Annals of Pure and Applied Mathematics Vol. 15, No. 2, 2017, 173-184 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v15n2a3

Annals of **Pure and Applied Mathematics** 

# $(\delta_i, \delta_j)$ F- $\gamma$ -Semiopen and $(\delta_i, \delta_j)$ F- $\gamma$ -Semiclosed Sets in Fuzzy Bitopological Spaces

A.Nagoor Gani<sup>1</sup> and J.Rameeza Bhanu<sup>2</sup>

<sup>1</sup>PG & Research Department of Mathematics Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, India E-mail: <u>ganijmc@yahoo.co.in</u> <sup>2</sup>PG & Research Department of Mathematics Bishop Heber College (Autonomous), Tiruchirappalli-620017, India E-mail: <u>rameezasif7@gmail.com</u>

Received 3 November 2017; accepted 9 December 2017

Abstract. The aim of this paper is to introduce the concepts of  $(\delta_i, \delta_j)$  F- $\gamma$ -semiopen (respectively  $(\delta_i, \delta_j)$  F - $\gamma$ -semiclosed) sets in fuzzy bitopological spaces, which is weaker than the concept of  $(\delta_i, \delta_j)$  F-strongly semiclosed) sets and stronger than the concept of  $(\delta_i, \delta_j)$  F- $\gamma$  open (respectively  $(\delta_i, \delta_j)$  F- $\gamma$  closed) sets and  $(\delta_i, \delta_j)$  F-semi-pre-open (respectively  $(\delta_i, \delta_j)$  F-semi-pre-closed)sets. Their properties and relationship between other sets and relevant concepts are studied in fuzzy bitopological spaces. Also, the notion of  $(\delta_i, \delta_j)$  F- $\gamma$ -semi interior and  $(\delta_i, \delta_j)$  F- $\gamma$ -semi closure are introduced and their properties are discussed.

*Keywords:* Fuzzy bitopological spaces,  $(\delta_i, \delta_j)$ -F- $\gamma$ -open,  $(\delta_i, \delta_j)$ -F- $\gamma$ -closed,  $(\delta_i, \delta_j)$ -F- $\gamma$ -semiopen,  $(\delta_i, \delta_j)$ -F- $\gamma$ -semiclosed,  $(\delta_i, \delta_j)$ -F- $\gamma$ -semi neighbourhood,  $(\delta_i, \delta_j)$ -F- $\gamma$ -semi interior,  $(\delta_i, \delta_j)$ -F- $\gamma$ -semi closure.

AMS Mathematics Subject Classification (2010): 54A40, 03E72

# 1. Introduction

Fuzzy topology, as an important research field in fuzzy set theory, has been established by Chang [3] in 1968, who introduced the concept of fuzzy topological space which is a natural generalization of topological spaces based on Zadeh's [15] concept of fuzzy sets. Let X be a non-empty set and I be the unit interval [0, 1]. A fuzzy set in X is a mapping from X into I. Since then much attention [1,6,2,8] has been paid to generalize the basic concepts of general topology in fuzzy settings.

Azad [1] introduced the notions of fuzzy semi open and fuzzy semi closed sets with specific attention to weaker forms of fuzzy continuity in fuzzy topological spaces. Hanafy [4] introduced the notion of Fuzzy  $\gamma$ open sets and Fuzzy  $\gamma$ continuity in fuzzy topological spaces and discussed the fundamental properties of these sets. In 1989, Kandil and El-Shafee [5] introduced the concept of fuzzy bitopological spaces (Fbts, in short) as an extension of fuzzy topological spaces and as a generalization of bitopological spaces which was introduced by Kelly.

