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Abstract. Let Kj×s denote a complete balanced multipartite graph consisting of j partite 

sets of uniform size s. For any two colouring of the edges of a graph Kj×s, we say that  

Kj×s → (K1,3,G), if there exists a copy of K1,3(Claw graph) in the first colour or a copy of 

G in the second colour. mj(K1,3,G) is defined as the smallest positive integer s such that 

Kj×s → (K1,3,G). In this paper we find all such mj(K1,3,G) for all graphs G on 4 vertices. 
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1. Introduction 
Given any two graphs G and H, the classical Ramsey number (see [2,4,7,8])  r(H,G) is 

defined as the smallest positive integer n such that Kn → (H,G). A natural generalization 

of the popular classical Ramsey number is the size multipartite Ramsey number which 

was introduced a few decades ago (see [1, 9]). The balanced complete multipartite graph 

denoted by K=Kj×s   is defined as a graph consisting of j uniform partite sets s, where 

1,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,( ) ={ , ,..., , , ,..., ,..., , ,..., }s s j j j sV K v v v v v v v v v  

and 
1 , '

, ', ' and( ) = {( , ) | 1 , ' , '}
m m j

m i m iE K v v i i s m m
≤ ≤

≤ ≤ ≠∪ . Given any two colouring 

of the edges of the graph K with HR and HB representing the red and blue subgraphs of K, 

we say that K → (K1,3,G), if there exists a red copy of K1,3 in HR or a copy of G in HB. 

The size Ramsey multipartite number mj(K1,3,G) is defined as the smallest natural 

number s such that Kj×s → (K1,3,G). In this paper we exhaustively find mj(K1,3,G) for all 

graphs G on 4 vertices. 

 
2. Notation 
Given any two colouring of the edges of the graph K = Kj×s, let the red and blue 

subgraphs of K with V (K) = V (HR) = V (HB) be denoted by HR and HB  respectively. In 
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such a situation, we say that K → (K1,3,G), if there exists a red copy of K1,3 in HR or a 

blue copy of G in HB. We define red neighbourhood of any vertex v ∈ K as the set of 

vertices adjacent to v in red and is denoted by NR(v). We also define the red degree of 

any vertex v ∈ K as |NR(v)|. Define ∆(HR) (δ(HR)) be the maximum (minimum) degree of 

the vertices of HR. It is worth noting that any two colouring of Kj×s with HR containing no 

K1,3 will satisfy δ(HB)
 
≥ s(j − 1) − 2. The summary of our findings is illustrated in the 

following table. 

 

mj(T,G) j = 3 4 5 6 7 8 9 ≥10 

Row 1 4K1  2 1 1 1 1 1 1 1 

Row 2 P2U2K1 2 1 1 1 1 1 1 1 

Row 3 2K2 2 2 1 1 1 1 1 1 

Row 4 P3UK1 2 2 1 1 1 1 1 1 

Row 5 P4 3 2 1 1 1 1 1 1 

Row 6 K1,3 3 2 2 1 1 1 1 1 

Row 7 C3UK1 3 3 2 2 1 1 1 1 

Row 8 C4 3 2 2 1 1 1 1 1 

Row 9 K1,3 + x 3 3 2 2 1 1 1 1 

Row 10 B2 4 3 2 2 1 1 1 1 

Row 11 K4  4 3 3 2 2 2 1 

                                                                         
                                                 Table 1: Values of mj(T,G). 
The next section deals with finding mj(K1,3,G) the entries of the above table. Clearly the 
rows corresponding to row 1, row 2, row 4, row 5, follows from Syafrizal et al. (see [3, 7, 
9]) and row 7 and row 10 follows from Jayawardene et al. (see [5, 6]).  
 
3. Size Ramsey numbers mj(K1,3,G) when G is a connected proper subgraph on K4 

Theorem 1. If j ≥ 3, then 

1,3 4

1 10

2 {7,8,9}

( , ) 3 {5,6}

4 4

3

j

j

j

m K K j

j

j

≥
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 =


∞ =

 

Proof: Since (see [2]), when j ≥ 10 , we get mj (K1,3, K4) = 1.   

