Annals of Pure and Applied Mathematics Vol. 17, No. 1, 2018, 135-136 ISSN: 2279-087X (P), 2279-0888(online) Published on 17 May 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v17n1a15

Annals of **Pure and Applied Mathematics**

The Infinitude of Solutions to the Diophantine Equation $p^3 + q = z^3$ when p, q are Primes

Nechemia Burshtein

117 Arlozorov Street, Tel Aviv 6209814, Israel Email: anb17@netvision.net.il

Received 14 April 2018; accepted 16 May 2018

Abstract. In this paper, we consider the Diophantine equation $p^3 + q = z^3$ where $p \ge 2$ and q are primes. We determine the value z, and the form of q for which q may be prime. The equation then has infinitely many solutions. The first five numerical solutions in which q is prime are also exhibited.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are for example [1, 2, 5, 6]. The title equation stems from the equation $p^x + q^y = z^2$.

Whereas in most articles, the values x, y are investigated for solutions of the equation, in this paper these values are fixed positive integers. In the equation $p^{3} + q^{1} = z^{3},$ (1)

we consider all primes $p \ge 2$ and q prime. Our objective is to find solutions to equation (1). This is done in Section 2.

2. The main result

In Theorem 2.1, we establish the values q and z in equation (1).

Theorem 2.1. Suppose that $p^3 + q^1 = z^3$ and $p \ge 2$ is prime. For every prime q for which the equation has a solution, then $q = 3p^2 + 3p + 1$ and z = p + 1.

Proof: In equation (1) p < z. Denote z = p + A where $A \ge 1$ is an integer. The equation $p^3 + q = z^3$ then yields

Nechemia Burshtein

$$p^3 + q = (p + A)^3$$

or

$$q = (p + A)^3 - p^3 = 3p^2A + 3pA^2 + A^3 = A(3p^2 + 3pA + A^2).$$
 (2)
Since q is prime, therefore $A = 1$ in (2), and hence

$$q = 3p^2 + 3p + 1.$$
 (3)

Thus, in (3) we have determined the value of each prime q in terms of the prime p. The value z is then z = p + 1. One now obtains

$$p^{3} + (3p^{2} + 3p + 1) = (p + 1)^{3}.$$
 (4)

The identity (4) is valid for each and every prime $p \ge 2$. The value q has been determined, and yields q prime or q composite.

This completes the proof of Theorem 2.1.

The first five solutions mentioned earlier are now presented as follows.

Solution 1. $2^3 + 19 = 3^3$. Solution 2. $3^3 + 37 = 4^3$. Solution 3. $11^3 + 397 = 12^3$. Solution 4. $13^3 + 547 = 14^3$. Solution 5. $17^3 + 919 = 18^3$. The primes p = 5 and p = 7 yield composite values of $q = 3p^2 + 3p + 1$.

Remark 2.1. Every prime p > 2 is either of the form 4N + 1 or 4N + 3. One can easily verify for each prime 4N + 1/4N + 3 that $q = 3p^2 + 3p + 1$ is of the form 4U + 3/4V + 1.

Final remark. All primes p > 3 are also of the form p = 6M + 1 and p = 6M + 5. The prime $q = 3p^2 + 3p + 1 = 3p(p + 1) + 1$ is of the form 6M + 1. There are infinitely many primes of the form 6M + 1. Therefore, there are infinitely many primes $q = 3p^2 + 3p + 1$. Hence, when p, q are primes, the equation $p^3 + q = z^3$ has infinitely many solutions.

REFERENCES

- 1. N.Burshtein, A note on the diophantine equation $p^3 + q^2 = z^4$ when p is prime, Annals of Pure and Applied Mathematics, 14(3) (2017) 509-511.
- 2. N.Burshtein, All the solutions of the diophantine equation $p^3 + q^2 = z^3$, Annals of *Pure and Applied Mathematics*, 14(2) (2017) 207-211.
- 3. N.Burshtein, All the solutions of the diophantine equation $p^3 + q^2 = z^2$, Annals of *Pure and Applied Mathematics*, 14(1) (2017) 115-117.
- 4. S.Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$, where p is a prime number, *Amer. J. Math. Sci.*, 1(1) (2012) 191-193.
- 5. B.Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, *Int. J. Pure Appl. Math.*, 81(4) (2012) 601-604.
- 6. A.Suvarnamani, Solution of the diophantine equation $p^x + q^y = z^2$, *Int. J. Pure Appl. Math.*, 94(4) (2014) 457-460.