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Abstract. In this paper we present some properties in order to solve certain fractional 
differential equation. Mittag-Leffler function plays an important role in the Laplace 
transform to find the solution of fractional order differential equations. Here we solve 
some problems related to fractional order differential equation using fractional Laplace 
Transform with initial conditions. 

Keywords: Riemann-Liouville derivative, Mittag-Leffler function, Jumarie Derivative, 
Fractional Laplace Transforms, Fractional differential equations. 

AMS Mathematics Subject Classification (2010):  34A08 

1. Introduction 
Fractional calculus arises from a question posed by L’Hospital and Lebnitz in1965. It is 
the generalization of integer-order calculus. Reviewing the history we find that the 
Fractional calculus was more interesting topic to mathematicians for a long time in spite 
of the lack of application back ground. Upcoming years more and more researchers have 
paid their attention towards Fractional Calculus which are used in real world problems 
such as Viscoelastic system, dielectric polarization, electromagnetic waves, etc., [8, 9, 5,  
7]. With the great efforts of researchers there have been rapid developments on the theory 
of fractional calculus and its applications. The purpose of this paper is to define the 
Fractional Laplace Transform via Mittag-Leffler function. Mittag-Leffler function is 
defined and with its help the Fractional Laplace Transform is also defined. Here we 
derive some properties of Fractional Laplace Transform based on our definition which is 
more helpful to find the solution of fractional differential equation with the initial 
conditions. 
 
2. Preliminaries 
Definition 2.1. (Riemann-Liouville definition of fractional derivative). Let the function g(t) be one time integrable. Then the integro-differential defines Riemann-Liouville 
fractional derivative[2] 

b���[�(�)] = ��(���) � ����� � (�� � − �)(���)���(�)��, ! > 0 
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This expression is known as the Riemann-Liouville definition of fractional derivative. By 
this definition, fractional derivative of a constant is non-zero. 
 
Definition 2.2. (Modified Riemann-Liouville(RL)). To overcome the shortcoming that 
the fractional derivative of a constant is non-zero, the modification in the definition of the 
fractional derivative, proposed by Jumarie [5] is described as below: 
 

���[�(�)] =
$%%
&
%%'

1)(−!) * (�
� � − �)����+(�)��, ! < 0

1)(1 − !) ��- * (�
� � − �)��[+(�) − +(.)]��,.(+(��0)(-))0, 1 ≤ ! < 1 + 1

4 0 < ! < 1 

 
Definition 2.3. (Mittag-Leffler Function). The one-parameter of Mittag-Leffler function 
[3], denoted by E6(z), is defined by 
 

                         8�(9) = ∑ ;<
�(�=�>)∞>?@ , 9 ∈ ℂ, CD(!) > 0																																																				(1)  

 
2.1. Mittag-Leffler function for fractional derivative 
Mittag-Leffler function is defined in the form of an infinite series with one parameter [3] 

8F(!-F) = 1 + !-F
)(1 + G) + !H-HF

)(1 + 2G) + !I-IF
)(1 + 3G) + ⋯ ∞ 

 
Definition 2.4. (Fractional Derivative of Mittag‐Leffler Function). The Jumarie 
derivative [3] of the Mittag‐Leffler function EN(αxN) is defined as follows: 
Applying term by term Modified RL derivative we get, 
 

�F[8F(!-F)] = �F S1 + !-F
)(1 + G) + !H-HF

)(1 + 2G) + !I-IF
)(1 + 3G) + ⋯ ∞T 

																																																										= 	! S1 + !-F
)(1 + G) + !H-HF

)(1 + 2G) + !I-IF
)(1 + 3G) + ⋯ ∞T 

																										= 	!	8F(!-F) 
where β is the order of the Jumarie derivative of Mittag-Leffler function. 
 
Definition 2.5. (Fractional Laplace Transform) If a function f(t) is defined for all 
positive values of the variable t and if � ENW@ (−sNtN)f(t)(dt)N exists and is equal to (s), 
then F(s) is called the Fractional Laplace Transform [4] of f(t), denoted by the symbol LN[f(t)].  Hence 

																									LN[f(t)] = * EN
W

@ (−sNtN)f(t)(dt)N = F(s)																																																		(2) 

The operator LN that transforms f(t) into F(s) is called the Fractional Laplace transform 
operator. 
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3. Main results 
Property 3.1. ZF[+(�) + �(�)] = ZF[+(�)] + ZF[�(�)]. 
Proof: 

ZF[+(�) + �(�)] = * 8F
W

@ (−[F�F)[+(�) + �(�)](��)F 

																																					= 	 * 8F
W

@ (−[F�F)+(�)(��)F + * 8F
W

@ (−[F�F)�(�)(��)F 

																																														= 	 ZF[+(�)] + ZF[�(�)] 
 
Property 3.2. ZF[\+(�)] = \ZF[+(�)], where c is a constant. 
Proof: 

ZF[\+(�)] 	 = 	 * 8F
W

@ (−[F�F)\+(�)(��)F 

																					= 	\ * 8F
W

@ (−[F�F)+(�)(��)F 

																																																																= 	\ZF[+(�)] 
 

Property 3.3. .LN	^tN_` = a(_N=�)bcded .	
Proof: 

