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Abstract. A perfectly regular fuzzy graph is a fuzzy graphttis both regular and totally
regular. A perfectly edge-regular fuzzy graph iszzy graph that is both edge-regular and
totally edge-regular. In this paper, we introduod alassify these types of fuzzy graphs
and study several of their properties, includingvhtbese two classes of fuzzy graphs
structurally relate to one another and severat@if tspectral properties such as isospectral
fuzzy graphs and when the energy of fuzzy graplwaportional to the energy of their
underlying crisp graphs. These properties are etuti particular due to their having at
least one constant function betweerand o.
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1.Introduction
Regular and totally regular fuzzy graphs were fidtoduced in [5]. The fuzzy edge
analog of these concepts, edge-regularity and émtgé-regularity, were introduced and
studied in [18]. These notions of regularity welnewn to be analogous to regularity in the
standard graph theoretic context. These conceptgafarity for both vertices and edges
in fuzzy graphs led to many advancements in thetstral theory of fuzzy graphs. Several
relevant marquee results stemming from this rekdatude [1,3,4,6,8-17,19-23,25-30].

The purpose of this paper is to prepare for a stinge fuzzy graphs that
concurrently exhibit both fuzzy vertex and edgediag properties. These graphs will
eventually help link certain fuzzy systems andgcggstems, allowing for greater ease in
computing properties of these fuzzy systems foreting pruposes [2] or optimizing these
fuzzy networks [7]. We first study perfectly regufazzy graphs, i.e. those fuzzy graphs
which are both regular and totally regular, to firmtessary conditions for vertex regularity
in moderately crisp graphs. We then study perfemtlge-regular fuzzy graphs, i.e. those
fuzzy graphs which are both edge-regular and jotdbe-regular. Spectral properties of
these classes of fuzzy graphs in particular wilptrelate these notions of regularity in
fuzzy graphs to crisp graphs, thus allowing foresmer understanding of these special
classes of fuzzy graphs.

Perfectly regular fuzzy graphs will be characteatizeSection 2 along with several
initial results on perfectly regular fuzzy grapBssimilar study of perfectly edge-regular
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fuzzy graphs will be given in Section 3. From theve will study the combination of these
properties in fuzzy graphs by first studying thiatienships between perfectly regular and
perfectly edge-regular fuzzy graphs in Section d tren by providing a study of their
adjacency matrices in Section 5. The intentionhig body of work is to serve as the
necessary preliminaries for the introduction andlgtof those fuzzy graphs exhibiting
concurrently constant functions and g, including those fuzzy graphs which are both
perfectly regular and perfectly edge-regular. Befae proceed, however, a few relevant
definitions are necessary. Throughout this papedefine the vertex sét of a fuzzy
graph to satisfyg(v) > 0 for all v € V, i.e. the vertex set of the underlying graph of a
fuzzy graph is the same as the vertex set of theyfgraph itself, i.e. the fuzzy graph
contains no necessarily isolated vertices. Edgeslefined similarly. For an introduction
to fuzzy graph theory and its basic definitiong thader is referred to [31]. For analysis
notations and relevant limit theorems, the reaslegfierred to [24].

Definition 1. The degree of a vertexin afuzzy graphis d(v) = Y2, u(vu).
Definition 2. The total degree of a vertexin a fuzzy graphis td(v) = d(v) + o(v).
Definition 3. Aregular fuzzy graph isa fuzzy graph with d(v) =k V v € V.

Definition 4. Atotally regular fuzzy graph is a (not necessarily regular) fuzzy graph with
tdv) =k Vuvev.

Definition 5. A perfectly regular fuzzy graph is a fuzzy graph that is both regular and
totally regular.

Definition 6. The degree of an edgein afuzzy graphis d(uv) = d(u) + d(v) — 2u(uv).
Definition 7. The total degree of an edge in afuzzy graphiis td(uv) = d(uv) + u(uv).
Definition 8. An edge-regular fuzzy graphis a fuzzy graph having d(uv) = k Yuv € E.

