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Abstract. In the present investigation, an economic produactjuantity (EPQ) model for
breakable item has been developed with time-seasidemand and breakability rate.
Production process is not perfect and as a rgmatiuces some imperfect quality units.
Breakability rate of the item starts above a certock level and increases with time as
well as stock level. Planning horizon is assumebéastochastic in nature and follows
normal distribution with a known mean and standdediation. Production cost per unit
depends on the production rate and is derived fitmenparticular production function
under which it is being produced. As the presempetitive market situation is full of
uncertainty, another model is developed with thesa@eration of inventory parameters
as fuzzy in nature and obtained results are predertiumerical experiments are
performed to illustrate the model.

Keywords: EPQ model, Stock and time dependent breakabllitpe-sensitive demand,
Random planning horizon.
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1. Introduction

Now-a-days, an economic production quantity (EPQyleh is one of the most essential
methodology and widely applied in the industrialth@& any production sector. The
earlier EPQ models are mostly used to solve theleno of the optimal lot size or the
production runtime to maximize the profit. One ¢ tbasic assumptions of the classical
EPQ model is that all the items produced are diepequality. However, in the realistic
situations, production process is not perfect thhawt the process runtime. Thus, the
assumption of perfect quality production processafit for the industrial applications.
In 1980, Shih [1] investigated first the effectdsfective products on the inventory cost
and also on the production system. After that fategsearch works have been published
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on EPQ models with imperfect quality items alonghwdifferent types of assumptions
(Bakker et al. [2], Hso and Hso [3], Kundu et d], [Ghosh [5], etc). In addition, the
earlier models also implicitly assume that the #geproduced are of perfect quality.
Naturally, it is not happened always and thus,gh{evel production quality can only be
achieved with substantial investment in improvirdg treliability of the production
process. Beek and Puttin [6] have addressed thee igd flexibility improvement
production. Issue of process reliability, qualitggrovement, and set-up time reduction
have been discussed by Porteus [7], Rosenblatt@ad8], etc. They assumed that the
perfect quality units are produced in the in-constate (i.e., beginning of the production
process) and the imperfect quality products ardymred in out-of-control state.

Sometimes, manufacturer of the breakable itemsdikes, items made of mud,
electronic plastic toys, etc., faces a conflictgityiation in their production run time. To
decrease the production cost and set-up cost aifeetempted to go for a large number of
production and at the same time invites more dan@adgs units. Some research papers
has already been published in this direction (Maitsgm and Gnanvel [9], Guchhait et
al. [10], Mandal and Maiti [11]). On the other hauiidis observed that pressure of one
unit onto the other for a long time may increase kineakability rate. So far, in the
literature, there are only few number of invesiigag are presented with this types of
realistic assumption.

Most of the production inventory models have bemmbilated with infinite time
horizon assuming that the demand of the item resnsiime for ever (Maiti and Maiti
[12], Saha and Cardenas-Barron [13], Arif [14],)et&ccording to this assumption,
product specification remains unchanged for eveut Im reality unprecedental
development of technology has led to rapid changproduct specifications (Gurnani,
[15]) with new features. Few investigation havesatly been published incorporating this
type of assumption (Moon and Yun [16], Pal et &F][ Kundu et al. [4]). On the other
hand, items in the market, such as Tab, i-padj dglipment, breakable items such
electronic plastic toys, ceramic, etc. are highmadndable, but normally exist in the
market for a finite time and obviously these typéslemands depend on time. Various
types of investigations have already been madeebgral authors in this direction (Lee
and Hsu [18], Guchhait et al. [10], Kundu et al9][1Mariappan et al. [20]). Again,
lifetime of these types of products is finite aramally it is imprecise (stochastic, fuzzy,
etc.) in nature. In the present investigation deimahthe item is considered as time
dependent and planning horizon is assumed to lonam nature.

Cost of production per unit of an item in any mi&cturing system depends
upon several production related factors such as maaterials, technical knowledge,
production rate, etc. Khouja [21] first developedEPL model under volume flexibility,
where unit production cost depends upon the rawemadd used, and labour force
engaged and tool wear and tear cost incurred. Btiodurate is also an important factor
in any production sector. Increase of productida decreases the unit cost which in turn
increases demand. Again, increase of productioe matreases holding cost which
decreases profit. Hence, the manufacturers facaltbee mentioned contradiction and to
overcome this situation they try to make an optirdatision for maximum profit.
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Khouja and Mehrez [22] presented a classical iromgnmodel and showed that the
optimal production rate is smaller than the promunctrate which minimizes the unit
production cost.

