b-Continuity Properties of the Cartesian Product of Tadpole Graphs and Paths

M. Poobalaranjani and S. Saraswathi

PG & Research Department of Mathematics
Seethalakshmi Ramaswami College, Tiruchirappalli, Tamil Nadu, India.

Received 1 November 2017; accepted 9 December 2017

Abstract. A b-coloring by k colors of a graph G is a proper vertex coloring of G using k colors such that in each color class, there exists a vertex adjacent to at least one vertex in every other color class and the b-chromatic number \(\chi_b(G) \) of G is the largest integer k such that there is a b-coloring by k colors. A graph G is b-continuous if G has a b-coloring by k colors for every integer k satisfying \(\chi(G) \leq k \leq \chi_b(G) \). The b-spectrum \(S_b(G) \) of G is the set of all integers k for which G has a b-coloring by k colors. The graph \(T(m, n) \) is the graph obtained by joining a vertex of the cycle \(C_m \) to a pendant vertex of the path \(P_n \) by an edge. In this paper, we find the b-chromatic number of the Cartesian product of the Tadpole graph \(T(m, n) \) and path \(P_r \) for any \(r \geq 1 \). Also, the b-continuity properties of these graphs are discussed.

Keywords: b-coloring, b-chromatic number, b-continuity, Tadpole graph, b-spectrum, Cartesian product.

AMS Mathematics Subject Classification (2010): 05C15

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. For those terminologies not defined in this paper, the reader may refer to [3]. A proper k-coloring of a graph G is an assignment of k-colors to the vertices of G such that no two adjacent vertices are assigned the same color. Equivalently a proper k-coloring of G is a partition of the vertex set \(V(G) \) into \(k \) independent sets \(V_1, V_2, \ldots, V_k \). The sets \(V_i \) (\(1 \leq i \leq k \)) are called color classes with color \(i \). The chromatic number \(\chi(G) \) is the minimum k for which G admits a proper k-coloring. Later, new types of vertex coloring were introduced and one such coloring is b-coloring. The concept of b-coloring was introduced by Irving and Manlove in 1991 [4]. A b-coloring by k-colors of G is a proper k-coloring such that in each color class, there exists a vertex adjacent to at least one vertex in every other color class. Such a vertex is called a color dominating vertex. Hence, if G has a b-coloring by k colors, then it has at least k color dominating vertices. Consequently, G has at least k vertices of degree at least \(k - 1 \). The b-chromatic number of G, denoted by \(\chi_b(G) \), is the largest integer k such that G has a b-coloring by k colors. To determine the upper bound
of \(\chi_b(G)\), the term t-degree of G, denoted by \(t(G)\) was defined as \(t(G) = \max\{i : 1 \leq i \leq |V(G)|, G \text{ has at least } i \text{ vertices of degree at least } i - 1\}\). Hence, the inequality \(\chi_b(G) \leq t(G)\) follows. In 2003, Faik [2] introduced the concept of b-continuity. It was defined as if for each integer \(k\) satisfying \(\chi(G) \leq k \leq \chi_b(G)\), G has a b-coloring by \(k\)-colors, then G is said to be b-continuous. Later the b-spectrum \(S_b(G)\) of G was defined as the set of all integers \(k\) for which G has a b-coloring by \(k\) colors. i.e. \(S_b(G) = \{k: G \text{ has a b-coloring by } k \text{ colors}\}\). If \(S_b(G)\) contains all the integers from \(\chi(G)\) to \(\chi_b(G)\), then G is b-continuous.

A Tadpole graph \(T(m, n)\) [8] is the graph obtained by joining a cycle \(C_m\), \(m \geq 3\) to a path \(P_n\), \(n \geq 1\) with a bridge.

Graphs \(T(5, 1)\) and \(T(3, 4)\) are shown in figure 1.

\[\text{Figure 1:}\]

Definition 1.1 The Cartesian product \(G_1 \times G_2\) of two graphs \(G_1\) and \(G_2\) is the graph with vertex set \(V_1 \times V_2\), and any two distinct vertices \((u_1, v_1)\) and \((u_2, v_2)\) are adjacent in \(G_1 \times G_2\) whenever (i) \(u_1 = u_2\) and \(v_1, v_2 \in E_2\) or (ii) \(u_1 u_2 \in E_1\) and \(v_1 = v_2\).

