdfiis implicit and the fluid velocity
functional arguments are in reverse order to miagfgrence [1].

3. Derivation of Bernoulli's principle for incompressible viscous fluids
The internal energy per unit ma#s), of the fluid was defined in article [1], as shoimn
(Eq. 1)

10 =) ,j’; ds + 1, (1)

Equations 4.2, 4.3 and 4. 4 in the orlglnal art[éleare reproduced below as equations 2,
3, and 4, respectively, with the change being thatlissipationfunctionaldefinition' is
used for the convenience of the reader, where ithgdin summation convention is used
throughout this manuscript with indices i and j&do 1, 2 and 3.

The Hamiltonian per unit mass was defined as shioW&q. 2):

_ 1 _ p(X) 1t oy
H=K+V-:I() = w? + (X)) + 22 o " 3pad0 Tii o, ds——I (2)

whereK, V,I(t), p,, Vo,¢, P, U, 7:;,X;, andl, are the kinetic energy, potential energy,
internal energy, constant fluid density, constaritime, external potential energy, fluid
pressure, velocity of the fluid, viscous stressten EuIerian“j‘ spatial coordinate, and

Ou;

! The dissipation functiorn, can be defined as= iy (equatlon 2.3 in reference [1]). The

fluid’s internal energy is given hyt) ——f AL P

L X;
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constant fluid mechanical internal energy per umdtss, respectively. The time rate of
changé of the Hamiltonian is given i(Eq. 3).

dH a 1dI 3dl

a - a® TV (3)
The total mechanical energy per unit m&ssjs conserved, as shown(iag. 4).

LH+2) =2 +V+D="T=0 (4)

dat 2 dt dat

This derivation appeared to be an interesting nmagtieal puzzling result in the sense
that the time integral might diverge; thus, thegjiom arises as to how it could remain a
constant. The solution to this puzzle is becalisesblume integrals were implicit {(iEq.

2), (Eq. 3), and (Eqg. 4).Additionally, the time differentiation of the tdtenechanical
energy was expected to be the material derivagiptethis puzzle has generated an idea of
the field derivative Yet, the following subsection is based on Appendl material
derivative method published in reference [6].

3.1. Derivation of Bernoulli's principle for incompressible viscous fluids using
material derivative method
Therefore, the total mechanical eneffgy, is given by(Eq. 5)

_ 1 =\ op(X) 1ot Ay 3(X1,X2,X3)
Er(6) = [[f, (;uf TO(X) 5 Sy Ty ds I,) po 2225 qy, - (5)

The volume integral has finite stream control volume,, which encloses the fluid
motion of fluid stream flow (for example, like alicger of fixed lengthsL, and small
radius,é7,, to encompass a small portion of a moving stredthinva river or ocean)
from the initial time, 0, to some small time, tr Bofixed small lengtisL.

In performing the material derivative [6] to thdéalomechanical energy by integration by
parts on the viscous stress tensor term, whererabelting surface integral is zero

(#550 7, ju;n;p,dS = 0) via the nonslip condition for solid boundariesrequire the fluid

shear stress to be null because the surface nananalbe arbitrary in absence of solid

boundaries, results iEq. 6) (See Appendix Apince = (p, %) =0, by fluid

continuity equation and using Reynolds Transporédfem (incompressible condition

can be relaxed), % = 1 for incompressible fluids.
1,082,143

L = (i, w99 1 0p 10T\ 0(X1XaX3) g _
Dt Er(6) = ffft?Vo i (at ty ax; + ax; + PodXi  po axj)p” d(R1,R2.R3) dv, =0 (6)

The terms inside the parenthesis, which are the ieN&tokes equations for
incompressible  fluids, vanish throughout the fluidor all coordinates
X (¢) within control volume, V,; thus, the fluid’s total mechanical energy is astant,Es.

- t1
1 L op(®) 1 o 0(X,, X, Xs)
E@):ﬂf —u? +¢(X +—+—fr-- ds+1, |pop=———=dV, =E
o Vo 2" () Po Po) v ox; °)P Ry R R)

DefineE, = B, p,V, WhereB, is a constant mechanical energy per unit mass that
time t, is short.

2 Time rate of change implied in this manuscript &relin reference [1] is the material derivative
as defined by Batchelor [7] and reference [6].
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fﬂ —u? +¢(X)+p( ) —f w1 ), QW XaXa)
tij ax o |Po3(R,, Ry Ry 70

EIA
0(Xy, X5, X
fff00(123))dv
a(RlﬁRZ' 3)

Therefore, the Bernoulli's prlnC|pIe is given agHy. 7).
fffavo (%utz + ¢(X)) +¥+pifot1 Tij gul ds+1,—B )po e av, =0 (7)

0(R1,R2,R3)
The integrand i(Eq. 7) must be zero for all Eulerian coordinatéswithin the stream
control volume and small times, 1 > t0> Next, the control volumé/,, containing the
stream or current is shrunk to zero volume, i.@mfi3 dimensions to 1 dimension. For
example, let the radiusy,, of a flexible tube control volume go to zero éwery current
or stream in the control volume, the flexible tubads to a 1-dimensional stream; Thus,
taking the limit as the volume goes to zero resulthe integrand ofEq. 7A)being zero
at every point of the 1-dimensional stream, theee{&q. 7B)is valid throughout the
fluid with different values ofB,, by partitioning the fluid flow with control volues
containing them. The proof requires a multiple (3¢ induction) of the Mean Value
Theorem of Integrals for every point in the streapg footnote in page 71 of [2].