In the present investigation, an imperfect EPQ ehddr breakable item has
been developed in a random planning horizon. Biah#sarate of the item increases not
only the stock label, but also increases with tiPduced defective units are sold at a
reduced price. As the model is developed for tskifmable/decorating items, demand is
considered as time-sensitive. Production costupérdepends on production rate, raw
material cost, labor, tool wear and tear costsgeferal equation, proposed by Cheng
[23], is used to develop the model and also theticelship between set-up cost and
process reliability and flexibility. As today's cpstitive volatile business transaction is
full of uncertainty, inventory/production-inventogolicy with fuzzy coefficients is a
well-established phenomenon in recent years. Aftepnduction of fuzzy set (Zadeh
[24]), it has been well developed and applied widal different areas of science and
technology including inventory control problems (@d25], Guchhait et al. [26, 27,
28]). Another model is developed considering somentory parameters as a fuzzy
number. The present model is solved following GRE&hnique (Using LINGO
software). Numerical examples are used to illustta¢ model.

2. Notations and assumptions for the proposed model

Notations: Explanations
P Production Rate
Ch Holding cost per unitin $
Cp Production cost per unit in $
Tim Raw material cost in $

Selling price per unit in $
Selling price per unit for broken unitin $

& Set-up cost per cycle in $
to Time when inventory level reachggluring production
ty Time when inventory level reachegluring production
to Time when inventory level reachgsafter production
T Cycle length in days
N Number of full cycle during the planning horizon
I Highest inventory level
1(t) Inventory level at any time t
Assumptions:
® Inventory system involves only one breakable item.

(i) Breakability of the itenB(I, t)is stock and time dependent and is of
Y[I(®) — Le ¥E];  p <t <t
0

the formB(I, t):{ elsewhere

wherey andy are constant
(i) Demand of the iter® is considered as time sensitive, i+ D(t)
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Production cost,, is a known function of raw material cogf, the

production rate® and is of the forme,, = 7, + PLTI + Ty, P°2

wherd., is labor charges arfy, is the tool wear and tear cost. and

o, are two positive constants.

&, is set-up cost per cycle in $

Total cost of interest and depreciation per praduactcycle is

inversely related to set-up cosf) and directly relatedto process

reliability (r) according to the following relation (Cheng 1989):
F(§om) = x&o Firbe

wherey, B;, B, are positive constants.

H is planning horizon which is random in nature.

N Number of full cycle are completed during the pliaig horizon.

Selling prices,, = mc,, wherem is the mark-up of the production

costandn > 1.

Broken and defective units are sold at a reducest g, = m,.cp,

wherem,. is the mark-up of the production cost and < 1.

I(1) I(t)

I

0 1o 4 %o T i
Figure 1. Inventory level with time

3. Mathematical formulation

In the development of the model, it is assumed tthetmanufacturer produces the fresh
units at a rateP. So the produced defective units &te— r)P and these defective units
are sold at a reduced price. Production process woto the timet; and after that
customer's demand is met using the stored unitthedend of each cycle inventory level
reaches zero and then production for next cycletsstéhccording to the above
assumptions, the change of inventory level at angt, are given by

(TP —D(); 0<t<t,

di rP—D(t) —B(,t); ty<t<t
at ~ ) =D(t) — : ' 1)

dt D(t) — B(l,t); t1<t<t

=D(t); th<t<T

With boundary conditions(0) = 0,1(ty) = Iy, [(t;) = I, 1(ty) = I, I(T) = 0,
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Here, we considered that the demand is increasiaglacreasing rate and the function is
of the formD(t) = a; — b;e~“1* whereay, b, ¢, are positive constants.
Now, solving the above differential equatidn and using the boundary conditions,
we get
( (rP—a)t+b (1 —e ) /cy
| Ky Yt 4 Kype ¥t 4+ Kpye it + Ky
1(t) = { Ksge 77t 4 Kgge ™ + Kppe ™At + K )

ble—clt
t(]o— c >—a1(t—t6)+b16_clt/cl
1

where K;; = (rP — 1) /v, Ky =b1/(y —c1), Kzz =vIpe¥"/(y =), Kyq=1o—

- bieC1t1 _
Ki1 — Kype~“to — Kyze¥lo,  Kyg =1, +% B 1;_01 —ylpe® ™ /(y — ), K =
b
—ﬂzK77 = __1' Kgg = Vloewto/()/ -Y)
Y Y-
Now using boundary conditions we get,
Iy = (rP —a)ty + by (1 — e~€1%0) /¢, (3)
11 = K44e_Y(t1_t0) + Kgge_lptl + Kzze_cltl + Kll (4)
10 == Ksse_y(té_tl) + Kgge_wté + K77e_clt(,) + K66 (5)
I+ by(e™T — e~1t0) /¢, — a, (T — ) = 0 (6)