Cartesian product \(K_2 \times P_3\) is shown in figure 2.

\[\text{Figure 2:}\]

Structural properties of Cartesian product 1.2

i. If \(u \in V(G_1)\) and \(v \in V(G_2)\), then \(|u| \times V(G_2) \equiv G_2\) and \(V(G_1) \times \{v\} \equiv G_1\).

ii. In \(G_1 \times G_2\), there are \(|V(G_1)|\) copies of \(G_2\) and \(|V(G_2)|\) copies of \(G_1\).

iii. \(G_1 \times K_1 \equiv G_1\) and \(K_1 \times G_2 \equiv G_2\).

In this paper, we find the b-chromatic number of \(T(m, n) \times P_n\), the Cartesian product of a Tadpole graph and a path for all \(m \geq 3\) and \(n, r \geq 1\). Also we prove that these graphs are b-continuous.

Graph \(T(4, 3) \times P_2\) is shown in figure 3.
2. Preliminaries
In this section, some properties of the Tadpole graph $T(m, n)$ and some basic results on $T(m, n)$ are given.

Observation 2.1. [4, 5]
i) If G admits a b-coloring with k-colors, then G must have at least k vertices of degree at least $k - 1$.

ii) Any proper coloring with χ colors is a b-coloring.

iii) If G contains an induced path or cycle on at least 5 vertices, then

iv) $\chi_b(G)$ is at least 3.

v) If G contains an induced K_n, then $\chi_b(G) \geq n$.

vi) $\chi(G) \leq \chi_b(G) \leq t(G)$.

vii) $\chi(G), \chi_b(G) \in S_b(G)$ and from the definition of $S_b(G)$, the minimum value of $S_b(G)$ is the chromatic number of G and maximum value of $S_b(G)$ is the b-chromatic number of G.

Observation 2.2. For $m \geq 3$ and $n \geq 1$,
i) $T(m, n)$ has $m + n$ vertices and $m + n$ edges.

ii) $T(m, n)$ has exactly one vertex of degree 3, one vertex of degree 1 and $m + n - 2$ vertices of degree 2.

iii) $\chi(T(m, n)) = \begin{cases} 2, & \text{if } m \text{ is even} \\ 3, & \text{if } m \text{ is odd} \end{cases}$

Theorem 2.3. [8] For $m \geq 3$ and $n \geq 1$,
i) $t(T(m, n)) = 3$

ii) $2 \leq c_b(T(m, n)) \leq 3$.

iii) Tadpole graph $T(m, n)$ is a b-continuous graph.

3. Main results
In this section we prove that the Cartesian product of Tadpole graph and a path is b-continuous. To prove the theorem we use few notations and terminologies.

Notations and Terminologies 3.1
Throughout this paper, the following notations and terminologies are observed.
M. Poobalaranjani and S. Saraswathi

i. c is a function which assigns colors to the vertices of a graph in discussion. Hence, if u is any vertex of a graph, then c(u) denotes its color.

ii. In figures, the color dominating vertices are circled.

iii. We refer to a color dominating vertex as cdv. In particular, if u is a color dominating vertex of color i, then it is referred to as i-cdv.

iv. In T(m, n) × P_r, {v_1, v_2, ..., v_m} represents the vertex set V(C_m) and {u_1, u_2, ..., u_n} represents vertex set V(P_n) of T(m, n) and {w_1, w_2, ..., w_r} represents the vertex set V(P_r). Further P_n is joined to C_m at v_1 by the edge u_1v_1.

With the above notations we observe the following.

Observation 3.2.

i. V(T(m, n) × P_r) = {(v_i, w_k) : i = 1 to m, k = 1 to r} ∪ {(u_j, w_k) : j = 1 to n, k = 1 to r}

ii. V(T(m, n)) × {w_k} ≅ T(m, n) for each k = 1 to r.

iii. \{v_i\} × P_r ≅ P_r for each i = 1 to m and \{u_j\} × P_r ≅ P_r for each j = 1 to n.

Observation 3.3. For m ≥ 3, n ≥ 1 and r ≥ 2

i. |V(T(m, n) × P_r)| = (m + n)r

ii. |E(T(m, n) × P_r)| = (2r - 1)(m + n)

iii. χ(T(m, n) × P_r) = \[
\begin{cases}
2, & \text{if } m \text{ is even} \\
3, & \text{if } m \text{ is odd}
\end{cases}
\]

Observation 3.4. In T(m, n) × P_r, for m ≥ 3, n ≥ 1 and r ≥ 2

i. there are exactly 2 vertices of degree 2,

ii. there are exactly 2(m – 1) + 2(n – 1) + (r – 2) vertices of degree 3,

iii. there are exactly 2 + (m – 1)(r – 2) + (n – 1)(r – 2) vertices of degree 4

iv. there are exactly (r – 2) vertices of degree 5.