Definition 9. A totally edge-regular fuzzy graph isa fuzzy graph with td(uv) = k Yuv €
E.

Definition 10. A perfectly edge-regular fuzzy graph is a fuzzy graph that is both
edge-regular and totally edge-regular.

Definition 11. The order of a fuzzy graphis 0(¢) = Y.,ey a(v).
Definition 12. The size of a fuzzy graph is S(¢) = Y ,yer H(uv).
Definition 13. A fuzzy graph is complete if u(uv) = a(w) Ao(v) V uv € E.

2. Perfectly regular fuzzy graphs
Let & = (V,o0,u) be afuzzy graph. In [5], examples were provideegular fuzzy graphs
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that are not totally regular and of totally regui@zzy graphs that are not regular. In that
same work, Theorerd.11 provided a necessary (but not sufficient) condita the fuzzy
subsets of V for perfectly regular graphs, namely that/ — [0,1] must be a constant
function. We present a modified version of thatgbras it fits the context of perfectly
regular fuzzy graphs now for completeness.

Lemmal. Let ¢ = (V,o,u) bea perfectly regular fuzzy graph. Then o:V — [0,1] isa
constant function.

Proof: Sinceé is perfectly regular, we have thétis both k,-regular andk,-totally
regular. Then we have thatl(v) = d(v) + o(v) =dw) +o(uw) =td(w) V y,v e V.
Sinced(v) = d(u) = k; andtd(v) = td(u) = k,, we have that(v) = o(u), hence if
& is perfectly regular, them must be a constant function.

However, it is obvious that this is not a suffidieondition, as any irregular fuzzy
graph with a constant functiom will be neither totally nor perfectly regular. Thwe may
classify perfectly regular fuzzy graphs as pregithe graphs that are regular with a
constanto.

Theorem 1. A fuzzy graph & = (V, g, u) is perfectly regular if and only if it satisfies the
following conditions:

) ) uww) =) kv ¥ i€ (L, IV}
k+#i k#j
(i) ow) =0o(;) V i,j€{1,...|V[}
Proof: (=>) Let ¢ be perfectly regular. By definitiod is regular, hence it trivially
satisfies(i). Lemma 1 implies that conditiofii) is also met.
(<=) Let & be a fuzzy graph satisfying both conditiofi3 and (ii). Since(i) is the
definition of regularity,¢ is k-regular. Since byii) we have that = ¢ is a constant
function, td(v) =k + ¢ V v € V and thust is both regular and totally regular, herice
is perfectly regular.

This theorem provides a comprehensive clasgifin of perfectly regular fuzzy
graphs as precisely those fuzzy graphs that atgeregith constant. With this definition
now well established, we are ready to prove soritliproperties of perfectly regular
fuzzy graphs.

Observation 1. Let ¢ bea perfectly regular fuzzy graphandlet o(v) = ¢ V v € V. Then
theorder of & is 0(¢) = c|V].

Proposition 1. Let ¢ bea perfectly regular fuzzy graphandlet d(v) =k V v € V. Then

thesizeof ¢ is S(§) = %
Proof: Since ¢ is perfectly regular, we have that(v) =k V veV . Hence
Yver d(v) = k|V|. However, sinced(v) = Y2y p(uv), we have thad e, d(v) =

Yver 2uzy WUV) =2 ep p(uv) = 25(€). Thus we conclude that the size of a
K|V
perfectly regular fuzzy graph réz—

3. Perfectly edge-regular fuzzy graphs
Edge-regularity was pioneered in [3], and theréiwas shown that the edge-regularity
property is a strong analog of regularity in fugrgphs. In an effort to help solidify the
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definition of moderately crisp graphs, we will demstrate results on perfect
edge-regularity analogous to those given in Se@ion perfect regularity in fuzzy graphs.