. (X) ou; 0(X1,X2,X3) _
Limit sy, 0 - fffV ( u? + (X)) + 52+ — fo ”au ds + 1, Bo)pomm/o =0
(7A)
% > 0, the limit of (Eq. 7A)yields the Eulerian Bernoulli equation for
1,182,83
viscous incompressible fluids {(Eq. 7B)within a 1-dimensional stream

R p(X(® u;
B(X(t),t) =—u2(X(t) t) +¢(X(t)) (po )+p—1of0 UjX ds+1,=B, (7B)
Equations (Egs. 7A-B)remain valid wherk(t) - X, ast - 0. The constans, is

identified with the initial conditions found ifEq. 7C)valid in the 1-dimensional stream
Eulerianu?(X,,0) + ¢(X,) + @ +1, = B, (7C)

Sincep,

3.2. Derivation of Bernoulli's principle for incompressible viscous fluids using the
field derivative

This section demonstrates an alternate derivatsimyuSection 2 mathematical methods
of field derivativewithout using Appendix A definitions of materia]idative.

B(t, X(0),7(t, X(t)) = (—u t, X(®) + p(X) +p( ) —f l,ax s )

% B (t, OX (t,X(t)))

9B(t, X(0),3i(t, X(£)))
= ot ]fixed XU

B (t,)?(t),zz (t,)?(t)))

+u; (t,)?(t)) [ ax. Ifixeat
j
Ou (t X(t)) aB(t, X(t),u(t, X (t)))
ot [ au ]fixed t
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Partial differentiating each term and holding fixed variables in the vertical bar or
bracket

B (t,)?(t),ﬁ(t,)?)) 1 oy
at fixed XU — ETL]’ a_Xj’
) B(t,X(©),u(t, X
u; (t, X(t)) [ ( anu( ))]fixed t )
= (t,)?(t))id)()_f) +u; (t,)?(t))%M
Jj o
+ (t X(t)) L (t X(t))
Using chain rule in the last term, K
ou; (t, X)) oB (¢, X(t),u(t, X ou; (t, X(0) R
u (at ) [ ( auiu( ))]fixedt — %ui (t,X(t))
Lo (6 X
=u; (t,X(t))%
Thus, adding all the terms the field derivative,
2B (6, X(0),u(t.X)) =
pl Ty :zl + (t X(t)) ¢>(X) + (t X(t)) 2 ”(X) (t X(t))uJ (t X(t)) Oui 4

w; (t, X (£)) 2D a“‘(t X(t))
Changing dummy index from j to i on the potentiatryy terms

—B (t X(e),4(t, X(t))) ! Ty axl + (t X(t)) ¢>(X) +u (t X(t)) aiﬁ%fh
u; (620w (£ X)) 55 + (6, X (6))

Rearranging the terms to obtain

48 (6@, (6X®)) = u (LX)

du; (t X(f))

ui(t, X(t)) o . rov . 0 p(®) N
ot a_xld)(X)—l_a_)qT—l_ul (t,X(t))a—X;]+
1, 0w
Po Tij 0Xj

Since for small time intervaldg, since the cylindrical control volume is nearly fike
volume or since the fluid is incompressiblta¢ Jacobian is nearly constant,

0(X1,X2.X3) )
9(Rq,R2,R3)

By integration by parts of the shear stress tesauming theequired surface boundary
condition, where either the fluid velocity has astip condition or the surface normal is
arbitrary; therefore, the shear stress is zerbeavblume surface, as expected.
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1 dwy  0(Xy, Xz, X3) # ﬂf 1 ar” 0(Xy, X5, X3)
— T i P —dV, = T jun;dS — av,
!lf po " 0X; Po d(Ry, Ry, R3) ~° i . oa(Rl,Rz,Rs) ?
1 0ty (X, X5, X
fﬂ wip, ( 1, X3, X3) av,
Po 6X 0(Ry, Ry, R3)
Therefore, the field derlvatlve of the total medleahenergy results in the Navier Stokes
equations.

750 = [ o (A0 (x0T
A

6u ou; 0 10 1 0ty 0(X,X,, X
fff ou; " z+_¢+ op p0(123)dVo=0
0X;  0X;  po 6X po OX d(Ry, Ry, R3)

&V,

Taking the limit of the control volume to zero,

, 1 d L .
limay, 0577 f f f ;B (t,X(t),u (t,X(t)))
[
8V,
6ui 6ui 6¢ 1 Op 1 aTl'j a(Xl,XZ,X3)
- +uj o+ ——=y | UdPor 5

ot ox; ' X, T ax o ax; d(Ry, Ry R3)

> 0 the above equation yields the desired result feyeace [2]

9(X1,X2,X3)
© 8(R1,R2.R3)
footnote on page 71 for a 1-dimensional stream.

dB (t'X(t)'ﬁ(t'X(t))) ou,  du; ap 1dp 10,
dt <6t Y 9x, axﬁﬁa_)(i_ﬁaxj)“i_o
The definition of thefield derivative by Theorem 1 is an additional result of this
manuscript used texplain the integration result (below) being demonstrate8ection
3.3 by the Induction method and the Conclusion bfs tmanuscript. Since

dB(t X(t), ﬁ(t )?(t))) DB(X(t) t)
Dt

Sincep

, this implies the limit results in Appendix A ateetequivalent

to thls sectlon In Section 3.3 the Lagrangian diates are identical to the Eulerian
coordinates at sampled times and space by coristipetithough the notation differs.
Thus, Section 3.3 will prove the integration resdtow.
[y 2y 28 100 100N, (" g (%00 (5.565) ) s = ol
o \as 99X, ToX, " p,aX, p, 0x; )T ) st \B SIS AL ) JAsS = lo
=0