Observation 3.5. For m ≥ 3 and n ≥ 1

i. t(T(m, n) × P_r) = 4, r = 2

ii. t(T(m, n) × P_r) = 5, 3 ≤ r ≤ 7

iii. t(T(m, n) × P_r) = 6, r ≥ 8

From observation 2.1(v), 3.3(iii) and 3.5, the b-chromatic number of χ_b(T(m, n) × P_r) lies between 2 and 6. Also from observation 2.1(ii), to prove T(m, n) × P_r is b-continuous it is enough to prove that T(m, n) × P_r has a b-coloring by k colors for each k satisfying χ(T(m, n) × P_r) ≤ k ≤ χ_b(T(m, n) × P_r). From 1.2(iii), T(m, n) × P_r ≅ T(m, n) and from theorem 2.3(iii), T(m, n) is a b-continuous graph. Thus, T(m, n) × P_r is b-continuous for r = 1 and hence we prove theorems to find S_b(T(m, n) × P_r) for various values of m, n and r ≥ 2.
b-Continuity Properties of the Cartesian Product of Tadpole Graphs and Paths

Theorem 3.6. If \(m \) is even, \(m \geq 4 \) and \(n \geq 1 \), then

\[
S_b(T(m, n) \times P_r) = \begin{cases}
\{2, 3, 4\}, & \text{if } r = 2 \\
\{2, 3, 4, 5\}, & \text{if } 3 \leq r \leq 7 \\
\{2, 3, 4, 5, 6\}, & \text{if } r \geq 8
\end{cases}
\]

\[
\chi_b(T(m, n) \times P_r) = \begin{cases}
4, & \text{if } r = 2 \\
5, & \text{if } 3 \leq r \leq 7 \\
6, & \text{if } r \geq 8
\end{cases}
\]

and \(T(m, n) \times P_r \) is a b-continuous graph.

Proof: Since \(m \) is even, from observation 3.3(iii), \(\chi(T(m, n) \times P_r) = 2 \). Hence, \(T(m, n) \times P_r \) has a b-coloring with 2 colors.

Case (i) \(r = 2 \)

By observations 2.1(v) and 3.5(i),

\[\chi_b(T(m, n) \times P_2) \leq 4 \]

We prove that \(T(m, n) \times P_r \) has a b-coloring by 3-colors and 4-colors. Let \(c(v_i, w_k) = k \), \(k = 1, 2 \). Assign colors 2, 3 to the each pair of vertices \((v_i, w_1)\) and \((v_i, w_2)\) for even \(i \) (\(2 \leq i \leq m \)), and to \((u_j, w_1)\) and \((u_j, w_2)\) for even \(j \) (\(2 \leq j \leq n \)). If we assign colors 3 and 1 to the each pair of vertices \((v_i, w_1)\) and \((v_i, w_2)\), for odd \(i \) (\(3 \leq i \leq m - 1 \)), and to \((u_j, w_1)\) and \((u_j, w_2)\), for odd \(j \) (\(1 \leq j \leq n \)). Then \((v_1, w_1)\) is 1-cdv, \((v_1, w_2)\) is a 2-cdv and \((v_2, w_2)\) is a 3-cdv. Then we get a b-coloring by 3-colors.

Next we prove that \(T(m, n) \times P_r \) has a b-coloring by 4-colors. Since there are exactly 2 vertices of degree 4, assign any two colors, namely 1, 2 to those vertices. Let \(c(v_1, w_k) = k \), \(k = 1, 2 \) and \(c(v_2, w_k) = k + 2 \), \(k = 1, 2 \). Let \(c(v_m, w_1) = 4 \) and \(c(v_m, w_2) = 3 \). Assign colors 1, 2 to the each pair of vertices \((v_i, w_1)\) and \((v_i, w_2)\) for odd \(i \) (\(3 \leq i \leq m - 1 \)) and to \((u_j, w_1)\) and \((u_j, w_2)\) for odd \(j \) (\(1 \leq j \leq n \)). If we assign colors 1 and 2 to the each pair of vertices \((v_i, w_1)\) and \((v_i, w_2)\) for odd \(i \) (\(3 \leq i \leq m - 3 \)), and to \((u_j, w_1)\) and \((u_j, w_2)\) for even \(j \) (\(1 \leq j \leq n \)), then \((v_1, w_1)\) is k-cdv and \((v_2, w_2)\) is a \((k+2)\)-cdv, \(k = 1, 2 \). Then we get a b-coloring by 4-colors.

From the above results, \(T(m, n) \times P_r \) has a b-coloring by 2-colors, 3-colors and 4-colors. Hence \(\chi_b(T(m, n) \times P_r) = 4 \) and \(S_b = \{2, 3, 4\} \).