Throughout this paper (X,  $\delta_i$ ,  $\delta_j$ ) (or simply X), denote fuzzy bitopological spaces (Fbts). For a fuzzy set A in a fuzzy bitopological space X,  $\delta_i$ -cl(A),  $\delta_i$ - int(A) denote the closure, interior with respect to the topology  $\delta_i$  respectively. Using the union of the concepts of ( $\delta_i$ ,  $\delta_j$ ) F semiopen[12], ( $\delta_i$ ,  $\delta_j$ ) F preopen [11], F.S. Mahmoud, M.A. Fath Alla and M.M. Khalaf [7] introduced and studied Fuzzy- $\gamma$ -open sets and fuzzy- $\gamma$ -continuity in fuzzy bitopological spaces which is weaker than each of them. The objective of this paper is to introduce and study the notion of ( $\delta_i$ ,  $\delta_j$ ) F- $\gamma$ -semiopen sets in fuzzy bitopological spaces which is weaker than the concept of ( $\delta_i$ ,  $\delta_j$ ) F-strongly-semi open and stronger than the concept of ( $\delta_i$ ,  $\delta_j$ ) F- $\gamma$ -open and ( $\delta_i$ ,  $\delta_j$ ) F-semi-pre-open. We discuss the concepts and properties that are needed in this paper in the third section. We introduce and study the concepts of ( $\delta_i$ ,  $\delta_j$ )F- $\gamma$ -semiclosed) sets in fuzzy bitopological spaces along with their properties in the fourth section. Using this concept, in section 4.1 and 4.2 we define and deal with the concepts of ( $\delta_i$ ,  $\delta_j$ )-F- $\gamma$ -semi interior and ( $\delta_i$ ,  $\delta_j$ )-F- $\gamma$ -semi closure and investigate some of the fundamental properties of these concepts.

## 2. Preliminaries

In this section, we give some elementary concepts and results which will be used in the sequel. Let X be a nonempty set and I= [0, 1]. A fuzzy set (briefly F-set) A in X is a mapping from X to I. A fuzzy set A of X is contained in a fuzzy set B of X denoted by A  $\leq B$  if and only if  $A(x) \leq B(x)$  for each  $x \in X$ . A fuzzy point [14] with singleton support  $x \in X$  and the value  $\alpha \in [0, 1]$  is denoted by  $x_{\alpha}$ . The complement A' of a fuzzy set X is 1–A defined by (1-A) (x)=1-A(x) for each  $x \in X$ . A fuzzy point  $x_{\beta} \in A$  if and only if  $\beta \leq A(x)$ . A fuzzy set A is the union of all fuzzy points which belong to A. A fuzzy point  $x_{\beta}$  is said to be quasicoincident with the fuzzy set A denoted by  $x_{\beta}qA$  if and only if  $\beta + A(x) > 1$  [10]. A fuzzy set A is said to be quasicoincident with B denoted by AqB if and only if there exists  $x \in X$  such that A(x) + B(x) > 1.  $A \leq B$  if and only if 'I(AqB') [10].

**Definition 2.1.** Let  $\lambda$  be a fuzzy set of a fuzzy topological space  $(X, \delta)$ . Then A is called (a) a F semiopen (briefly FSO) set of X if  $\lambda \leq cl$  (int ( $\lambda$ )) [1];

- (b) a F semiclosed (briefly FSC) set of X if  $\lambda \ge \text{cr}(\text{int}(\lambda))$  [1];
- (b) a F semiclosed (orienty FSC) set of X if  $\lambda \ge \min(\operatorname{cr}(\lambda))$  [1],
- (c) a F preopen (briefly FPO) set of X if  $\lambda \leq int (cl(\lambda))$  [6];
- (d) a F preclosed (briefly FPC) set of X if  $\lambda \ge cl$  (int ( $\lambda$ )) [6];
- (e) a F strongly semiopen (briefly FSSO) set of X if  $\lambda \leq int (cl (int (\lambda))) [2];$
- (f) a F strongly semiclosed (briefly FSSC) set of X if  $\lambda \ge cl$  (int (cl ( $\lambda$ ))) [2];
- (g) a F semi-preopen (briefly FSPO) set of X if  $\lambda \leq cl$  (int (cl ( $\lambda$ ))) [8];

(h) a F semi-preclosed (briefly FSPC) set of X if  $\lambda \ge int (cl (int (\lambda))) [8];$ 

The set of all F-so(resp. F-sc), F-po(resp. F-pc), F-sso(resp. F-ssc), F-spo(resp. F-spc) of a fuzzy topological space will be denoted by FSO(X) (resp. FSC(X)), FPO(X) (resp. FPC(X)), F-SSO(X) (resp. F-SSC(X)), F-SPO(X) (resp. F-SPC(X)).