3.3. Sampling the flow field of a 1-dimensional séam and proof by induction

In this section, the results of Section 3.1 andéxujix A will be used, therefore the same
notation is used in this section. What followsaighought experimentwhere the fluid
parcels in a single one-dimensional fluid stream sampled to obtain th" spatial
Cartesian coordinate sampkg, at sample time;, using the same fixed Cartesian 3-
dimensional coordinate system and origin (see Eidgrand using the same start clock
time, £t=0. A more sophisticated samplirexperiment has been performed in a computer
simulation in reference [3] for Lagrangian and Eiale coordinates for the same fluid
parcels in a stream flow field.
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Sampled Eulerian coordinates at time t|l

= Surface
—#— Samplad Stream

I Cylnder &

4 X =X, X 0
£ Cartesian Origin

—#— Bottom Track

k{‘tk] Sample inzide -WH_ 1

Figure 1. Spatial Sampling

The Eulerian coordinateX, (t), are sampled spatially for some fixed values Caate
coordinate, R,, and sampled at the time, , and the fluid parcel Lagrangi
coordinatesy(R,, t,), describes fluid parcels along a ~dimensional current flow th;
are measured with respect the same Cartesian coordinate system and origin as
Eulerian coordinatesy,(t,) = B, . Therefore, the sampled Lagrangian coordin
%(Ry, ty) and #(R,_1, t,_,) may not be the same fluid parcel (this definition is noé
standard Lagrangianefinition because it does not use the initial positat the initial
time, 0, as the marker of a fluid parcel insteagsusampled positions and sampled ti
of the fluid current, unless considering the ihisample). This sampling allows uniq
Eulerian coordinates to be assigned to the travellingrdagian coordinates fluid parct
based on the same fixed valued Cartesian coordayatem for each sample or insta
time t,, #(R..t,) =R, , with the same vector value as the sampled Eul
coordinatesX, = R,. The Lagrangian coordinates of the fluid streansampled for
given fixed travel distance L, and some fixed ttatime t in the same Cartesi
coordinates as the Eulerian coordinates of the #tieam; thus, for every fluid piel in
the stream, there exists a Bernoulli line integnadl, by construction, the values of
Lagrangian fluid parcel coordinates and Euleriaordimates are the same within tt-d
stream; therefore, thevelocitiesV, (see reference [3] equation 2 in reference) wil
identical at the same sampled spatial distancesamgled times.

‘ZZ( )_()k! tk)l)'('k:ﬁk = VEuler(ﬁk' tk)lﬁk:i(ﬁk_tk) = VLagrangian(f(ﬁk' tk)' tk) = ﬁ(5C)(1_€k!tk)! tk)
Thus, thefact that the sampled Lagrangian coordinates carsuisstituted into th
Eulerian Bernoulli equation in whicthe velocity field ismplied but not shown since it
too clumsy of a notatic. ~ This demonstrates the material derivative [6firted in
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Appendix A, Section 3.1 and tfield derivativedefined in Section 2 and demonstrated in
Section 3.2 are equivalent but differ in mathenadttievelopment since limit definitions
aredifferent. The sampled Bernoulli equations can be spatiatggrated any time, there
is a discussion involving the re-applicationg(Bfis. 7ABC)geven if the spatial integrals
are not shown. The use of the theorem of indaci with a time intervaé, >0
(ex =ty —ty.1 < 1) and Eulerian spatial intervalsAE,| = 0 (|AR,|= |R, — Re_1| <
1) sampling scheme defines coordinai®,,t,), at times, to be used in the partial
sums of the sampled Bernoulli equations. As thetigpand time sample numbers
increases, the number of Lagrangian coordinategeases as well as the number of joint
Eulerian control volumes increases, while keepingatial sample (n+ 1R =
"1 AR, | < (n+ 1)6L = L to a fixed distance @ — 0,n —» « and time sample,,, =
Ml =(+1)é=tto a fixed time as€e >0 and n - . The total mechanical
energy of the fluid is a scalar quantity, whiclaisonstant and therefore is invariant with
respect to the same Cartesian coordinate systerg hsed.

oy

Sr3 1 Sr3 5.z (R tr) 1t
B(%(Ri ti), tre) = 5 uf (R(Rio ti), i) + $(X (R, £1)) + ”("p—:") + o0 i 7x; 45 +1o = By
(7D)
Lagrangian% u?(%,,0) + ¢(%,) + p;x") +1,=B, (7E)
o

Another explanation for (Eqs. 7DE) can be develdpedpplying(Egs. 7A)o these joint
Eulerian control volumes used in spatial integratas thecontrol volume shrinks or
tends to zero; therefore, the Eulerian control nws eventually become the Lagrangian
coordinates of the same or equivalent fluid paroelgarticles that follow a flow defined
by the Navier Stokes equatio(isg. 6)andthe continuity of the fluid. The Lagrangian
coordinate notatior%(R,, t,), is cumbersome; thus, instead of usi(g,, t,) throughout
this manuscript, an equivalent compact form of thiowing Lagrangian coordinate
notation ag(t,) = R, is used, where k is a nonnegative integer (se@dos).