Case (ii) \(3 \leq r \leq 7 \)

By observations 2.1(v) and 3.5(ii),

\[\chi_b(T(m, n) \times P_r) \leq 5 \]

We prove that \(T(m, n) \times P_r \) has a b-coloring by 3-colors, 4-colors and 5-colors. Since \(T(m, n) \times P_2 \) is an induced sub graph of \(T(m, n) \times P_r \), we apply the same color scheme as given in case (i) to \(T(m, n) \times P_r \). In addition, for each odd \(k \), \(3 \leq k \leq r \), \(c(v_i, w_k) = c(v_i, w_1) \), for all \(i = 1 \) to \(m \), and \(c(u_j, w_k) = c(u_j, w_1) \), for all \(j = 1 \) to \(n \). Similarly, for each even \(k \), \(3 \leq k \leq r \), \(c(v_i, w_k) = c(v_i, w_2) \), for all \(i = 1 \) to \(m \), and \(c(u_j, w_k) = c(u_j, w_2) \), for all \(j = 1 \) to \(n \). Then we get a b-coloring by 3-colors and 4-colors.

Next we prove that \(T(m, n) \times P_r \) has a b-coloring by 5-colors. For \(k \), \(1 \leq k \leq r \), assign colors 5, 1, 3 to the vertices \((v_i, w_k)\), colors 4, 2, 5 to the vertices \((v_2, w_k)\) and colors 2, 4,
5 to the vertices \((v_m, w_k)\), in cyclic order. For each odd \(i\), \(3 \leq i \leq m - 1\), assign colors 5, 3, 1 to the vertices \((v_i, w_k)\), and for each even \(i\), \(3 \leq i \leq m - 1\) colors 2, 4, 5 to the vertices \((v_i, w_k)\) in cyclic order.

Similarly, for each odd \(j\), \(1 \leq j \leq n\), assign colors 3, 2, 1 to the vertices \((u_j, w_k)\), and for each even \(j\), \(1 \leq j \leq n\) colors 2, 4, 5 to the vertices \((u_j, w_k)\) in cyclic order.

Therefore \((v_1, w_2)\), \((v_2, w_2)\), \((v_3, w_2)\), \((v_m, w_2)\) and \((v_1, w_1)\) are 1, 2, 3, 4 and 5 color dominating vertices respectively. Then we get a b-coloring by 5-colors.

From the above results, \(T(m, n) \times P_r\) has a b-coloring by 2-colors, 3-colors, 4-colors and 5-colors. Hence \(\chi_b(T(m, n) \times P_r) = 5\) and \(S_b = \{2, 3, 4, 5\}\).

Case (iii) \(r \geq 8\)

By observations 2.1(v) and 3.5(iii),

\[2 \leq \chi_b(T(m, n) \times P_r) \leq 6\]

Let us show that \(T(m, n) \times P_r\) has a b-coloring by 3-colors, 4-colors, 5-colors and 6-colors. Since \(T(m, n) \times P_r\), \(3 \leq r \leq 7\) is an induced sub graph of \(T(m, n) \times P_r\), \(r \geq 8\), we apply the same color scheme as given in case (ii) to \(T(m, n) \times P_r\), \(r \geq 8\). Then we get a b-coloring by 3-colors, 4-colors and 5-colors.

Next we prove that \(T(m, n) \times P_r\) has a b-coloring by 6-colors. For each \(k = 1\) to \(r\), assign colors 6, 1, 2, 3, 4, 5 to the vertices \((v_1, w_k)\), colors 3, 4, 5, 6, 1, 2 to the vertices \((v_m, w_k)\) and 4, 5, 6, 1, 2, 3 to the vertices \((v_2, w_k)\), colors 2, 3, 4, 5, 6, 1 to the vertices \((u_1, w_k)\), \(1 \leq k \leq r\) in cyclic order. For each odd \(i\), \(2 \leq i \leq m - 1\), \(c(v_i, w_k) = c(v_1, w_k)\), for each even \(i\), \(4 \leq i \leq m - 2\), \(c(v_i, w_k) = c(v_2, w_k)\) and for each odd \(j\), \(3 \leq j \leq n\), \(c(u_j, w_k) = c(u_1, w_k)\) and for each even \(j\), \(2 \leq j \leq n\), \(c(u_j, w_k) = c(u_2, w_k)\), for all \(k = 1\) to \(r\). Therefore \((v_i, w_{k+1})\) is \(k\)-cdv for \(k = 1\) to 6. Then we get a b-coloring by 6-colors.