**Definition 2.2.** [4] Let  $(X, \delta)$  be a fuzzy topological space. Then v is called a F- $\gamma$  open(F- $\gamma$  closed) set of X if  $v \leq int(cl(v)) \lor cl(int(v))$  ( $v \geq cl(int(v)) \land int(cl(v))$ ). The family of all F- $\gamma$  open (respectively F- $\gamma$  closed) sets of X is denoted by F- $\gamma$ O(X) (respectively F- $\gamma$ C(X)).

**Lemma 2.3.** [1] For a family  $\{\lambda_{\alpha}\}$  of fuzzy sets of a Fts X,  $\forall cl(\lambda_{\alpha}) \leq cl(\forall \lambda_{\alpha})$  and  $\forall int(\lambda_{\alpha}) \leq int(\forall \lambda_{\alpha})$ .

**Lemma 2.4.** [1] For a fuzzy set  $\lambda$  of a F-ts X, (i)(int( $\lambda$ ))' = cl( $\lambda$ ') and (ii) (cl( $\lambda$ ))' = int( $\lambda$ ')

**Lemma 2.5.** [1] For a fuzzy set  $\lambda$  of a F-ts X, (a)1-int  $\lambda$ =cl(1- $\lambda$ ) and (b)1-cl  $\lambda$ =int(1- $\lambda$ ).

**Definition 2.6.** [5] A set X on which are defined two (arbitrary) F-topologies  $\delta_1$  and  $\delta_2$  is called F- bitopological space (briefly F-bts) and denoted by  $(X, \delta_1, \delta_2)$ . As to the notions, we shall write  $\delta_i$ -int( $\lambda$ ) and  $\delta_i$ -cl( $\lambda$ ) to mean respectively the interior and closure of a F-set  $\lambda$  with respect to the F-topology  $\delta_i$  in F-bts  $(X, \delta_i, \delta_j)$ , with  $\delta_i$ -F-o set and  $\delta_i$ -F-c set, we mean respectively  $\delta_i$ -F-open and  $\delta_i$ -F-closed set. The indices i and j take values  $\{1, 2\}$  throughout this paper and  $i \neq j$ , i = j gives the known results in F-ts.

**Definition 2.7.** [12] Let  $\lambda$  be a fuzzy set of a F-bts  $(X, \delta_i, \delta_j)$ . Then  $\lambda$  is called (a) a  $(\delta_i, \delta_j)$  F semiopen (briefly  $(\delta_i, \delta_j)$  F-so) set of X if  $\lambda \leq \delta_j$ -cl  $(\delta_i$ -int  $(\lambda)$ ); (b) a  $(\delta_i, \delta_j)$  F semiclosed (briefly  $(\delta_i, \delta_j)$  F-sc) set of X if  $\lambda \geq \delta_j$ -int  $(\delta_i$ -cl  $(\lambda)$ ); The set of all  $(\delta_i, \delta_j)$  F-so, (resp.  $(\delta_i, \delta_j)$ F-sc) sets of a F-bts X will be denoted by  $(\delta_i, \delta_j)$ FSO(X), (resp.  $(\delta_i, \delta_j)$  FSC(X)).

**Definition 2.8.** [11] Let  $\lambda$  be a fuzzy set of a F-bts (X,  $\delta_i$ ,  $\delta_j$ ). Then  $\lambda$  is called (a) a ( $\delta_i$ ,  $\delta_j$ ) F strongly semiopen (briefly ( $\delta_i$ ,  $\delta_j$ ) F-sso) set of X if  $\lambda \leq (\delta_i \text{-int}(\lambda))$ ); (b) a ( $\delta_i$ ,  $\delta_j$ )F strongly semiclosed (briefly ( $\delta_i$ ,  $\delta_j$ )F-ssc) set of X if  $\lambda \geq \delta_i \text{-cl}(\delta_j \text{-int}(\delta_i \text{-cl}(\lambda)))$ ; (c) a ( $\delta_i$ ,  $\delta_j$ ) F preopen (briefly ( $\delta_i$ ,  $\delta_j$ ) F-po) set of X if  $\lambda \leq \delta_i \text{-cl}(\lambda)$ ; (d) a ( $\delta_i$ ,  $\delta_j$ ) F preclosed (briefly ( $\delta_i$ ,  $\delta_j$ ) F-pc) set of X if  $\lambda \geq \delta_i \text{-cl}(\lambda)$ ; (d) a ( $\delta_i$ ,  $\delta_j$ ) F preclosed (briefly ( $\delta_i$ ,  $\delta_j$ ) F-pc) set of X if  $\lambda \geq \delta_i \text{-cl}(\lambda)$ ; The set of all ( $\delta_i$ ,  $\delta_j$ ) F-sso, ( $\delta_i$ ,  $\delta_j$ ) F-ssc, ( $\delta_i$ ,  $\delta_j$ ) F-pc, ( $\delta_i$ ,  $\delta_j$ ) F-pc sets of a F-bts X will be denoted by ( $\delta_i$ ,  $\delta_j$ ) FSSO(X), ( $\delta_i$ ,  $\delta_j$ ) FSSC(X), ( $\delta_i$ ,  $\delta_j$ ) FPO(X) and ( $\delta_i$ ,  $\delta_j$ ) FPC(X) respectively.