From these equations we can get the valugs of,t, andT

Inventory cost calculation:
Total holding cost from the cycle ¢gCy andCy is given by

T to t; to T
Cy =f01(t)dt=.’; I(t)dt+.]; I(t)dt+.]; I(t)dt+.];61(t)dt

0 1

=CH, + CH, + CH; + CH, (say 7)

(rP-a,)t3 +M+ bl(e_czto—l)
2 cy cs
K..(1— e Y({t1—to) Kaa(ePto — g¥ts K. (e C1to — g—C1l1
_ Kal )., Kasl ) , Ko )
14 Y €1
Kss(1— e (-t} Koo (e¥tn — e¥t0) K, (e~cts — g=c1to)
= + +
14 Y €1
+ Kge(to — t1)CH,
bye~C1to a, (T —t§)? ,
= (10 — 1—> (T —t)) — u — by(e~aT — e=c1to) /c2
C1 2
Total sale revenue from one cyclesigRs, where
Rs = [ D(®)dt = ayT + by (e = 1) /c; ®
The salvage valuesg.R,and is given by

where,CH; =

’

CH, + K11 (4
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Ry = [,* BU,t)dt = y(CH + CHs) + ylo(e V=t — 1) /yp ©)
WhereCH, and CH; are given above.

Hence, during the whole planning horizon, totalffip(@;) can be written a& P, where
Py is given by the following equation

Pr = spRs + spp[Ry + (1 = 1)Pty] — Pty — cpCy — $o — F (S0, 7) (10)

3.1. Optimization in different environments

Depending upon the nature of the parameters ofmigstion problems, various types of
optimization problems are faced by the researcHarghe authors' best knowledge, till
now, none has solved non-deterministic problemectly except crisp optimization
problems. Different approaches are used to tramsfthese problems into crisp
environment. The approaches used in this papesusnenarized below.

3.1.1. Crisp optimization problem

A crisp non-linear problem in crisp environment nheydefined as follows:
Determine xq, x5, ... X, to

Maximize f(xq, X3, ... Xn, 1, Az, ... an)}

wherex,, x,, ... x,, are crisp decision variables amd a,, ... a,, are crisp parameters.

(11)

3.1.2. Fuzzy optimization problem
When the parameters, such @sa,, ...a, are fuzzy (triangular type) in nature (i.e.,
dq,dy, ..dyare fuzzy parameters), the above problem (11) exium a fuzzy
optimization problem as

Determine xq, x5, ... X, to
Maximize f(x1, Xy, ... Xp, G, Ay, ... dn)}
Solution Technique: As the optimization of fuzzyjexiive is not well defined, different
authors take the different crisp equivalent of thigective to determine the approximate
solution for the decision maker (DM). Here, Gradddan Integration Representation
(GMIR) method of the fuzzy objective is taken aseguivalent crisp objective and hence

the problem (12) reduced to
Determine xq, x5, ... Xp, to }

(12)

Maximize GMIR of f(x1, Xz, ... Xp, @y, Gz, ... Gp) (13)

Crisp Model (CM): As the planning horizon is taken as random innegatso the
problem is to
Determine the value of P,r and &y to
Maximize N Py (14)
subject toNT —H <0
If p,-be the probability of realizing the constraint 4, then the problem (14) reduces to
Determine the value of P,r and &, to
Maximize N Pr (15)
subject to P(NT — H < 0) > p,
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Using Charns constraint programming approach (ppehdix-A) the problem reduces to
Determine the value of P,r and &, to
Maximize N Pr (16)
subject to NT < H — eoy
where H andg, are mean and standard deviation (normal distobyitof the random
variableH.

Fuzzy Model (FM): Here, it is assumed that someirery costs of the item are
triangular fuzzy number (TFN) (Zadeh, [24]), suchrmark-up of the selling price per
unit i = (mq, my, m3) (hences, = (sp1,5p2,Sp3), Mark-up of the selling price of
deteriorated unitsi, = (m,q, m;, m,3), and the holding cost, = (cp1, Chz, Ch3)-
Then, the expression of the total fuzzy pré&fit = (Prp1, Prp2, Prrs), Where

Prpy = sp1Rs + spr1[Ry + (1 = 1)Pty] — ¢y Pty — cp3Cy — §o — F(§o,7)