Consider a small fluid cylindrical parcel with coosit volume,sV, (= §Lnér?), with the
small lengthsL, aligned with the 1-dimensional stream flow axidra £' sample. The
fluid cell with Lagrangian initial coordinateg(0) = %,, is at the start of the stream
cylindrical control volume circular face. The Laggian initial coordinates are equal in
value to the Eulerian coordinatés(= R,), and not near the physical boundaries (i.e., the
fluid parcel is not stagnant, and thus the fluidcphspeed is not zero) within a much
larger physical volum#&/, and have the stream control volua¥g cylinder exterior unit

% Time and spatial sampling of the fluid parcdlsgrangian coordinates at the fixed coordinates,
ﬁk, along the stream’s path for timgedan be expressed in terms of Lagrangian coordinate
coordinatesl_?'k_1 and for time t; via Taylor series; thus, let sampling cases kogmfinity as the
sampling time intervat, = (t;, — t,_,) — 0, and Eulerian sampling distane?,| — 0, as the
sampling distancéL — 0. (This infinitesimal sampling is not required fasreputational use due
to Shannon’s sampling theorem, as long as the atedifluid velocity is band limited).

f(ﬁk, tk) = f(ﬁk—li tk—l) + Gkaf(ﬁk_l, tk_l)/atk_l + Aﬁk . Vf(ﬁk_l, tk—l) + O(Ekz, |Aﬁk|2)
where AR |= |R, — Ri—1| < 8L K 1, €, =t — t;_; < 1 and the gradien¥ is with respect to
I—?)k_lu
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normals,, with small radius§r < 1, i.e.,8V, = §Lnér? - 0 as v » 0. The Jacobian is
not shown since its constant about unity for sti@lés,1 > At =t, —t, = t;

. > 3 x(t1) 9
llmltgrqgmfff(wo <%u12 (X(t), t) + ¢ (x(tl)) (—1) _ftl 7 a;z ds+1, —

.. x(t1) t du;
Bo)podV = llmlt5r_,op wwrz( u? (X(t), ty) +¢( (t1)) (—1) —f 1 Uau ds +1, —

Bigs+1,—B,) =0

Lj 0x;
(7F)
by Mean Value Theorem of Integrals for some Lagi@mgoordinate(t;) within 5V,
(i.,e. Re-applying (Egqs. 7ABCD) with the integrand evaluated at some sampled
coordinates®, (within Z.s or R.,s cylinder control volume)). Defining a fluid parcel
Lagrangian coordinates &¢,) = R, (equivalent Eulerian coordinates at titeresults
in the sampled Bernoulli equatior(Eq. 8)

5 1 5 X(t 1ty ou;
BG(t), ) = juf + §G(1)) + 502+ - e, T ds + 1, = B, (8)

For the sample k fluid parcel along the 1-dimemics1ream (see Figure 1), where the
sample time, is the fluid cell's Lagrangian coordinatégt,), and the fluid parcel is
within the relatively small neighborhood &f,_,, (Eqg. 9) if the fluid’s maximum speed
(parallel to the cylinder'sL axis exterior unit normal) is denoted By, = Max u -1,

>> 0, then the time, required to be within the time interval ig& [ 1)6L/U)_1,, kSL/
Ui-]; otherwise, thé(t,) fluid parcel location is outside the axial spatrgegration of
the cylindrical control volumév,_,since control volume encloses the stream only entry
and exit is through the cylinder circular faces.

B)poSLusr? = Gui(F(t), tr) + ¢ (%(t)) + (%)) + ;fo“

By re-applying(Eqgs. 7DEF)with the integrand evaluated at some Eulerian dioates
R, (within B;,_, s control volume), for a fluid parcel Lagrangian coordinatég;,) = R,
results in the sampled Bernoulli equatikrare subtracted by Bernoulli equatié#i.
Subtract thek-1 sampled Bernoulli equatioB(%(t,_;),tx—,) from the K" sampled

Bernoulli equation®(%(t,), t,), and for simplicity, lev(%(¢)) = @ﬂp(}(t)) (if k=1

use(Eqg. 7E))to obtain the difference sample Bernoulli equatifirseach differencé in
(Eq. Si.) i
B(x(ty), ti) — B(X(tx—1), tr-1)

tr

= : ur (X(t), t) ——1 W (X)), tyey) + V(;(t )) - V(;(t )) + - f T.-—aui ds
5 v X b = S k=12 L1 k k=1 o, o,
9)

The implication is that the difference of mechah&@ergy per unit mass {fq. 9)is a
constant zero within the fluid 1-dimensional streamd therefore, the cylindrical control
volume moves to a new start positigi,) (i.e. by placing the start of control volume’s
face center at(t,)). The sample times in the equations can be eeéfas, = t,_; + e,
for integerk > 1; whenk=1, definet, = 0, andt, = ¢, = 0. For each of the cylindrical
volumes gV, = 6Lnér?, are equal to the initial voluméy,. Note that the fluid parcel is
assumed to be mostly advective transport. Fan sampled Bernoulli formul&, there

is a Eulerian coordinat, that is equal to the Lagrangian coordinatgs), within the
cylinder’s volume of Lagrangian coordinat,_,) or X,_, by construction.
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Setk equal to 2 and start this argument over agairséonple equatiok equal to 3, and
so on, when we arrive tor1 difference equations; thus, tkel cylinder start face center
is located a¥(t,). As the number of difference casksincreases with the condition that
the cylinder's volume decreases (i.&L,— 0,6r -» 0) and re-applying Eq. 7F with
Lagrangian coordinatesjor each shrinking control volume &sincreases, this process
increases the resolution. Therefore, the Lagrang@ndinates of the fluid parcel will
match the Eulerian coordinate samples of the sé#uik garcel byconstructionbecause
the fluid flow satisfies the Navier Stokes equati@md the equation of continuity. See
Section 3.1 for proof for the cagel and this result can be repeated forkal See
Section 3.2 for a proof of the integration of teld derivativeused in this section.
Unfortunately, due to space concerns the notatidha same for Section 3.2 but different
notation found in Section 3.B(¥(t,), tx) = B(ty, X(t,), u(X(ty), t;) i.€. fluid velocity field

is implied in the argument of the Bernoulli funatibut not shown in Section 3.3, but
matches notation used in Section 3.1.