From the above results, \(T(m, n) \times P_r\) has a b-coloring by 2-colors, 3-colors, 4-colors, 5-colors and 6-colors. Hence \(\chi_b(T(m, n) \times P_r) = 6\) and \(S_b = \{2, 3, 4, 5, 6\}\).

From case (i), (ii) and (iii), \(T(m, n) \times P_r\) is a b-continuous graph for \(m\) is even, \(m \geq 4\) and \(n, r \geq 1\).

Theorem 3.7. For \(m = 3\),

\[
S_b(T(m, n) \times P_r) = \begin{cases}
\{3, 4\}, & \text{if } r = 2, \quad n \geq 1 \\
\{3, 4\}, & \text{if } r = 3, \quad n = 1 \\
\{3, 4, 5\}, & \text{if } 4 \leq r \leq 7, \quad n \geq 1 \\
\{3, 4, 5\}, & \text{if } r \geq 8, \quad n \geq 1
\end{cases}
\]

\[
\chi_b(T(m, n) \times P_r) = \begin{cases}
4, & \text{if } r = 2, \quad n \geq 1 \\
4, & \text{if } r = 3, \quad n = 1 \\
5, & \text{if } r = 3, \quad n \geq 2 \\
5, & \text{if } 4 \leq r \leq 7, \quad n \geq 1 \\
6, & \text{if } r \geq 8, \quad n \geq 1
\end{cases}
\]
b-Continuity Properties of the Cartesian Product of Tadpole Graphs and Paths

and \(T(m, n) \times P_r \) is a b-continuous graph.

Proof: Since \(m = 3 \), from observation 3.3(iii), \(\chi(T(m, n) \times P_l) = 3 \). Hence, \(T(m, n) \times P_l \) has a b-coloring with 3 colors.

Case (i) \(r = 2 \) and \(n \geq 1 \)

By observations 2.1(v) and 3.5(i),

\[3 \leq \gamma_b(T(m, n) \times P_r) \leq 4 \]

Since \(T(m, n) \times P_2 \) contains \(K_3 \) as an induced sub graph assign distinct colors to the vertices of \(K_3 \). Let \(c(v_1, w_k) = k \), \(c(v_2, w_k) = k+2 \), \(k = 1, 2 \), \(c(v_3, w_1) = 2 \), \(c(v_3, w_2) = 1 \), \(c(u_i, w_i) = 4 \) and \((u_i, w_2) = 3 \). Then each \((v_i, w_k) \) is a \(k \)-color dominating vertex, and \((v_2, w_k) \) is a \((k+2)\)-color dominating vertex, \(k = 1, 2 \). For each even \(j \), \(c(u_j, w_k) = c(v_1, w_k) \) and for each odd \(j \), \(c(u_j, w_k) = c(u_1, w_k) \), \((2 \leq j \leq n) \), for all \(k = 1 \) to \(r \). Then we get a b-coloring by 4 colors. Hence \(\gamma_b(T(m, n) \times P_r) = 4 \) and \(S_b = \{ 3, 4 \} \).

Case (ii) \(r = 3 \) and \(n = 1 \)

By observations 2.1(v) and 3.5(ii),

\[3 \leq \gamma_b(T(m, n) \times P_r) \leq 5 \]

Since \(T(m, n) \times P_3 \) is an induced sub graph of \(T(m, n) \times P_r \), we apply the same color scheme as given in case (i) to \(T(m, n) \times P_r \). We can get the color dominating vertices. In addition, let each \(i \), \(1 \leq i \leq 3 \), \(c(v_i, w_3) = c(v_i, w_1) \) and \(c(u_1, w_3) = c(u_1, w_1) \). Then we get a b-coloring by 4-colors which is shown in figure 4.

![Figure 4](image)

Next we prove that \(T(m, n) \times P_r \) has no b-coloring by 5-colors.

By observation 3.4, there is exactly one vertex of degree 5 and 5 vertices of degree 4. From the five vertices of degree at least 4, we must get five color dominating vertices. Assign distinct colors namely 1, 2, 3, 4, 5 to these vertices. Let \(c(v_i, w_2) = i \), \(1 \leq i \leq 3 \); \(c(v_1, w_1) = 4 \), and \(c(v_1, w_3) = 5 \). Then \((v_1, w_2) \) is a 1-cdv. To get 3-cdv, let \(c(v_3, w_3) = 4 \) and \(c(v_3, w_1) = 5 \). Then \((v_3, w_2) \) is a 3-cdv. To get 2-cdv, assign colors 4 and 5 to the vertices \((v_2, w_3) \) and \(c(v_2, w_1) \). But this is impossible. From the above discussion, we cannot get a b-coloring by 5-colors. Hence \(\gamma_b(T(m, n) \times P_r) = 4 \) and \(S_b = \{ 3, 4 \} \).