For j ∈ {7,8,9}, consider the graph K9×1 such that HR = 3K3 and HB = K3,3,3. Then the graph 
has no red K1,3 and has no blue K4. Therefore, m9(K1,3,K4)

 
≥ 2. Next to show m7(K1,3,K4) ≤ 

2, consider any red and blue colouring of K7×2, such that HR contains no red K1,3 and HB 

contains no blue K4. From [5] there is a blue C3 in HB as m7(K1,3,C3) ≤ 2. Without loss of 
generality assume that the blue C3 is induced by say v1,1,v2,1,v3,1. Let W={vk,i |  1 ≤ i ≤ 2, 4 
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≤ k ≤ 7 }.  In order to avoid a blue K4, every single vertex in W has to be adjacent to some 
vertex of S in red. Then by pigeon hole principle at least three vertices of W have to be 
adjacent to some vertex s ∈ S. That is, s ∈ S will be the root of a red K1,3, a contradiction. 
Hence, m7(K1,3,K4) ≤ 2. Therefore, we get 2 ≤ m9(K1,3,K4) ≤ 2 ≤ m8(K1,3,K4) ≤ m7(K1,3,K4) 
≤ 2. That is, mj(K1,3,K4) = 2 for  j ∈ {7,8,9}. 

For j ∈ {4,5,6}, consider the graph K6×2, such that HR = 3C4 as illustrated in 
Figure 1. Then the graph HR has no red K1,3 and has no blue K4. Therefore we get, 
m6(K1,3,K4) ≥ 3. Next to show m5(K1,3,K4) ≤ 3, consider any red and blue colouring of K5×3 

such that HR contains no red K1,3 and HB contains no blue K4. As m5(K1,3,B2) ≤ 3 from [6] 
there is a blue B2 in HB. As HR has no blue K4, without loss of generality assume that the 
blue B2 is induced by say v2,1,v3,1,v4,1,v5,1 such that solitary red edge among these vertex is 
given by (v2,1,v3,1). Let 3,1 4,1 5,1{ , , }S v v v=  and let  W={ vk i | 1 ≤ i ≤ 3, 1 ≤ k ≤ 2 }. In 

order to avoid a blue K4, every single vertex in W has to be adjacent to a  vertex of S in 
red. Thus, as there is no red K1,3, without loss of generality each of the three vertices of S 
will be adjacent in red to exactly two vertices of W with the added condition that (v2,1,v3,1) 
is red. 
 

 
Figure 1: HR  graph related to the proof of m6(K1,3, K4)  3 

However, for{v2,1,v3,1,v4,1,v5,1} not to induce a blue K4 graph, the edge (v2,1,v3,2) has to be a 
red edge (as in order to avoid a red K1,3, both v4,1 and v5,1 cannot be adjacent to any 
vertices of outside of W in red). Similarly, in order for{v2,1,v3,3,v4,1,v5,1} not to induce a 
blue K4 graph, the edge (v2,1,v3,3) has to be a red edge. Thus, we get that 
{ v2,1,v3,1,v3,1,v3,2,v3,3} will induce a red K1,3, a contradiction. Therefore, m5(K1,3,K4) ≤ 3. 
Therefore, we get 3 ≤ m6(K1,3,K4) ≤ m5(K1,3,K4) ≤ 3. That is, m5(K1,3,K4) = 3 for j ∈ {5,6} 

Next let us deal with the case j = 4. Consider the colouring of K4×3, generated by 
HR = 3C4 as shown in Figure 2. Then, K4×3 will not contain a red K1,3 as HR is a regular 
graph of red degree 2. 

 

 

 

Figure 2: HR graph related to the proof of m4(K1,3,K4) ≥ 4 
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Claim. HB is a regular graph containing no blue K4. 
Proof of Claim. In order to have a blue K4, each partite set must contain exactly one 
vertex of the K4. Suppose that HB contains a blue K4 denoted by H. Then, V (H) will 
consist of four vertices x1,x2,x3 and x4, such that xi, i ∈ {1,2,3,4} belongs to the ith partite 
set. 
 
Case 1. If x1 = v1,1 or v1,2. 
Then x2 will be forced to be equal to v2,2. Then the only options left for x3 will be v3,2 or 
v3,3. However, either one of these two choices will not leave an option for x4, a 
contradiction. 
 
Case 2. If x1 = v1,3. 
Then x4 will be forced to be equal to v4,1 or v4,2 However, either one of these two choices 
will not leave an option for x3, a contradiction. 