Differencek = 1, holds for some t; € [0,;—L] and for coordinate®(t,) and ¥(0) € 8V,
1,L

ty

BE(E),t) = BGE0),0) = 3uf (e, ) ~ U G0),0) + V(Z(e) = V() + o Of s
=0
Differencek = 2, holds for some t, € [— ﬂ] and for coordinate#(t,) and ¥(t;) € &V,

tz
B(X(ty), t;) — B(X(t1), t;) = %u? (E(ty), ) — %u? @(t), t) + V(%) — V(#(t) + o f Ty g—:ds
t

1

= 0
Differencek = n,holds for some t,, € L
X(t,) and X(t,—1) € 6Vy_4

(n—-1)6L néL

o ] and for coordinates
n-1,L

B(%(ty), tn) — B(X(t,_1),t )=1u»2(5c’(t )t )—lu?(f(t ) tae) + V(R(t)) — V(Z( ))+i fr- —ds
n/rtn n—-1/»*n—-1 2 i n,rtn 2 i n—-1/» *n—-1 n n—-1 Po i,j ax]-

th-1
=0
Differencek = n+1,holds for some t,,,, € [nSL (n+1)8L

———1 and for coordinates
UnL Um+1)L

X(tn41) and X(t,) € 6V,
tn+1
1 1 1 du;
B(X(tys1) tns1) — BE(t), ty) =—u (x(tn+1) tpe1) — u (x(t‘n) )+ V(x(tn+1)) V(x(tn)) +— f Ti,jads
-

tn

= 0

Add each difference of the sampled Bernoulli equminto a partial sum composed of
samplesk equal to 1 and 2, and so on. Applying the indurctnethod, for a case n equal
to 1, the sum of equations for differendegqual to 1 and 2 holds by inspection for

selo)
Induction case 1 holds by inspection
2

0

D (BB 6) = BG(6r), ) = BE ), ) = BEO),0) = [ dBGE(),5)
k=1
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t>

1 ou
=5u 2(R(ty), t2) ——u 2(2(0),0) + V(%(t)) = V(%(0)) + — f T 7%, Lds =0
0

Induction case n+1
Assume case n holds, to show the general case bfebk, hadd the finite sum of
differences from 1 to n+1; the partial sums wiltiiease by induction. The partial sum is

valid for the union of the time interval§he time integral holds fare [0 ("“m] The

(n+1LL
case n+1 is given by the finite sum below, whictpatolds by inspection and using the
fundamental theorem of calculus [5]. By definition, = ¥#i(e) = (n+ 1Dé=t.

Case Bernoulli Integral n holds by assumption,

Z(B(x(tk) ti) = BE(te-1), ti-1)) = (B (tn), tn) — B(2(0),0)) = dB(x(S) s)

k=1 0

Case Bernoulli integral n+1,

n+1

Ity = Y ((BG 0,60 = BG (e, t1))) = (BGEns), tar) = BE(E, 1)

k=1
+Z(B(x(tk) ti) — B(Z(ty—1), tk—1))
Int,,, = (B(x(tn+1) tns1) — B(E(ty), tn)) + (B(E(ty), t,) — B(¥(0),0))

Int,,, = f " B R(), ) + f " B R(S), )
t 0

n

Therefore,

tn+1
Intpyy = (B(R(tns1), tar) — B(X(0),0)) = f dB(x(s),s)
0

where the time integral of a field derivative résuh the difference evaluated at the
endpoints of the time integral due to the fundamleiieorem of calculus. Moreover, the
finite sum above and below holds by inspection due toettm-by-term cancellation.

Case n Bernoulli differences sum holds by inspectig

1 Jy;
Z > uf (X(ty), t) — u FGE(tk-1) te) + V(E(6)) = V(Z(te-1)) + f Ti'ja_l;jds

tk—l

- lu 2(R(ty), ty) — Z(x(O) 0) + V(x(tn)) V(x(O)) +—f . .—x:ds
; j

182



On the Field Derivatives and its Application to ik

Case n+1 Bernoulli differences sum,

n+1 tk
1 1 1 ous
Bernoulli ASum = Z S, 6) = W E(te), ) + V(EE) — V(7(6) + - f T, % ds
k=1 ° tk-1 7

tnt1

1., 1, R S 1 oy,
= |GG ), i) — W EE), 6+ V(E i) ~V(EED) + - [ 7y 5erds
2 2 Do dx;

n

N =

n Lk
. 1 N N N 1 du;
+ Z uf (X(t), ty) — Euiz(x(tk—ov tr-1) + V(X(tk)) = V(x(tk—l)) + p_ f Ti,jﬁdsj|
k=1 o j

tk-1

tn+1

) 1., 1., . . 1 du;
Bernoulli ASum = Ui (X(tps1) tner) — Fui (%(tp), ty) + V(x(tn+1)) - V(x(t,,)) +p_ f ri'jﬁds
o j

+ %uf F(tn), ty) — %uf (2(0),0) + V(%(tn) — V(2(0)) +if T Z—:l:ds}
0

Thecombinedinduction case n+1 result is shown below.
tht1
tnya . 1 25 1 2 s R . 1 aui
f dB(X(s),s) = Eui (X(tns1)stner) — Eui (%(0),0) + V(x(tn+1)) - V(x(O)) +— f Ti,j ——ds =0
0 Po ] 0x;

By induction and repeated use (£q. 7F) asn — oo,withSL — 0,6r > 0 and as
ty —tgey = € = 0,a5 € = 0,U(n41y, = U, (n+ 1)L - L; thus, the  limity,ctner =
limit,_.,(n + 1)€ = t converges by construction. Therefore,

limit n ootn+1 B (f(s)' S)
[ BEDD

o ds

P 1 = 1 = - -
=limit o (5 uf (Ftnsa)s taen) = 5uf ((0),0) + V(Z(tnsn) = V(x(O))>
1 (lmit noootnir ou;
+ — Tij 6_ ds=0
Po Jo Xj