Case (iii) \(r = 3 \) and \(n \geq 2 \)

By observations 2.1(v) and 3.5(ii),

\[3 \leq \gamma_b(T(m, n) \times P_r) \leq 5. \]

We prove that \(T(m, n) \times P_r \) has a b-coloring by 4-colors and 5-colors. Since \(T(m, 1) \times P_r \) is an induced sub graph of \(T(m, n) \times P_r \), we apply the same color scheme as in case (ii) to \(T(m, n) \times P_r \). In addition, for even \(j \), \(c(u_j, w_k) = c(v_1, w_k) \) and for odd \(j \), \(c(u_j, w_k) = c(u_1, w_k) \), \((2 \leq j \leq n) \) for all \(k = 1 \) to \(3 \). Hence we get a b-coloring by 4 colors.

231
Next we prove that $T(m, n) \times P_r$ has a b-coloring by 5-colors. Since there are 6 vertices of degree at least 4, we assign colors 1, 2, 3, 4 and 5 to any five of these vertices. Let $c(v_i, w_j) = i$, $i = 1, 2, 3$; $c(u_i, w_j) = 4$ and $c(v_i, w_j) = 5$, then (v_i, w_j) is 1-cdv. Since $c(v_2, w_2) = 2$ and (v_2, w_2) is adjacent to the vertices of colors 1, 3, assign colors 4 and 5 properly to the adjacent vertices (which are not yet colored) of (v_2, w_2). Therefore, $c(v_2, w_2) = 4$, $c(v_2, w_1) = 5$. Then (v_2, w_2) is 2-cdv. To get (v_2, w_1) is 3-cdv, we must assign color 4 and 5 to (v_2, w_1) and (v_3, w_1). Since (v_3, w_1) is adjacent to the vertices of colors 4 and 5, $c(v_3, w_1) \neq 4$ and 5, Therefore (v_3, w_1) cannot be 3-cdv. Hence assign color $c(v_3, w_2)$ to (v_1, w_1). Since $c(v_1, w_1) = 3$ and (v_1, w_1) is adjacent to the vertices of colors 1 and 5, assign colors 2 and 4 properly to the adjacent vertices (which are not yet colored) of (v_1, w_1). Let $c(v_3, w_1) = 4$ and $c(u_1, w_1) = 2$, then (v_1, w_1) is 3-cdv. Since $c(v_1, w_3) = 5$ and (v_1, w_3) is adjacent to the vertices of colors 1 and 4, assign colors 2 and 3 properly to the adjacent vertices (which are not yet colored) of (v_1, w_3). Therefore $c(v_3, w_3) = 2$, $c(u_1, w_3) = 3$. Hence (v_1, w_3) is 5-cdv. By observation 3.4, $T(m, n) \times P_r$ has one more vertex of degree 4, namely (u_1, w_2). Therefore, we use the vertex (u_1, w_2), to get 4-cdv. Since $c(u_1, w_2) = 4$ and (u_1, w_2) is adjacent to the vertices of colors 1, 2, 3, assign color 5 to (u_2, w_2). Hence (u_1, w_2) is 4-cdv. Let $c(u_1, w_1) = 3$ and $c(u_2, w_2) = 2$. In addition for each odd j, $c(u_j, w_k) = c(u_j, w_k)$ and for each even j, $c(u_j, w_k) = c(u_j, w_k)$, $(3 \leq j \leq n)$ for all $k = 1$ to 3. Then we get a b-coloring by 5-colors. Hence $\chi_b(T(m, n) \times P_r) = 5$ and $S_6 = \{3, 4, 5\}$.

Case (iv) $4 \leq r \leq 7$ and $n \geq 1$

By observations 2.1(v) and 3.5(iii),

$$3 \leq \chi_b(T(m, n) \times P_r) \leq 5$$

We prove that $T(m, n) \times P_r$ has a b-coloring by 4-colors and 5-colors. Assign colors 1, 2, 3, 4 to the vertices (v_i, w_k), colors 2, 3, 4, 1 to the vertices (v_2, w_k), colors 3, 4, 1, 2 to the vertices (v_3, w_k) and colors 4, 3, 2, 1 to the vertices (u_1, w_k) for all $k = 1$ to r in cyclic order. For each odd j, $c(u_j, w_k) = c(u_j, w_k)$, and for each even j, $c(u_j, w_k) = c(v_j, w_k)$, $(2 \leq j \leq n)$ for all $k = 1$ to r. Then (v_i, w_k) is k-cdv, $k = 1$ to 4 and also we get a b-coloring by 4-colors.