LN[tN_] = * EN
∞

@ (−sNtN)tN_(dt)N 

put sNtN = xN. Then 

					LN[tN_] 			 = 	 * �xs�_N∞

@ EN(−xN) 1sN (dx)N 

																							= 	 1s_N=N * x_N∞

@ EN(−xN)(dx)N 

																																																																= 	 1s_N=N (nβ)! 
L	N[tN_] 								 = 	 (nβ)!s_N=N 

 

Property 3.4. LN^ENhatNi` = �bd�j , sN ≠ a. 
Proof: 

LN[EN(atN)] 	 = LN lm a_tN_
Γ(βn + 1)

∞

_?@
o = m a_

Γ(βn + 1)
∞

_?@
LN[tN_] 

																																																		= 	 m a_
Γ(βn + 1)

∞

_?@
Γ(1 + βn)s_N=N  

																																																		= m a_
Γ(βn + 1)

∞

_?@
Γ(1 + βn)s_N=N  
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																																																			= 	 1sN m � asN�∞

_?@
_
 

																																																			= 1sN − a 

 

Property 3.5. LN �DNf(t)� = sNLNhf(t)i − f(0). 
Proof: 

LN �DNf(t)� = * EN
∞

@ (−sNtN)(DNf(t))(dt)N 

 

= 	 [f(t)EN(−sNtN)]@∞ − * f∞@ (t)(−sNEN(−sNtN))(dt)N 

                    = 	 −f(0) + sN � f∞@ (t)(EN(−sNtN))(dt)N 																																= 	 −f(0) + sNLN(f(t)) 																																= 	 sNLNhf(t)i − f(0). 
 
Property 3.6. LN(DHNf(t)) = sHNLN(f(t)) − sNf((0) − f N(0). 
Proof: LN(DHNf(t)) 	 = 	 sHNLN(f(t)) − sNf(0) − f N(0) LN(f HN(t)) = LN(DNF(t))whereF(t) = f N(t) 	= 	 sNLN(F(t)) − F(O) 		= 	 sNLN(f N(t)) − f N(0) 															= 		 sN[sNLNf(t) − f(0)] − f N(0) 											= 		 sHNLNf(t) − sNf(0) − f N(0) 
 
By extending the result, we get LN[f (_N)(t)] = s(_N)LN[f(t)] − s(_N�N)f(0) − s(_N�HN)f (N)(0) − s(_N�IN)f (HN)(0) − 
. . . −f (_N�N)(0) 

Property 3.7. LN �cosNhatNi� = bd
bsd=js. 

Proof: f(t) 	 = 	cosN(atN) f N(t) 		 = 	 −asinN(atN) f HN(t) 		 = 	 −aHcosN(atN) LN(DHNf(t)) 	 = 	 sHNLNf(t) − sNf(0) − f N(0) LN(−aHcosN(atN)) = 	 sHNLN[cosN(atN)] − sN sN = 	 (sHN + aH)LN(cosN(atN)) LN(cosN(atN)) 	 = sHN + aH 
 

Property 3.8. LN �sinNhatNi� = jbsd=js. 
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Proof: f(t) 	 = 	 sinN(atN) 		f N(t) 	 = 	 −acosN(atN) f HN(t) 	 = 	 −aHsinN(atN) 												LN(DHNf(t)) 		 = 	 sHNLNf(t) − sNf(0) − f N(0) 																																			LN(−aHsinN(atN)) 		 = 	 sHNLN[sinN(atN)] − 0 − a LN[sinN(atN)] 		 = 	 jbsd=js. 
 

Property 3.9. LN tEN �−atNf(t)�u = FhsN + ai. 
Proof: We know that, F(s) = LN[f(t)] = � EN∞@ (sNtN)f(t)(dt)N 

																																													LN[EN(−atN)] 	 = 	 * EN
∞

@ (−sNtN)EN(−atN)f(t)(dt)N 

																																																																								= 	 * EN
∞

@ (−sN + a)tNf(t)(dt)N 

				= 	F(sN + a) 
 
Example 3.10. We solve the following homogeneous FDE using Fractional Laplace 

Transform, 	(DH�vw� + 2Dvw + 2)y(t) = 0 where y(0) = 1, y�vw�(0) = −1 
Solution: The equation can be written in the form 														yH�vw� + 2y�vw� + 2y = 0 
Applying fractional Laplace transforms to both sides, we have Lvw yyH�vw�z + 2Lvw yy�vw�z + 2Lvw[y] 	 = 	0 

sswLvw[y(0)] − svwy(0) − y�vw�(0) + 2	[svwLvw[y(0)] − y(0)] + 2Lvw[y(0)] 	 = 	0 

(ssw + 2svw + 2)Lvw[y(t)] 	 = 	 svw + 1 

	Lvw[y(t)] 	 = 	 svw + 1
ssw + 2svw + 2 

Lvw[y(t)] = svw + 1
(svw + 1)H + 2 

																																																																							Lvw[y(t)] = 	 Lvw yEvw �−tvw� cosvw �tvw�z 
y(t) 	 = 	 Evw(−tvw)cosvw �tvw� 

4. Conclusion 
The Laplace transformation method has been successfully applied to find an exact 
solution of Fractional Differential Equation. Some results are derived with the proofs. We 
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conclude that the Laplace transformation method is a powerful efficient tool for finding a 
solution of Fractional Differential Equation. 
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