The previous equations hold true because the syserfermed before the limits were
evaluated. The limits exist and converge uniformigce the fluid velocity and the
potential functions are continuous functions ofdiand space, and sinkeit,,_,ctp41 =

t converges uniformly by construction. By addingl asubtracting the initial constant
internal energy, all the cases of the partial stnolsl true for the union of the time

intervals,t € [O,Ui]. The final equation yields a line integral of thaterial derivative of
L

the Bernoulli formula within a 1-dimensional streaifherefore, by the law of induction
and the fundamental theorem of calculus [5], theBelli formula holds true, as shown
below.

t

dB(x(s),s) 1, ) 1 o 1, )
J;] Tds = Eui (X(t), t) + V(X(t)) + Ef Ti'ja_xjds + Io —Eui (XO,O) - V(Xo) - Io
0

=0

where we set the time to 03t) to obtaint,.
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Bernoulli’'s principle can be stated @. 10)below, withv (%(t)) replaced by ”("(t))
dE ().
B(E(b),t) = uz(x(t) )+ p(R()) + 22 ("(t)) +-- Ot Uzul ds+1,=B, (10)

This equation is the same result obtained W|th Eanecoordlnates ifEq. 7ABC) but
the interpretation of a line integral is difficuli interpret since the Eulerian coordinates
are fixed in space. Another alternativéaq. 10)is given by the equation below,

AB = B(2(t),t) — B(%,,0) = (AK + AV + AI) = 0

and
1
K =5 @i @), 0) = uf (%, 0))

AV = ¢(E(t) + — (%)) —

oy T (E(s), ) P ds
Substituting the fluid shear stress for mcomptﬂesﬂmds given by [1]
R R ou; (X(s),s)  0u;(xX(s),s)

73, (X(s),5) = 2ue; j(x(s),s) = pu( + )

p(x(t) p(%,)
Po

0

0x; 0x;
Thus,
1 O
5 WD, 0) - u(xo.O))+¢( (t))+p( HO) g3,y - 2E2

+ : (6u [(%(s),s) auj(x(s),s)> ou; (%(s),s) ds —

6x]' 6xi 6xJ

Since pi = vis the kinematic viscosity, and by performing tlseial dimensional analysis

the Bernoulli equation to obtain the Reynolds numbke = w the fluid Reynolds

number is given inEqg. 11) below after cancelling the initial internal energgr unit
mass. The Bernoulli's principléEg. 11) can be restated as the first integral of the
Navier Stokes equation, i.e., the time integrathef Navier Stokes yields the Bernoulli
equation (recall this equation is valid within th@ume integral sign and is obtained by
integration by parts of the dissipation term)

= —uz(x(t) t) — —u 2(%,,0) + ef <6u (g,(j) ,S) auj(a?(s),s)> 6ui(§)(:),s) ds
0

i 6xi i

+9(E(0) + 22— () -2 = (11)

Or

184



On the Field Derivatives and its Application to iEki

limi AB o = limi (AK + AL + AV) a(Xl'XZ'X3)dV
fff Mitacso 3y Po ‘fvf fmitaco st Pod(Ry, Ry Ry) "

V(t)
_ 0(X1,X2,X3) d(X1,X2,X3) dE;
i fﬂ ac® TV DPoG(R, Ry Ry) dffff PEOOP0GR,, Ry, Re) ™ = e

Therefore;" (H +31) =< (k +V+1) =%L =0 in(Eq. 4.4 in reference [1]peglected

the volume integrals, WhICh was the orlglnal claand the time differentiation referred
to is the material derivative field derivative

4. Hamilton-Jacobi partial differential equation of incompressible fluids

This section will develop the Hamilton Jacobi palrtidifferential equation of
incompressible fluids is based on the theorem gepE33 of Gelfand and Fomin’'s book
Calculus of Variationg11] which was adapted to be used for fluid meatgnosing the
field derivative operator instead of the total dative used in the theorem in reference
[11].

Theorem 3. Hamilton Jacobi partial differential equation ohdompressible
fluids.
The first-order system of the Eulerian coordinadeines the fluid velocity

) _ u; (X (), £)

is a field for the second order system of the Eaecoordinates given by
dZXi ad) 1 6p 0?2 Xm(t)

dt2 ~ " oX, p,0X; | oX? dt
if and only if the velocity field satisfies the HHon-Jacobi partial differential

equations of incompressible fluids
du; ou; oy,  d¢ 1 0dp 0%u;

@ "ot TYax, T Tax, poox | ox?
for the second order system of the Eulerian cotigis above.

For the complete proof see reference [11]. Canmgite following optimization of the
functional,j[X;,u;], where the definition of the field derivative ditsampled fluid
parcels coordinates and the fluid field veIocityl'sed

I w] _fﬂfL(t X, d)i' ul,aul)podth— f fff(ul LG Xl,ul,aX))podth

Following reference [1] and the comments made tdoyBarryl D. Holm [12].

dX;
=0
Where the Hamiltonian field function was definedihas
i (X) 1t ou; 1
H(t,Xi,ui, ) uf + ¢(X) + 52— OrUa;‘ ds =1,

Using the Lagrange multlpllers method, mtrodU(mctbnstralnt into the functional
J[X;,u;] so the Eulerian coordinates and Eulerian velazmty be varied independently

[1].
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X, —fﬂ G X g 2 4, dvdt
JIXpwl = i (t i'ui'axj) i( at u;))Po
0V,
A Taylor series approximation (not reproduced hegsjilts in equations 2.13 and 2.15 in
[1] are below in which added restrictions were atlgethe brackets to make clear what'’s
being differentiated.