Lemma 2. Let ¢ = (V,0,u) be a perfectly edge-regular fuzzy graph. Then wi: V XV —
[0,1] isa constant function.
Proof: Sinceé is perfectly edge-regular, we have ti§ats bothk,-edge-regular and
k, -totally edge-regular. Then we have thiat = td(uv) = d(uv) + u(uv) =k, +
u(uv) = td(xy) = d(xy) + u(xy) = ky + u(xy) henceu(uv) = u(xy). Sinceuv and
xy were arbitrarily chosen edges, the proof is cotaple

As in the previous section pertaining to iced, this does not constitute a sufficient
condition for a fuzzy graph to be perfectly edggular. We classify the perfectly
edge-regular fuzzy graphs with the following theore

Theorem 2. Afuzzy graph ¢ = (V,0,u) isperfectly edge-regular if and only if it satisfies
the following conditions:

) Y w@ua)+ ) p(vn) - 2u(wv) = ) w(a) + ) p(yz) = 2u(xy) ¥ uv,xy

ZFU ZFV ZFX ZFY

EE
(i) u(uv) = u(xy) v uv,xy € E.
Proof: (=>) Sinceé is perfectly edge-regular and sin¢g is the definition of an
edge-regular fuzzy grapl§, obviously satisfieqi). By Lemma 2,¢ also satisfiegii).
(<=) Let ¢ be a fuzzy graph satisfying botl) and (ii), i.e. ¢ is k-edge-regular and has
a constaniu = c. Since (i) is the definition of being edge-reguldiij) implies that
tduv) =k+c=td(xy) V uv,xy € E.

Thus we see that the perfectly edge-regulaeyf graphs are precisely those
edge-regular fuzzy graphs with constant nice analog to the case considering vertices of
fuzzy graphs in the previous section. We next mtewome results on the order and size of
perfectly edge-regular graphs.

Observation 2. Let ¢ bea perfectly edge-regular fuzzy graphandlet u(uv) =c Vv uv €
E. Thenthesizeof ¢ is S(§) = c|E]|.

This is the edge-analog of the vertex implicatborthe order of a regular fuzzy graph.
Next we consider the order of a perfectly edgedaduzzy graph. Unlike the problem of
determining the size of a perfectly regular fuzegpd in the previous section, we can no
longer provide an explicit general formula for treler of a perfectly edge-regular fuzzy
graph in the absence of further assumptions. We lvawever, bound the order of a
perfectly edge-regular fuzzy graph.

Theorem 3. Let ¢ be a perfectly edge-regular fuzzy graph. Then the order of ¢ is
bounded between Y ey Vizy u(xv) < 0(€) < |V].

Proof: As the upper bound is obvious, we need only tovg@rte lower bound. This
follows directly from the definition ofu(uv) < o(u)Ac(v). Thus we have that
0(V) =V,p t(xv) is a lower bound for(v) V v € V. The sum of these individual
lower bounds foro (v) is precisely the lower bound stated @¢¢) in the theorem.

We note that a more concise (in terms of paramgeteough slightly worse lower bound
would be|V]| - (AV u(uv)).
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One might expect that, in the presence of moretimétion on the perfectly edge-regular
fuzzy systemé, one could given an explicit formula fax(¢). However, even whe# is
complete, we find that this is not always possilrlesome special cases we may determine
the exact value o0 (¢) this way, but, in general, what we can obtain réigg the order

of a perfectly-edge regular complete fuzzy graph liesult on the use of the lower bound
presented above as an approximationd@¢). These two results are presented in the
ensuing theorems and use the immediately followéngma.

Lemma 3. Let ¢ be a perfectly edge-regular complete fuzzy graph and let u € V. If
3 v € N(u) such that o(u) < o(v), then there exists an edge uv € E such that
p(uv) = o(u).