**Definition 2.9.** [9] Let  $\lambda$  be a fuzzy set of a F-bts (X,  $\delta_i, \delta_j$ ). Then  $\lambda$  is called (a) a  $(\delta_i, \delta_j)$  F semi-preopen (briefly  $(\delta_i, \delta_j)$  F-spo) set of X if  $\lambda \leq \delta_j$ -cl  $(\delta_i$ -int  $(\delta_j$ -cl  $(\lambda))$ ); (b) a  $(\delta_i, \delta_j)$  F semi-preclosed (briefly  $(\delta_i, \delta_j)$  F-spc) set of X if  $\lambda \geq \delta_j$ -int  $(\delta_i$ -cl  $(\delta_j$ -int  $(\lambda))$ ); The set of all  $(\delta_i, \delta_j)$  F-spo, (resp.  $(\delta_i, \delta_j)$  F-spc) sets of a F-bts X will be denoted by  $(\delta_i, \delta_j)$ FSPO(X), (resp.  $(\delta_i, \delta_j)$  FSPC(X)).

**Definition 2.10.** [7] Let  $\lambda$  be a fuzzy set of a F-bts  $(X, \delta_i, \delta_j)$ . Then  $\lambda$  is called a  $(\delta_i, \delta_j)$  F $\gamma$  open (resp.  $(\delta_i, \delta_j)$  F $\gamma$  closed), briefly  $(\delta_i, \delta_j)$  F- $\gamma$ o (resp.  $(\delta_i, \delta_j)$  F- $\gamma$ c) if  $\lambda \leq \delta_i$ -int  $(\delta_j$ -cl $(\lambda)) \lor \delta_j$ -cl $(\delta_i$ -int $(\lambda))$ , respectively  $\lambda \geq \delta_i$ -cl $(\delta_j$ -int $(\lambda)) \land \delta_j$ -int  $(\delta_i$ -cl $(\lambda)$ ). The family of all  $(\delta_i, \delta_j)$  F- $\gamma$ o (resp.  $(\delta_i, \delta_j)$  F- $\gamma$ c) sets of X is denoted by  $(\delta_i, \delta_j)$  F- $\gamma$ O(X) and (resp.  $(\delta_i, \delta_j)$  F- $\gamma$ C(X)).

**Remark 2.11.** [7] (i) The union of  $(\delta_i, \delta_j)$  F- $\gamma$ o sets is a  $(\delta_i, \delta_j)$  F- $\gamma$ o set. (ii) The intersection of  $(\delta_i, \delta_j)$  F- $\gamma$ c sets is a  $(\delta_i, \delta_j)$  F- $\gamma$ c set.

**Definition 2.12.** [7] Let  $\lambda$  be a fuzzy set of a F-bts  $(X, \delta_i, \delta_j)$ . Then the  $(\delta_i, \delta_j)$   $\gamma$ -closure  $((\delta_i, \delta_j) \gamma$ -cl for short) and  $(\delta_i, \delta_j) \gamma$ -interior  $((\delta_i, \delta_j) \gamma$ -int for short) of  $\lambda$  are defined as  $(\delta_i, \delta_j) \gamma$ -cl $(\lambda) = \wedge \{v : v \text{ is } (\delta_i, \delta_j) \text{ F-} \gamma \text{ closed and } \lambda \leq v \}$  $(\delta_i, \delta_i) \gamma$ -int $(\lambda) = \vee \{v : v \text{ is } (\delta_i, \delta_j) \text{ F-} \gamma \text{ open and } v \leq \lambda \}$ 