Prpz = SpaRs + Spr2[Ry + (1 = 1)Pty] — ¢y Pty — cpaCy — §o — F(§o, 1)

Prps = Sp3Rs + spr3[Ry + (1 = 1)Pty] — ¢y Pty — cp1 Cy — §o — F(&o,7)
Following Graded Mean Integration Representationtho® of fuzzy number (cf.
Appendix-B), defuzzifyingP;» we get
Prp = %[k(PTFl + 2Prpy) + (1 — k)(2Prpy + Pres)] 17)
Now the problem reduces to
Determine the value of P,r and &y to

Maximize N Prp (18)
subject toNT —H <0
Using Charns constraint programming approach (ppehdix-A) in the same way as in
crisp model, the problem reduces to
Determine the value of P,r and &, to
Maximize N Prp (19)
subject to NT < H — eay
where P is given by (17).

4. Numerical illustration
4.1. Crisp model (CM)
The following parametric values are used to illatgrthe crisp model:
a; =80;b; =30;¢, =5;1, =13%;L = 15;Tyy, = 0.11; 0y = 2.1;0, = 0.15; y =
160; f; =056, =4; y=0.03; [, =31;m = 2.2; m,, = 0.8; H = 180:; oy =
1.5; ¢, = 0.2 For stochastic constraint degree of probabijity is taken as 0.95,
i.e.e = 1.645
With these parametric values, results are obtaameltl presented in the following table,
i.e., Table-1.
Table 1. Optimum results of crisp model

P r &o N ty T Pr(Profit)

84.41 0.961: 18.5¢ 5 34.2i 35.51] 24009.7.
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For these assumed parametric values, results ace addtained due to the different
production rates and presented in Table-2.

Table 2: Optimum results for different values Bf

P r &o N ty T Pr(Profit)
83 0.968" 18.6¢ 4 43.1F 44.3¢ 23967.0:
84 0.965¢ 18.5¢ 4 43.1¢ 44.3¢ 23992.9!
85 0.957¢ 18.5: 6 28.3¢€ 29.5¢ 23995.7!
86 0.948: 18.2¢ 7 24.1% 25.3¢ 23861.5!
87 0.946° 18.1¢ 9 18.4¢ 19.7¢ 23818.8:

4.2 Fuzzy model (FM)

Here, another model is considered with the asswmpthat some parameters like
m, m,. and c, etc. are fuzzy in nature. This model is illustrateith the above example
whose parametric values are same as in crisp neadept the fuzzy variables and which
are presented below:

m = (my, my,, my) = (2.15,2.20,2.25), M, = (m,1, My, m,3) = (0.70,0.75,0.82), ¢;, =

(cp1, Chas Cyz) = (0.18,0.20,0.23). Other parametric values are same as in crisp model
With these set of input data, optimum results af fthzzy model are obtained and
presented in the Table-3 and -4.

Table 3: Optimum results of fuzzy model

P r & N ty T Pr(Profit)
83.1¢ 0.950: 18.51] 4 43.3¢ 44.3¢ 23861.1.
Table 4: Optimum results of FM for different productionedP)
P r & N ty T Pr(Profit)
82 0.959° 18.61 2 87.5¢ 88.7¢ 23799.2
83 0.953¢ 18.5¢ 3 57.8¢ 59.3¢ 23829.4!
84 0.945¢ 18.31 4 43.3¢ 44.3¢ 23843.5!
85 0.942¢ 18.2¢ 6 28.3¢ 29.5¢ 23811.9:
86 0.938: 17.9¢ 6 28.3¢ 29.5¢ 237¢82.2¢
5. Discussion

Results of the crisp model are presented in Tabilghkn production rate, reliability of
the production process and set-up cost are decigidables. For different production
rates, results are obtained and presented in Pableis observed from Table-2 that
initially profit increases with production rate, thafter a certain level, profit decreases
with increase of the production rate. Reliabilitf the production process gradually
decreases with the increase of production rateitaagtee with reality. As the reliability
of the production process decreases, total cast@fest and depreciation per production
cycle F(&,,1)) decreases. Which take part in increase of tra prbfit ? On the other
hand, decrease of process reliability indicatesenttwfective units are produced during
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the production run time, which in turn decreases phofit. It can be concluded that,
initially as production rate increases, ‘gain’ dige decrease of the depreciation cost
(F(&y,1)) dominates ‘loss’ due to increase of defectivedpced units and obviously
resultant profit increases. After crossing a carfaibduction rate, ‘gain’ is dominated by
the ‘loss’ and for which resultant profit decreases

