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Abstract: A chemical graph or a molecular graph is a simple graph related to the structure 
of a chemical compound. The connectivity indices are applied to measure the chemical 
characteristics of compounds in Chemical Graph Theory. In this paper, we determine the 
multiplicative atom bond connectivity index and geometric arithmetic index of three 
families of dendrimer nanostars. 
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1. Introduction 
Let G = (V(G), E(G)) be a finite, simple connected graph. The degree dG(v) of a vertex v 
is the number of vertices adjacent to v. For other undefined notations and terminology, 
the readers are referred to [1]. 
 A molecular graph is a finite simple graph such that its vertices correspond to the 
atoms and the edges to the bonds. Chemical graph theory is a branch of Mathematical 
chemistry which has an important effect on the development of the chemical sciences. 
Several topological indices have been found to be useful in chemical documentation 
isomer discrimination, structure property relationships, structure activity relationships 
and pharmaceutical drug design in organic chemistry, see [2]. 
 In [3], Kulli introduced the multiplicative atom bond connectivity index and 
multiplicative geometric arithmetic index of a molecular graph as follows: 
 The multiplicative atom bond connectivity index of a graph G is defined as  

( ) ( ) ( )
( ) ( )( )

2
.G G

G Guv E G

d u d v
ABCII G

d u d v∈

+ −
= ∏  



V.R.Kulli and M.H.Akhbari 

430 

 

 The multiplicative geometric arithmetic index of a graph G is defined as  
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 Recently, several multiplicative indices were studied, for example, in [4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Also some connectivity indices were studied, for 
example in [18, 19, 20, 21, 22]. 
 We consider three infinite classes of dendrimer nanostars NS1[n], NS2[n] and 
NS3[n]. For more information about these dendrimer nanostars see [23, 24]. In this paper, 
we compute the multiplicative atom bond connectivity index and multiplicative 
geometric- arithmetic index for dendrimer nanostars NS1[n] NS2[n]  and NS3[n]. 
 
2. Results for NS1[n] dendrimer nanostars 
In this section, we focus on the molecular graph structure of the first class of dendrimer 
nanostars. This family of dendrimer nanostars is denoted by NS1[n], where n is the steps 
of growth in this type of dendrimer nanostars. The molecular graph structure of NS1[3] 
dendrimer nanostar is depicted in Figure 1. 

 
Figure 1: The molecular graph of NS1[3] 

 
Let G be the molecular graph of NS1[n] dendrimer nanostar. By algebraic 

method, we obtain that G has 27 × 2n – 5 edges. It is easy to see that the vertices of NS1[n] 
are of degree 1, 2, 3 or 4, see Figure 1. Also by algebraic method, we obtain that the edge 
set E(NS1[n]) can be divided into four partitions based on the degree of end vertices of 
each edge as follows: 

( ) ( ) ( ){ }14 | 1, 4 ,G GE uv E G d u d v= ∈ = =  |E14| = 1. 

 ( ) ( ) ( ){ }22 | 2 ,G GE uv E G d u d v= ∈ = =  |E22| = 9×2n + 3. 

( ) ( ) ( ){ }23 | 2, 3 ,G GE uv E G d u d v= ∈ = =  |E23| = 18×2n – 12. 

( ) ( ) ( ){ }34 | 3, 4 ,G GE uv E G d u d v= ∈ = =  |E34| = 3. 
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 In the following theorem, we compute the multiplicative atom bond connectivity 
index of NS1[n] dendrimer nanostars. 
 
Theorem 1. The multiplicative atom bond connectivity index of NS1[n] dendrimer 
nanostar is  
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Proof: By definition, we have  
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In the following theorem, we compute the multiplicative geometric arithmetic 
index of NS1[n] dendrimer nanostars. 
 
Theorem 2. The multiplicative geometric arithmetic index of NS1[n] dendrimer nanostar 
is  
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3. Results for NS2[n] dendrimer nanostars 
In this section, we focus on the molecular graph structure of the second class of 
dendrimer nanostars. This family of dendrimer nanostars is symbolized by NS2[n], where 
n is the steps of growth in this type of dendrimer nanostars. The molecular graph 
structure of NS2[2] dendrimer nanostar is presented in Figure 2. 
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Let G be the molecular graph of NS2[n] dendrimer nanostar. By algebraic 
method, we obtain that G has 36 × 2n – 5 edges. It is easy to see that the vertices of 
NS2[n] are of degree 2 or 3, see Figure 2. Also by algebraic method, we obtain that G has 
three types of edges based on the degree of end vertices of each edge as follows: 

( ) ( ) ( ){ }22 | 2 ,G GE uv E G d u d v= ∈ = =   |E22| = 12×2n + 2. 

( ) ( ) ( ){ }23 | 2, 3 ,G GE uv E G d u d v= ∈ = =  |E23| = 24×2n – 8. 

( ) ( ) ( ){ }33 | 3 ,G GE uv E G d u d v= ∈ = =   |E33| = 1. 

 

 
Figure 2: The molecular graph of NS2[2] 

In the following theorem, we compute the multiplicative atom bond connectivity 
index of NS2[n] dendrimer nanostars.  
 
Theorem 3. The multiplicative atom bond connectivity index of NS2[n] dendrimer 
nanostar is  
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 In the following theorem, we compute the multiplicative geometric arithmetic 
index of NS2[n] dendrimer nanostars. 
 
Theorem 4. The multiplicative geometric arithmetic index of NS2[n] demdrimer nanostar 
is 
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Proof: By definition, we have  
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4. Results for NS3[n] dendrimer nanostars 
In this section, we focus on the molecular graph structure of the third class of dendrimer 
nanostars. This family of dendrimer nanostars is denoted by NS3[n], where n is the steps 
of growth in this type of dendrimer nanostars. The molecular graph structure of NS3[n] 
dendrimer nanostars is shown in Figure 3. 

 
Figure 3: The molecular graph of NS3[n] 

 
 Let G be the molecular graph of NS3[n] dendrimer nanostar. By algebraic 
method, we obtain that G has 58 × 2n – 13 edges. It is easy to see that the vertices of 
NS3[n] are of degree 1, 2 or 3, see Figure 3. Also by algebraic method, we obtain that G 
has four types of edges based on the degree of the end vertices of each edge as follows: 

( ) ( ) ( ){ }13 | 1, 3 ,G GE uv E G d u d v= ∈ = =   |E13| = 2n+1. 

( ) ( ) ( ){ }22 | 2 ,G GE uv E G d u d v= ∈ = =   |E22| = 22×2n – 7. 

( ) ( ) ( ){ }23 | 2, 3 ,G GE uv E G d u d v= ∈ = =  |E23| = 28×2n – 6. 

( ) ( ) ( ){ }33 | 3 ,G GE uv E G d u d v= ∈ = =   |E33| = 6×2n. 

 In the following theorem, we compute the multiplicative atom bond connectivity 
index of NS3[n] dendrimer nanostars. 
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Theorem 5. The multiplicative atom bond connectivity index of NS3[n] dendrimer 
nanostar is  
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Proof: By definition, we have  
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              In the following theorem, we compute the multiplicative geometric-arithmetic 
index of NS3[n] dendrimer nanostars. 
 
Theorem 6. The multiplicative geometric-arithmetic index of NS3[n] dendrimer nanostar 
is  
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