Proof: Since¢ is completeu(uv) = o(u) Ao(v). Choosev such thatv € N(u) and
o(w) = o). Thenu(uv) = a(u).

Lemmad4. Let P, beanorderingofthe v € N(u) suchthat x <y =>a(x) < a(y). If
P, does not have a unique greatest element for all u € V, then Y ey Ayep u(xv) =
0(%).

Proof: Sinceé is complete and since there is no unique greatestent in, for all
u€evV, we have tha¥ veV 3 u eV s.t.a(v) <o(u). By Lemma 3, we have that
dvev Axzv H(xV) = 0(8).

The above lemma shows that, in a special caseawalirectly compute the order of a
perfectly edge-regular complete fuzzy graph. Howethds is not the case in general.
From the previous lemma, one may guess Bat, A, u(xv) =c|V| is a decent
approximation for the order of a perfectly edgedtag complete fuzzy graph. We use the
following theorem to strengthen the validity ofdlsum as an approximation of the order of
a perfectly edge-regular complete fuzzy graph.

Theorem 4. Let 0(¢) represent the order of a perfectly edge-regular complete fuzzy
graph & with constant u = ¢, let 7 be the independent set of all vertices v such that
Auv € E such that u(uv) = a(v), and let |7| = a|V|. Then (1 —a(1l —¢))0() <
ZVEV Nxzv u(xv) < O(E)
Proof: As the upper bound was established in Theorene3ieed only to prove the lower
bound. LetV; be the set of vertices € V such thauv € E such thatu(uv) = o(v),
and letV, = V\V,, i.e. V, is the independent set described in the stateofiéme theorem,
hence|V,| = a|V|. Thus we may write a lower bound for(¢) as
ZveVl Nxzv .u(xv) + ZUEVZ Axzv :u(xv) < ZUEVl G(v) + ZVEVZ 0'(17) (1)
By definition of V; we have thadl ey, Avzy u(xV) = Xyey, 0(v), SO We may rewrite
this lower bound ai ey, Axzv H(xV) < XYyey, o(v) With equality holding only when
V, = @. Sinceu = ¢ is a constant function due to the perfect edgeleety of £, we may
obtain an upper bound on the difference betweetwbesides of our inequality as

a(l - C)|V| = ZVEVZ G(v) - ZVEVZ Axzv u(xv) (2)
Thus we may bound ey Ay+p, 1(xv) in both directions as follows
Yvev 0(0) —a(1 = )|V < Ypev Axzp u(XV) < Ypey (V) 3)
By dividing through by0o(¢) we obtain
_a(1=9)|V| _ Yvev Axzvu(xv)
1 0(®) = 0($) =1 @)
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By noticing thatl < M <1 and making a small sacrifice to our lower boune olstain

0(§) ~ ¢
1_a(1_c)sw<1 (5)

0(§) -

By multiplying through byo (¢) we complete the proof.
Thus we establish what is a decent estimatoreobtier of an edge-regular fuzzy graph.
In particular, this result generalizes Lemma 4 sitigs would amount to the case where

a = 0 and the lower and upper bounds become equal.

4. Relating vertex and edge-regularity in fuzzy graphs

In this section, we study what additional propertiee needed for one form of regularity in
fuzzy graphs to imply the other form of regulariys we saw in Theorem 1, a perfectly
regular fuzzy graph is a fuzzy graph that is regatad has a constant functien The first
guestion we ask relating regular and edge-reguiazyf graphs is: What happens if a
(perfectly/totally) regular fuzzy graph has a canstfunctionu?

Lemma 5. If & is regular and u = c is a constant function then & is perfectly
edge-regular.

Proof: Let & be a regular fuzzy graph and let= ¢ be a constant function. Then
d(v) =k V v €V wherek is simply a multiple ofc. The degree of an arbitrary edge of
& is then d(uv) =d)+dw)—2u(uv) =2k —2c =2(k—c) hence & is
edge-regular. Since the total degree of an edgefiurzy graph igd(uv) = d(uv) +
u(uv), we have thatd(uv) = 2(k —c) + ¢ = 2k — ¢ for all edges iné. Thus¢ is
totally edge-regular and therefore perfectly edzgpitar.