**Remark 2.13.** (i)  $(\delta_i, \delta_j) \gamma$ -cl $(\lambda)$  is the intersection of all  $(\delta_i, \delta_j)$ F- $\gamma$  c sets of X containing  $\lambda$ . (ii)  $(\delta_i, \delta_j) \gamma$ -int $(\lambda)$  is the union of all  $(\delta_i, \delta_j)$  F- $\gamma$ o sets of X contained in  $\lambda$ . (iii)  $\delta_i$ - $\gamma$  cl $(\lambda)$  is the intersection of all  $(\delta_i, \delta_j)$ F- $\gamma$ c sets of X containing  $\lambda$  with respect to  $\delta_i$ . (iv)  $\delta_i$ - $\gamma$  int $(\lambda)$  is the union of all  $(\delta_i, \delta_j)$ F- $\gamma$ o sets of X contained in  $\lambda$ with respect to the  $\delta_i$ .

#### **3.** Properties of $(\delta_{i}, \delta_{j})$ F- $\gamma$ closure and $(\delta_{i}, \delta_{j})$ F- $\gamma$ interior

**Proposition 3.1.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Then every  $\delta_i$ F o set is  $(\delta_i, \delta_j)$  F- $\gamma_0$ . **Proof:** Let A be  $\delta_i$ -F o in X, then  $\delta_i$ -int $(\delta_j$ -cl(A)) $\lor \delta_j$ -cl $(\delta_i$ -int(A)) =  $\delta_i$ -int $(\delta_j$ -cl(A))  $\lor \delta_j$ cl(A)  $\ge \delta_i$ -int $(\delta_j$ -cl(A)) $\lor$ A= A. Then A $\le \delta_i$ -int $(\delta_j$ -cl(A))  $\lor \delta_j$ -cl $(\delta_i$ -int(A)). Thus, A is  $(\delta_i, \delta_j)$ F- $\gamma_0$ .

**Remark 3.2.** The converse of the above is not true. Every  $(\delta_i, \delta_j)$ F- $\gamma_0(c)$  need not be  $\delta_i$ -Fo(c).

Let  $(X, \delta_1, \delta_2)$  be a F-bts with X={a,b,c},  $\delta_1$ ={ $\tilde{0}, \tilde{1}, A$ }, $\delta_2$ ={ $\tilde{0}, \tilde{1}, B$ } and fuzzy sets A={ $a_{0.5}, b_{0.2}, c_{0.4}$ }, B ={ $a_{0.5}, b_{0.6}, c_{0.3}$ }.Here B (resp. B') is  $(\delta_1, \delta_2)$ F- $\gamma$ o (resp.  $(\delta_1, \delta_2)$ F- $\gamma$ c) but not  $\delta_1$ -Fo (resp.  $\delta_1$ -F c ).

**Proposition 3.3.** Let A be a F-set of a Fbts( $X, \delta_i, \delta_j$ ). Then A is  $\delta_i$ Fo if and only if A is  $\delta_i$ F  $\gamma_0$ .

**Corollary 3.4.** (a)  $\delta_i$ -int(A) =  $\delta_i$ - $\gamma$ int(A) (b)  $\delta_i$ -cl(A) =  $\delta_i$ - $\gamma$ cl(A). **Proof:** Follows from Definition 2.12