5X.- oL d oL _ 0H a
i-[a_Xi_E E ]fixedui__a_Xi_ t(ui+ i)
dt
sus 0L, L X OH _SH
wit L i xe = g T g T T M T
Simplifying,
du;,  OH dA

8Xji——t= o L

dx, _oH  oH
g T o, T s

+

The variational derivative of the Hamiltonian isthwirespect to the ¥z of the Internal
energy integral, where there is no implied sumdaghe time integral on the ratio &F i
index virtual velocities (equations 2.17 in [1]dar> t}, = 0).

6H 1 1 aT” du;(X;(s),s)
r f Z, 1 Po 0%, ) S0, X 0,0 %

Hence

dX() 16111 ou;(X;(s),s)
- L@+ f@, s ax,)au o0 8 A

l

Thus, sincg% =u;(X;(0),t), therefore the Lagrange multiplier is given as,
1 aru ou; (X;(s), s)d
f Z; 1P 0%; 5u (X (1), )
where there is no implied in th@ index sum inside the time integral. Performihg t
field derivative on the above equation, by epsiliefta continuity (See reference [1] for

details), and substituting into the second equati@n obtain (since;; = 2ue;;, see

reference [1], equations 2.19-2.23)
d 1 aTl"j

du; OH dA,  9H 3 10t; 9 1 0p

dt ~ “ox, dr_ ox T j=1Po 0% 0X; p, 0X;
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So the Hamilton-Jacobi system of partial differein¢iquations is

dX;(t)

W X (), 1)
du; 0y ou; dp 1 op
ar T o TYax, T Tax, p,ox,

See the example of field derivative of fluid velgdield in Section 2.1.
Q.E.D.

5. Conclusion

This manuscript has demonstrated how Bernoulliisgiple for incompressible viscous
fluids can be formally obtained. The Bernoulli étion, Bz(1),t), is a constant within the
fluid’s stream control volume. The integral obtmaterial derivative of the Bernoulli

function, BG(),6) = 2u(E(®), c)+¢(x(t))+”("(”) I ”Zu‘ds-Ho, is time integrable

within the l-dimensmnal stream since it represethte zero-net change in total
mechanical energy per unit mass of the fluidEas12)shown below.

Jy EEDD g = B(f(t) £) — B((#(0),0) = AB| = 0 (12)
8BJ5 = Su2 ), 0) + $(x(0) + D 4 L [ Takds + 1, — Ut (0, 0) — 9(%,) - 2fa) _
I, = "o

The Bernoulli formula results for Eulerian coordim could also have been simply
obtained by multiplying each Navier Stokes compormrguation with the corresponding
fluid component, adding the three equations, imttgg in time, and then performing a
spatial integration with a constant finite streaotume for a very small time¢, so the

.9 ) . . . .
Jacoblan,%,maconsmnt ~1 since the control volume is nearly static and
1,82,R3

therefore integrating by parts the shear streds matslip condition or shear stress of zero
at the boundary, realizing the terms are perfewt tilerivative and using the fundamental
theorem of calculus [5], except for the shear stresm in which the time integral
remain$.

st aul ou; 0¢ 1op 1 61’11 st DB()_()(S),S)
ffff ( ja—)(j+6—)(i+po 0X; Po aX > udsp,dV = fffj; TdspodV
8V

=0
Therefore, the Bernoulli equation is the first timeegral of the Navier Stokes equations,
i.e., the law of conservation of energy per unissjavhich holds as long as the resulting
surface integral is zerqu 7; ju;n;dS = 0) due to nonslip condition for solid boundaries

or require the fluid shear stress to be null sithee surface normal may be arbitrary in
absence of solid boundaries.

ff”& (6“1 w00 1 O_P_;arl,>ul DEE®.S)

JE)XJ- 0X;  po0X; p, 0X Ds

* Similar process used to obtggs. 6-7ABCDEF)see Appendix A for formal derivation.
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The integrand is zetavithin the stream control volume. (See Sectiona®d Appendix
A, for formal proof)

DB(X(t)t) u; du; . 0 1 ap 1 07 _
Dt at Ty ax; + ax; + Po 0X;  po OX; u; =0 (13)

By carrying out the material or field derivativetbe Bernoulli equation and considering
term-by-term comparison with the results in Appandlito obtain cancellations of equal
terms. Therefore, within the 1-dimensional strebensampled Eulerian and Lagrangian
coordinates are equivalent by construction, theeri@dtderivative is conjectured to be
equivalent to thdield derivativewithin the stream developed in Section 3.2. Ss#ién
3.2 for a formal demonstration and notation offtbkl derivativeused below.
t v t = 1874
f DB(X(S),S) ds — f dB(s,x(s),u(X(s),s)) s
o Ds 0 ds
= B(t, (), 4(X(t), t)) — B(0,%(0),%(X(0),0) = ABJ.

AB _ft Oui_l_ Oui+6¢+1 op 101y ds—0
o= ), \as TYax, T ax;, " p, 0K, p, 0%, )T

From the examples in Section 2.2, fledd derivativeoperator does not behave like a Lie
derivative or covariant derivative (see referen@p, [thus thefield derivativeis not a
parallel vector transport differentiation processt rather a directional derivative which
maps to the tangent space of a field functior.(F(t, X(¢),%(X, t))) in the phase-space-
time domain (7 dimensions).