Since perfectly regular fuzzy graphs are regylarfectly regular fuzzy graphs with a
constant functioru are necessarily perfectly edge-regular. Howeves, mot the case in
general that totally regular fuzzy graphs with angtant functionu are perfectly
edge-regular; just considerthe following countersgke (Figure 1).

AN
o

Figure 1:
Let o(a) = a(c) = 0.2, leta(b) = o(d) = 0.1, and letu = .1 be a constant function.
Then the degree af andc is 0.2 while the degree ob andd is 0.3, yet the total
degree of every vertex is precisdly. Hence this counterexample has a constaand is
totally regular, but is not regular. To see thas ihot edge-regular, consider the edgés
and bd. We have thati(ab) = 0.3 # 0.4 = d(bd). Sincepu is constant, clearly this
counterexample cannot be totally edge-regulariasivt edge-regular.

466



Perfectly Regular and Perfectly Edge-regular Fu@mphs

Theorem 5. If & is perfectly regular and complete then ¢ is perfectly edge-regular.
Proof: Since ¢ is perfectly regularg(u) =ao(v) V u,v €V. Sinceé is complete,
u(uv) = o) Ao(v) V uv € E. Combined, these two facts yield thatis a constant
function. Thus we may apply Lemma 5 and completeptioof.

5. Some spectral properties of edge-regular fuzzy graphs

In this section, we study some basic spectral ptiggeof perfectly edge-regular fuzzy
graphs. The adjacency matrix of a fuzzy gragl¥), is defined asA($) = (a;5) =
u(v;v;). Given this, we will focus our attention on thefpetly edge-regular fuzzy graphs
since these graphs satisfy the property thas a constant function. Accordingly, we begin
with the following observation.

Observation 3. Let ¢ be a perfectly edge-regular fuzzy graph with u = ¢ and let G be
the underlying crisp graph of &. Then A(¢) = cA(G).

Given this simple observation, we can immediagglymerate several spectral properties
of perfectly edge-regular fuzzy graphs.

Theorem 6. Let ¢ be a perfectly edge-regular fuzzy graph and let G be its underlying
crisp graph. If A isan eigenvalue of G then cA isan eigenvalue of €.
Proof: This follows directly from the fact thatX = AX implies cAX = cAX.

Theorem 7. Let & and &, be two perfectly edge-regular fuzzy graphs with respective
underlying crisp graphs G; and G,, respectively. If G; and G, are isospectral and
c1 = ¢y, then & and &, areisospectral.

Proof: From Theorem 6 we have that the multiplicitiestbé eigenvalues will be
unchanged and that the eigenvalues of the fuzzhgraill both be scaled by, henceé;
and ¢, are isospectral.

Theorem 8. Let ¢ be a perfectly edge-regular fuzzy graph and let G be its underlying

crisp graph. If theenergy of G is E(G), thentheenergy of ¢ is E(§) = cE(G).

Proof: By definition the energy o€ is given byE(G) = Yi=; |4;| where the; are the

eigenvalues ofz. By Theorem 6 we have that the energyéofs given byE(§) =
i=1 ledi| = c Xizq 14| = cE(G).

6. Conclusion

In this paper, we began a systematic study of tasses of fuzzy graphs, perfectly regular
and perfectly edge-regular fuzzy graphs, that fudzy graph theory to graph theory in
several important aspects, most notably by studgimme of the structural and spectral
properties of these graphs. Given the ubiquityraph theory in applied settings and the
growing implementation of fuzzy graph theory in kexb settings, linking together these
two types of graphs offers a potential means ta tfee extra benefits of a generalized or
more flexible model while restricting the computaial effort needed to gain these
benefits.
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