**Theorem 3.5.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Then for fuzzy sets A and B of X, (i)  $(\delta_i, \delta_j) \gamma \cdot \operatorname{int}(\tilde{0}) = \tilde{0}, (\delta_i, \delta_j) \gamma \cdot \operatorname{int}(\tilde{1}) = \tilde{1}$  and  $(\delta_i, \delta_j) \gamma \cdot \operatorname{int}(A) \leq A$ (ii) A is  $(\delta_i, \delta_j)$  F- $\gamma$  o if and only if A =  $(\delta_i, \delta_j) \gamma \cdot \operatorname{int}(A)$ (iii)  $(\delta_i, \delta_j) \gamma \cdot \operatorname{int}(A)$  is  $(\delta_i, \delta_j)$  F- $\gamma$ -o set and  $(\delta_i, \delta_j) \gamma \cdot \operatorname{int}(A) = (\delta_i, \delta_j) \gamma \cdot \operatorname{int}(A)$ (iv) If A $\leq$ B, then  $(\delta_i, \delta_j) \gamma \cdot \operatorname{int}(A) \leq (\delta_i, \delta_j) \gamma \cdot \operatorname{int}(B)$ (v)  $(\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(\tilde{0}) = \tilde{0}, (\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(\tilde{1}) = \tilde{1}$  and A $\leq (\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(A)(\operatorname{vi})$  A is  $(\delta_i, \delta_j)$  F- $\gamma$  closed if and only if A =  $(\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(A)$ . (vii)  $(\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(A)$  is  $(\delta_i, \delta_j)$  F- $\gamma$ -c set and  $(\delta_i, \delta_j)\gamma \cdot \operatorname{cl}((\delta_i, \delta_j)\gamma \cdot \operatorname{cl}(A)) = (\delta_i, \delta_j)\gamma \cdot \operatorname{cl}(A)$ . (viii) If A  $\leq$  B, then  $(\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(A) \leq (\delta_i, \delta_j) \gamma \cdot \operatorname{cl}(B)$ . **Proof:** Follows from Remark 2.11, Remark 2.13 and Definition 2.12.

**Remark 3.6.** Theorem 3.5 also holds when single topology  $\delta_i$  is considered.

**Proposition 3.7.** Let A and B be any two fuzzy sets of a F-bts  $(X, \delta_i, \delta_j)$ . Then (i)  $(\delta_i, \delta_j) \gamma$ -int $(A \land B) = (\delta_i, \delta_j) \gamma$ -int $(A) \land (\delta_i, \delta_j) \gamma$ -int(B)(ii)  $(\delta_i, \delta_j) \gamma$ -int $(A \lor B) \ge (\delta_i, \delta_j) \gamma$ -int $(A) \lor (\delta_i, \delta_j) \gamma$ -int(B)**Proof:** Follows from Definition 2.12

**Remark 3.8.** Equality need not hold in Proposition 3.9 (ii). Let  $(X, \delta_1, \delta_2)$  be a F-bts with X={a,b,c},  $\delta_1$ ={ $\tilde{0}, \tilde{1}, Y$ },  $\delta_2$  ={ $\tilde{0}, \tilde{1}, Z$ } and fuzzy sets Y={ $a_{0.5}, b_{0.6}, c_{0.7}$ }, Z={ $a_{0.5}, b_{0.3}, c_{0.2}$ }, A={ $a_{0.5}, b_{0.4}, c_{0.8}$ }, B={ $a_{0.5}, b_{0.7}, c_{0.7}$ } and A $\lor$ B={ $a_{0.5}, b_{0.7}, c_{0.8}$ }= Z'. Then ( $\delta_1, \delta_2$ ) $\gamma$ -int(A $\lor$ B) =A $\lor$ B, ( $\delta_1, \delta_2$ ) $\gamma$ -int(A)=Z, ( $\delta_1, \delta_2$ ) $\gamma$ int(B)=B. So, ( $\delta_1, \delta_2$ ) $\gamma$ -int(A)  $\lor$ ( $\delta_1, \delta_2$ ) $\gamma$ -int(B)=B and A $\lor$ B ≥ B.

**Proposition 3.9.** Let A and B be any two fuzzy sets of a F-bts ( X,  $\delta_i$ ,  $\delta_j$ ). Then (i)  $(\delta_i, \delta_j) \gamma$ -cl(A  $\lor$  B) =  $(\delta_i, \delta_j) \gamma$ -cl(A)  $\lor (\delta_i, \delta_j) \gamma$ -cl(B) (ii)  $(\delta_i, \delta_j) \gamma$ -cl(A  $\land$  B)  $\leq (\delta_i, \delta_j) \gamma$ -cl(A)  $\land (\delta_i, \delta_j) \gamma$ -cl(B) **Proof:** Follows from Definition 2.12

