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Abstract. The edge Co-PI index of a graph G, denoted by Co − PIe(G), is defined as 
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umGePICo  where mu(e) denotes the number of edges of G whose 

distance to the
 
vertex u is less than the distance to the vertex v. In this paper, the 

upper bounds for the edge Co-PI indices of Corona product product of two connected 
graphs is obtained. Finally, we compute the edge Co-PI indices of Tetrameric 1, 3-
Adamantane. 
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1. Introduction 

All the graphs considered in this paper are connected and simple. A vertex x ∈ V(G) 
is said to be equidistant from the edge e = uv of G if dG (u, x) = dG (v, x), where dG 
(u, x) denotes the distance between u and x in G. The degree of the vertex u in G is 
denoted by dG (u). 

For an edge uv = e ∈ E(G), the number of vertices of G whose distance to the 
vertex u is smaller than the distance to the vertex v in G is denoted by nG

u (e); 
analogously, nG

v (e) is the number of vertices of G whose distance to the vertex v in 
G is smaller than the distance to the vertex u; the vertices equidistant from both the 
ends of the edge e = uv are not counted. 

Similarly, mu(e) denotes the number of edges of G whose distance to the 
vertex u is less than the distance to the vertex v. 
The vertex PI index of G, denoted by PI(G), is defined as )).(
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Co- PI index of G, denoted by Co - PI(G), is defined as ∑
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 The edge PI index of G, denoted by  PIe(G), is defined as  )).(
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 The edge Co-PI index of G, denoted by Co-PIe(G), is defined as   

∑
∈=

−=−
)(

.)()()(

GEuve

eG
vmeG

umGePICo

 
The PI index of the graph G is a topological index related to equidistant 

vertices. Another topological index of G related to distance of G is the Wiener index 
of G, first introduced by Wiener, see [20]. Khadikar, Karmarkar and Agrawal [9] first 
introduced edge Padmakar-Ivan index of graphs and they investigated the chemical 
applications of the Padmakar-Ivan index. The mathematical properties of the PIv and 
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its applications in chemistry and nanoscience are well studied by Ashrafi and 
Loghman [2, 3], Ashrafi and Rezaei [4], Deng, Chen and Zhang [5], Khadikar [8], 
Klavzar [10] and Yousefi-Azari, Manoochehrian and Ashrafi [19]. The vertex PI 
indices of the tensor and strong products of graphs are studied in [14, 16]. In [11, 18, 
12], the PI indices of bridge graphs and chain graphs are discussed. The properties of 
the edge Co-PI indices of graphs are discussed in [1]. In this paper, the upper bounds 
for the edge Co-PI indices of corona product and Tetrameric 1,3-Adamantane are 
obtained. 

 
2. Corona product 
Let G and H be two graphs. The corona product G ◦ H, is obtained by taking one 
copy of G and |V(G)| copies of H; and by joining each vertex of the i -th copy of H to 
the i -th vertex of G, where 1 ≤ i ≤ |V(G)|, see Figure 1. For our convenience, we 

partition the edge set of G ◦ H into three sets, ( ){ },1),(/1 niiHEeHGEeE ≤≤∈∈= �  
( ){ }andGEeHGEeE )(/2 ∈∈= � ( ){ }.)(,1),(,/3 GVvniiHVuuveHGEeE ∈≤≤∈=∈= �  

It is easy to see that E1, E2 and E3 are partition of the edge set of HG � and also 

.)()()(,)()( 321 HVGVEandGEEHEGVE ===  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Figure 1: Corona product of C3  and C4 

 
Theorem 2.1. Let G be connected graph of order n and size p. If H is a triangle free 
and r - regular graph of order m and size q, then Co − PIe(G ◦ H) ≤ Co − PIe(G) + 
n(Co − PIe(H)) + (m + q)Co − PI(G) + nm(2r − p − n(m + q) + 1). 
Proof: We partition the edges of HG � into three sets E1, E2 and E3 defined above. 

First we compute ∑
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Let e = uv ∈ E1. 
 Then from the structure of HG � , we have ( ) )()()( enqmemem G
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Next we compute ∑
∈=

−
2

.)()(
Euve

HG
v

HG
u emem ��

 

Let e = uv ∈ E2. Then from the structure of HG � , we have  
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Finally, we compute ∑
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Let e = uv ∈ E3. Then from the structure of HG � , we have  
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 Now we shall obtain the Co − PIe(G ◦ H). 
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≤ Co − PIe(G) + n(Co − PIe(H)) + (m + q)Co − PI(G) + nm(2r − p − n(m + q) + 1). 
 
3. Edge Co-PI index of Tetrameric 1,3-Adamantane 
From the structure of the graph tetrameric 1, 3-adamantane T A[n], the number of 
vertices and edges are 10n and 13n − 1, respectively, see Figure 2. 
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Figure 2: The tetrameric 1,3-adamantane (TA[3]) 

 
Theorem 3.1. The edge Co-PI index of T A[n] is Co − PIe(T A[n]) ≤ 18n. 
Proof: From the structure of the graph T A[n], we have the following cases of edges. 
If e=uivi then .1)(13)(113)( −−=−= inemandiem G

v
G
u ii

 

If e=uv={x1x2, x5uk, x6x7}, then ).1(133)()(136)( −+=−+= keG
vmandkneG

um  
If e=uv={x1x4, vk-1x5, x7x8}, then ).(133)()1(136)( kneG

vmandkeG
um −+=−+=  

If e=uv={x2vk-1, x3x7, x4uk},  then ).1(13)(136)(3)( −+−+== kkneG
vmandeG

um  
If e=uv={x1x3, ukx8, vk-1x6}, then .3)()1(13)(136)( =−+−+= eG

vmandkkneG
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≤18n. 
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