Therefore, in K4×3, HR contains no red K1,3 and HB contains no blue K4. Thus, we 
get  m3(K1,3,K4) ≥ 4. Next to show, m4(K1,3,K4) ≤ 4 consider any red and blue colouring of 
K4×4, such that HR contains no red K1,3 and HB contains no blue K4. As m4(K1,3,B2)

 
≤ 4 from 

[6] we get that there is a blue B2, in HB. As HR has no blue K4, without loss of generality 
assume that the blue B2 is induced by say v1,1,v2,1,v3,1,v4,1 such that the solitary red edge 
among these vertex is given by (v1,1,v2,1). Define S = {v2,1,v3,1,v4,1}, S1 = {v1,2,v1,3,v1,4}, S2 = 
{ v2,2,v2,3,v2,4} and S3 = {v1,1,v3,1,v4,1}. Next, in order to avoid a blue K4, every single vertex 
in S1 has to be adjacent to a vertex of S in red. Without loss of generality, this gives rise to 
the following three cases. 
 
Case I. (v1,2,v2,1),(v1,3,v3,1) and (v1,4,v3,1) are red edges. 
In order to avoid a blue K4, every single vertex in S2 has to be adjacent to a vertex of S3 in 
red. Thus, without loss of generality, we get the following graph represented in Figure 3.  
 

 
                           Figure 3:                                   Figure 4: 
 

In order for {v1,3,v2,1,v3,2,v4,1} not to induce a blue K4, (v1,3,v3,2) has to be a red 
edge. Similarly, in order for {v1,4,v2,1,v3,2,v4,1} not to induce a blue K4, (v1,4,v3,2) has to be a 
red edge. This gives rise to Figure 4. As indicated in Figure 4, in order for 
{ v1,2,v2,2,v3,2,v4,1} not to induce a blue K4, (v1,2,v2,2) has to be a red edge. Finally, in order 



A size multipartite Ramsey problem involving the Claw graph 

245 
 

 

for {v1,1,v2,3,v3,2,v4,2}, { v1,1,v2,3,v3,2,v4,3} and {v1,1,v2,3,v3,2,v4,4}  not to induce a blue K4, 
(v2,3,v4,2), (v2,3,v4,3) and (v2,3,v4,4), has to be red edges. That is {v2,3,v4,2,v4,3,v4,4} will induce 
a red K1,3, a contradiction. 
 
Case II. (v1,2,v2,1),(v1,3,v3,1) and (v1,4,v4,1) are red edges. 
In order to avoid a blue K4, every single vertex in S2 has to be adjacent to a vertex of S3 in 
red. Thus, without loss of generality we get the following graph represented in Figure 5. 
 

 
Figure 5:                                    Figure 6:           

 
In order for {v1,2,v2,2,v3,1,v4,1} not to induce a blue K4, (v1,2,v2,2) has to be a red 

edge. This will result in the graph represented in Figure 6. 

 
Figure 7:           

 
For {v1,3,v2,3,v3,2,v4,1}, { v1,3,v2,3,v3,3,v4,1} and {v1,3,v2,3,v3,4,v4,1} not to induce a blue 

K4, (v1,3,v2,3) has to be a red edge (since the red degrees of both v1,3 and v2,3 must be at 
most two). Similarly, in order for {v1,4,v2,4,v3,1,v4,2}, { v1,4,v2,4,v3,1,v4,3} and {v1,4,v2,4,v3,1,v4,4} 
not to induce a blue K4, the edge (v1,4,v2,4) has to be red. (since the red degrees of both v1,4 

and v2,4 must be at most two). In order to avoid a red K1,3, v4,2 cannot be adjacent to all 
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three vertices of {v3,2,v3,3,v3,4} in red. Therefore without loss of generality, we may 
assume that (v3,2,v4,2) has to be a blue edge. This gives rise to Figure 7. Then as indicated 
in Figure 7, {v1,3,v2,1,v3,2,v4,2} will induce a blue K4, a  contradiction. 
 
Case III. (v1,2,v3,1),(v1,3,v3,1) and (v1,4,v4,1) are red edges. The resulting graph is represented 
in Figure 8. 
 

 

Figure 8:           
 

It is evident from Figure 8 that in order to avoid a blue K4 every single vertex in 
S2 has to be adjacent to a vertex of S3 in red. But this will force one of the three vertices of 
S3 to have red degree greater than two. Thus, HR will contain a red K1,3, a contradiction. 
From the three cases it follows that, m4(K1,3,K4) ≤ 4. That is, m4(K1,3,K4) = 4 as required. 
Next let us consider the remaining case j = 3. Let t be an arbitrary integer. Consider the 
colouring of K3×t generated by HB = K3×t. Then, K3×t has no red K1,3 or a blue K4. Hence, 
m3(K1,3,K4)

 
≥ t for any integer t. Therefore, we can conclude that m3(K1,3,K4) = ∞. 