Again, to avoid high holding cost, cycle lengi) flecreases (with the increasing
production rate), which in turn increases total bermof cyclesN) in the whole planning
horizon. On the other hand, Hsncrease, set-up cost and machine depreciatidratss
increase and as a result, total profit from thenpilag horizon decreases. With the initial
production rate, resultant effect of increasindipaominates this fact, but after a certain
production rate this is more effective for the faftdecreasing profit. This type of
observation is reflected from both the tables, Table-2 and Table-4. From Table-3, it
can be said that the nature of the obtained resufimilar to the crisp one. More
production rate produces large number of units e & defective ones, together with
more set-up and holding costs. Hence, in any ptitusector, maximum profit depends
on production rate for the imperfect productiongass. Again, it is merely impossible
for the manufacturer to maintain the optimal prdatucrate. So, it is difficult for the
manager to take decision in favour of any sectothat case according to firm's facility a
production rate near to optimal one is followega®mpromise decision.

6. Conclusion

In the present investigation, an imperfect EPQ rhéoiebreakable item is developed
with stock and time dependent breakability raterekiplanning horizon is assumed to be
finite and stochastic in nature. The model is depedl especially for seasonal products.
Demand of the item increases with time at a detrgasite. Total cost of interest and
depreciation per production cycle, i.B(&y, r)is considered as a function of the set-
up(decision)variablg. Again, present competitive market situation i$ éfi uncertainty.
To deal with the uncertain inventory costs, paramgetmay also be considered as
probabilistic in nature. In fact, estimation of pabilistic parameters are made on the
basis of sufficient amount of past data. On thewotiand, when past data is insufficient,
one has to depend on fuzzy representation. Asdtimation of fuzzy parameters can be
made using expert's opinion, hence, for the prepesttlem fuzzy model is adopted.
Some interesting observations are made among whagdt important are (i) Maximum
profit mostly depends on production rate, and Kiyh reliability of the production
process may not give more profit always in an irfgarproduction system. Here, the
formulation and solutions are quite general andcbéhe present models can be extended
as a multi item inventory model to include more stomints such as available space,
available budget, etc. The present investigatioy melude different types of demand
functions- stock dependent, promotional effort delemt, etc. This model can also be
extended to include different types of impreciseeirtory costs such as, rough, fuzzy-
rough, etc.
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Appendix-A
A.1. Optimization with stochastic constraints (F28)]): Letx = (xq, x5, ..., x,)T, be the
decision vectory = (y4, ¥, ..., ¥n)T be the vector ofirandomvariables with known
mean and standard deviation, whergy,,....,y, representsn parameters of the
problem, then a singleobjective optimization probleith stochastic constraints, can be
stated in standard form as follows:

Find x = (X9, Xp, e, Xp)T
which Minimize/Maximize f(x) (20)
subject to P(¢,(x,y) =0) = p, (r=12,..m)

whereP (¢, (x,y) = 0) represents probability of the evept(x,y) = 0).

According to Charnes and Cooper [30], if &l (i =1,2,...,n) follow independent
normal distribution, the stochastic problem stabdve is equivalent to following crisp
nonlinear programming problem

Find x = (X9, X, e, Xp)T
which 2imize]
Maximize
. (21)
subject to
2 1

- ¢ (x,3) 2
b — 6 [XN, (Tfy) a;] =20 (r=12,..m)

whereg, andoy,_are mean and standard deviationpp(x, y) respectively and alsg. is
given by

\/1 fgr /2 g
= — e .
Pr 21 —oo

Appendix-B
B.1. Graded Mean Integration Representation (GMiFJuzzy Number:
Chen and Hsieh [31, 32] introduced GMIR methoskloeon the integral value of graded
meana-level of generalized fuzzy number. The graded metavel value of generalized
fuzzy number

A= (A1, 40,45, 4, is o [HED] g e [0,1].
Then the GMIR of a general fuzzy numbkr
~ 1 [AL(@)+Ag(®) 1 1
P(A) = [y a2 day [ ada = £ [Ay + 24, + 245 + Ay (22)

Here equal weightage has been given to the left ragit parts of the membership
function. The representation given by (22) can dmegalized/modified by replacing
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[w] L € [0,1] with [kA4, (@) + (1 — K)Az(@)], @ € [0,1],

where the value okdepends on the preference of the decision makesteldre, the
modified form of Eq. (22) is

(L alkAL(@)+(1-k)Ag(@)]da 1
wo Todn s = [k(A; +242) + (1 - K)(2A3 + Ay) (23)
0

Po(R) =

The method is also known as k-preference integratépresentation. For the present
investigationk = 0.5.
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