Next we prove that $T(m, n) \times P_r$ has a b-coloring by 5-colors. Assign colors 1, 2, 3, 4 to the vertices (v_i, w_k), colors 3, 4, 5, 1 to the vertices (v_2, w_k), colors 5, 1, 2, 3 to (v_3, w_k) and colors 4, 5, 1, 2 to the vertices (u_1, w_k) for all $k = 1$ to r in cyclic order. For each even j, $c(u_j, w_k) = c(v_j, w_k)$, and for each odd j, $c(u_j, w_k) = c(u_j, w_k)$, $(2 \leq j \leq n)$ for all $k = 1$ to r. Then (v_i, w_k) is k-cdv, $k = 1$ to 3, (v_2, w_2) is 4-cdv and (v_2, w_3) is 5-cdv. Thus we get a b-coloring by 5-colors. Hence $\chi_b(T(m, n) \times P_r) = 5$ and $S_6 = \{3, 4, 5\}$.

Case (v) $r \geq 8$ and $n \geq 1$

By observations 2.1(v) and 3.5(iii),

$$3 \leq \chi_b(T(m, n) \times P_r) \leq 6$$

In this case we prove that $T(m, n) \times P_r$ has a b-coloring by 4-colors, 5-colors and 6-colors. Since $T(m, n) \times P_r$ has an induced sub graph of $T(m, n) \times P_r$ $(r \geq 8)$, we apply the same color scheme as in case(iv) to $T(m, n) \times P_r$ $(r \geq 8)$. Then we get a b-coloring by 4-colors and 5-colors.

Next we prove that $T(m, n) \times P_r$ has a b-coloring by 6-colors. If we assign colors 6, 1, 2, 3, 4, 5 to the vertices (v_i, w_k), colors 2, 3, 4, 5, 6, 1 to the vertices (v_2, w_k), colors
b-Continuity Properties of the Cartesian Product of Tadpole Graphs and Paths

3, 4, 5, 6, 1, 2 to (v_3, w_k) and colors 4, 5, 6, 1, 2, 3 to the vertices (u_i, w_k) for all k = 1 to r in cyclic order, then (v_1, w_k) is (k – 1)-cdv for k = 2 to 7. For each even j, c(u_j, w_k) = c(v_1, w_k) and for each odd j, c(u_j, w_k) = c(u_i, w_k), (2 ≤ j ≤ n) for all k = 1 to r. Then we get a b-coloring by 6-colors. Hence \(\chi_b(T(m, n) \times P_r) = 6 \) and \(S_b = \{3, 4, 5, 6\} \).

From case (i), (ii), (iii), (iv) and (v), \(T(m, n) \times P_r \) is a b-continuous graph for \(m = 3 \) and \(n, r \geq 1 \).

Theorem 3.8. If \(m \) is odd, \(m \geq 5 \) and \(n \geq 1 \), then

\[
S_b(T(m, n) \times P_r) = \begin{cases}
\{3, 4\}, & \text{if } r = 2 \\
\{3, 4, 5\}, & \text{if } 3 \leq r \leq 7 \\
\{3, 4, 5, 6\}, & \text{if } r \geq 8
\end{cases}
\]

\[
\chi_b(T(m, n) \times P_r) = \begin{cases}
5, & \text{if } r = 2 \\
6, & \text{if } r \geq 8
\end{cases}
\]

and \(T(m, n) \times P_r \) is a b-continuous graph.

Proof: Since \(m \) is odd, from observation 3.3(iii), \(\chi(T(m, n) \times P_r) = 3 \). Hence, \(T(m, n) \times P_r \) has a b-coloring with 3 colors.

Case (i) \(r = 2 \)

By observations 2.1(v) and 3.5(i),

\[
3 \leq \chi_b(T(m, n) \times P_r) \leq 4
\]

Now we prove that \(T(m, n) \times P_r \) has a b-coloring by 4-colors. Assign colors 1, 3 to \((v_1, w_k)\), colors 2, 4 to \((v_2, w_k)\), colors 3, 1 to \((v_3, w_k)\) for all \(k = 1, 2 \) in order. Let \(c(u_1, w_2) = 4 \), \(c(u_1, w_2) = 2 \). Then \((v_i, w_1)\) is i-cdv and \((v_i, w_2)\) is a \((i + 2)\)-cdv, for all \(i = 1, 2 \). For each even \(i, c(v_i, w_1) = 2 \), \(c(v_i, w_2) = 4 \) and for each odd \(i, c(v_i, w_1) = 5 \), \(c(v_i, w_2) = 1 \) \((4 \leq i \leq m)\). Also, for each even \(i, c(u_j, w_1) = c(v_i, w_1) \) and for each odd \(j, c(u_j, w_1) = c(u_i, w_1) \), \((2 \leq j \leq n)\) for \(k = 1, 2 \). Then we get a b-coloring by 4 colors. Hence \(\chi_b(T(m, n) \times P_r) = 4 \) and \(S_b = \{3, 4\} \).