 
Theorem 2.  If j ≥ 3, then  

1,3 1,3

1 7

( , ) 2 {5,6}

3 {3,4}
j

j

m K K e j

j

≥
+ = ∈
 ∈

 

Proof: If j ≥ 7, since r(K1,3,K1,3+e) = 7 (see [2]), we get mj(K1,3,K1,3+ e) = 1. 
Colour the graph K6×1 such that HR = 2K3. Then the graph has no red K1,3 and has 

no blue K1,3 +e. Therefore, m6(K1,3,K1,3 +e) 
≥ 2. Next to show m5(K1,3,K1,3 + e) 

≤ 2, 
consider any red and blue colouring of K5×2, such that HR contains no red K1,3 and HB 

contains no blue K1,3 +e. From [5], there is a blue C3, in HB as m5(K1,3,C3) = 2. Without 
loss of generality assume that the blue C3, is induced by say v1,1,v2,1,v3,1. But then if we 
consider the vertex v1,1   it cannot be adjacent in blue to to any of the vertices of 
v4,1,v4,2,v5,1 as it would result in a blue K1,3 + e. Therefore, v1,1 will be a root of a red K1,3, a 
contradiction. Thus, 2 ≤ m6(K1,3,K1,3 + e) ≤ m5(K1,3,K1,3 + e) ≤ 2. That is, mj(K1,3,K1,3 + e) = 
3 for j ∈ {5,6} as required. 
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Figure 9: HR and HB graph related to the proof of m4 (K1,3,K1,3 + e) ≥ 3 
 

Consider the case j ∈ {3,4}. Colour the graph K4×2, such that the red graph HR 

equals to a 2C4 whereas, the blue graph HB equals a K4,4 as illustrated in Figure 9. Then 
the graph has no red K1,3 and has no blue K1,3 + e. Therefore, m4(K1,3,K1,3 + e) ≥ 3.  

To show, m3(K1,3,K1,3 + e) ≤ 3, consider any red and blue colouring of K3×3 such 
that HR contains no red K1,3 and HB contains no blue K1,3 +e. From [5], there is a blue C3 in 
HB as m3(K1,3,C3) = 3. Without loss of generality, assume that the blue C3 is induced by 
say v1,1,v2,1,v3,1. As HB contains no blue K1,3 + e we know that (v3,1,v1,2),(v3,1,v2,2) and 
(v3,1,v1,3) must be red edges. However, this gives a red K1,3 with v3,1 as the root, a 
contradiction. Therefore, m3(K1,3,K1,3 + e) ≤ 3. That is, mj(K1,3,K1,3 + e) = 3 for  j ∈ {3,4} 
as required.                                                                                                                                                                   

The theorem listed below corresponding to row 6 and row 8 is somewhat straight 
forward to prove (also can be proved using a Sage program) and therefore left for the 
reader to verify. 
 
Theorem 3.  If j ≥ 3, then  

1,3 1,3 1,3 4

1 6

( , ) ( , ) 2 {4,5}

3 3
j j

j

m K K m K C j

j

≥
= = =
 =

 

 
4.  Size Ramsey numbers mj(K1,3,G)  when G is disconnected graph on 4 vertices 
We have already dealt with all cases excluding 22 .G K=  We will deal with this in the 
following theorem. 
 
Theorem 4.  If j ≥ 3, then  

 1,3 2

2 if {3,4}
( ,2 ) =

1 if 5j

j
m K K

j

∈
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Proof: Clearly 1,3 2( , 2 ) = 1jm K K  when j ≥ 5,  as 1,3 2( , 2 ) = 5r K K  (see [2]).  

When j ∈ {3,4}, consider the colouring of K4×1 generated by HR = C3. Then, K4×1 has                    
no red K1,3 or a blue 2K2. Therefore, we obtain that m2(K1,3,2K2) ≥ 2. That is,                        
m2(K1,3,2K2) = 2. 
         To show m3(K1,3,2K2) ≤ 2, consider any red and blue colouring of K3×2, such that HR 

contains no red K1,3 and HB contains no blue 2K2. Since HR contains no red K1,3 we get 
δ(HB) ≥ 2. As δ(HB) ≥ 2, we may assume that v1,1, will have two neighbours, denoted by x 
and y such that (v1,1,x) and (v1,1,y) are blue edges. Then as v1,2 also has two blue 
neighbours, this will result in two blue independent edges with one edge adjacent in blue 
to v1,2 and the other adjacent in blue to v1,2. That is, we get a blue 2K2, a contradiction. 
That is, m3(K1,3,2K2) ≤ 2. Therefore, m3(K1,3,2K2) = 2.                                                                                                                                                                                                              
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