Although for the Lagrangian coordinates, the timehie Bernoulli integral upper limit is
assumed to be for short times, let time o, in (Eq. 12) a viscous fluid without external
potentials ¢ = 0); thus, the change in kinetic energy per unit maiisgo to a small
constant, the change of internal energy per unisnvell be a small constant since the
fluid flow is due to thermal energy, and so wiletbhange in potential energy per unit
mass.

o]

x(0)) —p(x 1 ou;
+M+—f1’id~—1d$=AK+ AV + Al =0

1, . 1,
SURGE(e), 0) = FUF (%,,0) 7

2 Po
By using the triangle inequality, the equation belodicates the absolute value of the
change in internal energy density remains finitehimithe fluid finite volume as long as
the absolute value of the change in kinetic enafgysity and absolute value of the
change in the potential energy density are botméded by a constari,
if ri,j%ds lp(%,) — p(2(e))]
Po 0 axj Po

1
< 5 luf (%, 0) — uf (%(0), )| + < |AK| + |AV| < B

In equations 5, 6 and 7ABCDEF, the Eulerian cylicalr control volumes were used.
When considering the Bernoulli formulas, the E@ercoordinates were used for small
volumes with the re-application ¢Eq. 7F)and a sampling scheme. By construction,

®> A more formal method of proof has been yse® Appendix A for formal derivation.
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start of the Lagrangian coordinates at the Eulestegam control volume cylindrical face
was used as the lim&Vv, - 0 asér - 0,and 5L — 0 by reapplying to the(Eq. 7F)
Eulerian stream control volume tended to zero stheestream control volumes became
fluid parcels or particless¢, — 0, as 6r — 0) within a 1-dimensional stream.

Section 4.0develops the Hamilton Jacobi partial differentigliation of incompressible
fluids based on a theorem in reference [11] and daleulus of variation method
developed in reference [1].

Acknowledgements. The author would like to thank the anonymous reeiessand chief
editor of APAM for their time and effort spent ieviewing this article.

6. Appendix A: Material derivative of the total mechanical energy
Taking the material derivative (using the symbalvided by Batchelor [7]) of the total
mechanical energy,

0(X1,X2,X3)

5B = [[[ 5 (BE©.0)0 S fff = (BA®,0)poaV =0

8V,
Since the control volume is a finite static consthe materlal derivative and the integral
commute. Notice the Jacobian for incompressihla$l may be a constant near unity.
Using definition of Material Derivative Equation &4rom reference [6] in page 20 (here
the Batchelor symbol for material derivative operas being used instead of reference

[6] suggested operator symbﬁ{, since this symbol can be confused with the viaral
derivative operator in reference [1].

b (cx B(X,t +At) - B(X,

v + limp, ot - VgB(X, t + At)

Taking the first limit, the total time derivative,
, B(X,t +At) —B(X,t) dB(t,X) B (’)ui 1 oy
limaeo At = Tar lrixea® = 5 = Wige tooTy ax;

Since% {%uf (X,t)} = % by chain rule of differentiation or by definitidielow.
w?(X,t + At) —u?(X,t)
At

a1 . .. 1
a {E uiz (X, t)} = E llmAHo
By Taylor series expansion
- - aui
w (X, c+At) =w(X,6) + S At + 0%

w? (Xt +At) = u?(X,t) + 2u(X, t) At+ 0(At?)

Thus,
w?(X,t + At) —u? (Xt
{ u?(X, t)} ——llmAt_,0 ( Az (X,
ou
llmAt_m(Zu (%, t) + 0(At)) = ﬁ
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The second limit is given by

P(X)

) . 5 0 N dy; d 5
limp;oU - V;(B(X,t + At) = uj7B(X, t)|fixed ¢ = ui(uj ﬁ) + ujﬁqS(X)

ou
Since wj—— ox; ( Z(X t)) <uj X, ) by elementary chain rule of dif ferentiation

Sincejis a summatlon index dummy, replace thietles terms summation index toi,

]OX

. . S a .. ou; a . p(X)
limp,_ou - V;(B(X,t + At) = uja—XjB(X, t) = u; (y; 6_X}l-) + uia—Xidb(X) +u ’OX
Thus,
, - S ou;
limy ot - VgB(X, t + At) = u B(X t) = u;(u ax ¢( )+p oX, p( X))

Adding the results of the two Iimlts
R (OF)) B Elt )+ 5P (®)
Rearranglng terms,

D(B)?(t)t)— o | ou; (X) + X))+ ou
pr BEWO,0) = w5t Jax ¢ anp o W OX;
Since for small time intervalat, the Jacobian is nearly constaﬁM 1, since the

9(R1,R2,R3)
cylindrical control volume is nearly fixed or depisnon higher order terms 0fAt?),
thus the volumey, and theJacobiancan be treated as a constant since the fluid is
incompressible. By integration by parts of the shear stress tassuming theequired
surface boundary condition, where either the fgtbcity has a no-slip condition or the
surface normal is arbitrary; therefore, the shéasss is zero at the volume surface, as
expected.

1 ou; 1 6TU
fff_fi,jﬁpodv = # Ty jUiN;PodS — ff __utpo fff u;podV
5 Po j 8So '

Thus, the material derivative result of the totalatnanlcal energy results in the Navier
Stokes equations.

2 Er(0) = fff e (BR(©,0)pedV = fff “l<at Ja;i ok heom :a?;(j>p"dv

Taking the limit of the cylindrical control volumé&y, = 5Lér?, to zero to enclose the 1-
dimensional stream for a small distange,

_ 1 DB(X(t),t) (ou du, 0 1p 107y,
llm‘%*‘)é_voﬂf pr  \at "Yax, Tax T o,ox, " p, 0x, uipodV =
Vo

Yields, the desired result by reference [2] footnomh page 71 (i.e. use of Mean Value
Theorem for Integrals) valid within every pointtlre 1-dimensional stream.

DB()?(t),t)_(aui+ ui+ dp 1dp 1 afu>u —0
=

Dt ac TYax, Tax, T o ax b, 0x,
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