Case (ii) \(3 \leq r \leq 7 \)

By observations 2.1(v) and 3.5(ii),

\[
3 \leq \chi_b(T(m, n) \times P_r) \leq 5
\]

Since \(T(m, n) \times P_r \) is an induced sub graph of \(T(m, n) \times P_r \), \(3 \leq r \leq 7 \), we get four color dominating vertices. In addition, for each odd \(k, c(v_i, w_k) = c(u_i, w_k) \) and \(c(u_j, w_k) = c(u_i, w_k) \), \((3 \leq k \leq 7)\) for all \(k = 1 \) to \(m \) and for all \(j = 1 \) to \(n \). Then we get a b-coloring by 4-colors.

Let \(c(v_1, w_1) = k \), \(k = 1 \) to 3. Assign colors 3, 4, 5 to \((v_m, w_k)\), colors 4, 5, 1 to \((v_2, w_k)\). In addition, for each even \(i, \) assign colors 5, 1, 4 to \((v_i, w_k)\) and for each odd \(i, \) assign colors 2, 3, 5 to \((v_i, w_k)\) \((3 \leq i \leq m - 1)\) for all \(k = 1 \) to 3 in order. Also assign colors 5, 1, 4 to \((u_k, w_1)\) for all \(k = 1 \) to 3 in order.

For each even \(j, c(u_j, w_1) = c(v_i, w_1) \) and for each odd \(j, c(u_j, w_1) = c(u_i, w_1) \), \((2 \leq j \leq n)\) for all \(k = 1 \) to 3. Each \(c(v_i, w_1) = k, k = 1 \) to 3, is \(k\)-cdv. Also \((v_m, w_2)\) is \(4\)-cdv and \((v_2, w_2)\) is \(5\)-cdv. In addition, for each odd \(k, c(v_i, w_1) = c(v_i, w_3) \), and for each even \(k, \)
M. Poobalaranjani and S. Saraswathi

\[c(v_i, w_k) = c(v_i, w_2), \quad (4 \leq k \leq r) \] for all \(i = 1 \) to \(m \). Then we get a b-coloring by 5-colors. Hence \(\chi_b(T(m, n) \times P_r) = 5 \) and \(S_b = \{3, 4, 5\} \).

Case (iii) \(r \geq 8 \)

By observations 2.1(v) and 3.5(iii),
\[3 \leq \chi_b(T(m, n) \times P_r) \leq 6 \]

We show that \(T(m, n) \times P_r \) has a b-coloring by 4-colors, 5-colors and 6-colors. Since \(T(m, n) \times P_r, 3 \leq r \leq 7, \) is an induced sub graph of \(T(m, n) \times P_r, \) \(r \geq 8, \) we apply the same color scheme as given in case (ii) to \(T(m, n) \times P_r, r \geq 8. \) Then we get a b-coloring by 4-colors and 5-colors. Next we prove that \(T(m, n) \times P_r \) has a b-coloring by 6-colors. Assign colors 6, 1, 2, 3, 4, 5, 1 to the vertices \((v_1, w_k) \), colors 2, 3, 4, 5, 6, 1 to the vertices \((u_1, w_k) \), colors 3, 4, 5, 6, 1, 2 to \((v_m, w_k) \) and colors 4, 5, 6, 1, 2, 3 to the vertices \((v_2, w_k) \) for all \(k = 1 \) to \(r \) in cyclic order. For each odd \(i, c(v_i, w_k) = c(v_m, w_k), \) and for each even \(i, c(v_i, w_k) = c(v_2, w_k), (3 \leq i \leq m - 1) \) for all \(k = 1 \) to \(r. (v_1 w_{k+1}) \) is k-cdv, \(k = 1 \) to 6. Then we get a b-coloring by 6-colors. Hence \(\chi_b(T(m, n) \times P_r) = 6 \) and \(S_b = \{3, 4, 5, 6\} \).

From case (i), (ii) and (iii), \(T(m, n) \times P_r \) is a b-continuous graph for \(m \) is odd, \(m \geq 5 \) and \(n, r \geq 1. \)

4. Conclusion

In this paper, we found the b-chromatic number of \(T(m, n) \times P_r \) and proved that it is a b-continuous graph. This paper can be further extended to the Cartesian product of Tadpole graph and cycle.

REFERENCES

234