**Remark 3.10.** Equality need not hold in Proposition 3.13 (ii). Let  $(Z, \delta_1, \delta_2)$  be a F-bts with Z={a,b,c}, $\delta_1$ ={ $\tilde{0},\tilde{1},X$ } and  $\delta_2$ ={ $\tilde{0},\tilde{1},Y$ } where X={a<sub>0.5</sub>,b<sub>0.6</sub>,c<sub>0.7</sub>}, Y={a<sub>0.5</sub>,b<sub>0.3</sub>,c<sub>0.2</sub>}, A={a<sub>0.5</sub>,b<sub>0.6</sub>, c<sub>0.8</sub>}, B ={a<sub>0.5</sub>,b<sub>0.7</sub>,c<sub>0.7</sub>}, A^B ={a<sub>0.5</sub>,b<sub>0.6</sub>,c<sub>0.7</sub>}=X. Then  $(\delta_1, \delta_2)\gamma$ -cl(A^B)=A^B,  $(\delta_1, \delta_2)\gamma$ -cl(A)=Y',  $(\delta_1, \delta_2)\gamma$ -cl(B)=Y' and so  $(\delta_1, \delta_2)\gamma$ -cl(A)/ $(\delta_1, \delta_2)\gamma$ -cl(B)=Y'  $\geq (\delta_1, \delta_2)\gamma$ -cl(A^B).

**4.**  $(\delta_b, \delta_j)$  fuzzy- $\gamma$ -semiopen and  $(\delta_b, \delta_j)$  fuzzy- $\gamma$ -semiclosed sets **Definition 4.1.** Let A be a fuzzy set of a F-bts  $(X, \delta_b, \delta_j)$ . Then A is called a (i)  $(\delta_b, \delta_j)$  Fuzzy- $\gamma$ -semiopen (briefly  $(\delta_b, \delta_j)$  F- $\gamma$ -so) set if  $A \leq \delta_j$ -cl  $(\delta_i$ - $\gamma$  int(A)) (ii)  $(\delta_b, \delta_j)$  Fuzzy- $\gamma$ -semiclosed (briefly  $(\delta_b, \delta_j)$  F- $\gamma$ -sc) set if  $A \geq \delta_j$ - int  $(\delta_i$ - $\gamma$  cl(A)) The family of all  $(\delta_b, \delta_j)$  F- $\gamma$  so (respectively  $(\delta_b, \delta_j)$  F- $\gamma$  sc)sets of X is denoted by  $(\delta_b, \delta_j)$ F- $\gamma$  SO(X) and (respectively  $(\delta_b, \delta_j)$  F- $\gamma$  SC(X)).

**Example 4.2.** Let  $(X, \delta_1, \delta_2)$  be a F-bts where X={a, b},  $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$  and  $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ . A and B are fuzzy sets defined in X as, A={a<sub>0.2</sub>,b<sub>0.5</sub>}} and B={a<sub>0.4</sub>,b<sub>0.5</sub>}. Here  $(\delta_1, \delta_2)$  F- $\gamma$ -o sets ={ $\tilde{0}, \tilde{1}, A, B$ } The sets A and B (resp. A' and B') are  $(\delta_1, \delta_2)$ F- $\gamma$ -so (resp.  $(\delta_1, \delta_2)$  F- $\gamma$ -sc).

**Theorem 4.3.** A fuzzy set A of a F-bts  $(X, \delta_i, \delta_j)$  is  $(\delta_i, \delta_j)$ F- $\gamma$ -sc if and only if A' is  $(\delta_i, \delta_j)$ F- $\gamma$ -so.

**Proof:** Follows from Definition 4.1.

**Remark 4.4.** The concepts of  $(\delta_i, \delta_j)$  F- $\gamma$ -so (resp.  $(\delta_i, \delta_j)$ F- $\gamma$ -sc) and  $(\delta_j, \delta_i)$  F- $\gamma$ -so (resp.  $(\delta_j, \delta_i)$  F- $\gamma$ -sc) sets are independent. The following example illustrates this.

**Example 4.5.** Let  $(X, \delta_1, \delta_2)$  be a F-bts with X={a, b},  $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$  and  $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$  and A, B are fuzzy sets defined in X as, A={a<sub>0.5</sub>, b<sub>0.5</sub>}, B ={a<sub>0.6</sub>, b<sub>0.3</sub>}. Here A (resp. A') is  $(\delta_1, \delta_2)$ F- $\gamma$ -so (resp.  $(\delta_1, \delta_2)$ F- $\gamma$ -sc). But A (resp. A') is not  $(\delta_2, \delta_1)$ F- $\gamma$ -so ( $(\delta_2, \delta_1)$ F- $\gamma$ -sc). Also, B (resp. B') is  $(\delta_2, \delta_1)$  F- $\gamma$ -so(resp.  $(\delta_2, \delta_1)$ F- $\gamma$ -so (resp.  $(\delta_1, \delta_2)$ F- $\gamma$ -so(resp.  $(\delta_2, \delta_1)$ F- $\gamma$ -sc) and not  $(\delta_1, \delta_2)$ F- $\gamma$ -so ((resp.  $(\delta_1, \delta_2)$  F- $\gamma$ -sc))

**Theorem 4.6.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Then a fuzzy subset A of X is  $(\delta_i, \delta_j)$  F- $\gamma$ -so if and only if there exists a  $\delta_i$  F- $\gamma$  o set U, such that U  $\leq A \leq \delta_j$ - $\gamma$  cl(U). **Proof:** Let A be  $(\delta_i, \delta_j)$ F- $\gamma$ -so in X. Then  $\delta_i$ - $\gamma$  int(A)  $\leq A \leq \delta_j$ -cl( $\delta_i$ - $\gamma$  int(A)). Let  $\delta_i \gamma$ int(A) = U and U is  $\delta_i$  F- $\gamma$  o. Then U  $\leq A \leq \delta_j$ -cl(U), that is U  $\leq A \leq \delta_j$ - $\gamma$  cl(U).

Conversely, suppose there exists a  $\delta_i$  F- $\gamma$ o set U such that U  $\leq A \leq \delta_j$ - $\gamma$  cl(U). Then U  $\leq \delta_i$ - $\gamma$ int(A). Then by Theorem 3.5,  $\delta_j$ - $\gamma$  cl(U)  $\leq \delta_j$ - $\gamma$  cl( $\delta_i$ - $\gamma$  int(A))=  $\delta_j$ -cl( $\delta_i$ - $\gamma$  int(A)). Thus, A  $\leq \delta_i$ - $\gamma$  cl(U)  $\leq \delta_j$ -cl( $\delta_i$ - $\gamma$  int(A)). Hence A is ( $\delta_i$ ,  $\delta_j$ )F- $\gamma$ -so.

**Theorem 4.7.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Then a fuzzy subset B of X is  $(\delta_i, \delta_j)$  F- $\gamma$ -sc if and only if there exists a  $\delta_i$  F- $\gamma$  c set F, such that  $\delta_j$ - $\gamma$  int(F)  $\leq$  B  $\leq$  F.

**Proof:** Let B be  $(\delta_i, \delta_j)$ F- $\gamma$ -sc in X. Then  $\delta_i$ - $\gamma$  cl(B)  $\geq$  B  $\geq \delta_j$ - int $(\delta_i$ - $\gamma$  cl(B)). Let F =  $\delta_i$ - $\gamma$  cl(B), then F is  $\delta_i$  F- $\gamma$  c and F  $\geq$  B  $\geq \delta_j$ - int(F)) which implies  $\delta_j$ - $\gamma$  int(F)  $\leq$  B  $\leq$  F. Conversely, suppose there exists a  $\delta_i$ F- $\gamma$ c set F such that  $\delta_j$ - $\gamma$  int(F)  $\leq$  B  $\leq$  F. Then  $\delta_i$ - $\gamma$ cl(B) $\leq$  F. That is $\delta_j$ -int $(\delta_i$ - $\gamma$  cl(B)) $\leq \delta_j$  int(F))= $\delta_j$ - $\gamma$  int(F) $\leq$ B. Then B $\geq \delta_j$ -int $(\delta_i$ - $\gamma$  cl(B)). Thus, B is  $(\delta_i, \delta_j)$ F- $\gamma$ -sc.

**Proposition 4.8.** The union of two  $(\delta_i, \delta_j)$ F- $\gamma$ -so sets is a  $(\delta_i, \delta_j)$ F- $\gamma$ -so set in a F-bts  $(X, \delta_i, \delta_j)$ .

**Remark 4.9.** The intersection of two  $(\delta_i, \delta_j)$ F- $\gamma$ -so sets need not be  $(\delta_i, \delta_j)$ F- $\gamma$ -so in a F-bts  $(X, \delta_i, \delta_j)$  as given below.

**Example 4.10.** Let  $(X, \delta_l, \delta_2)$  be a F-bts with X={a, b, c}, $\delta_l = \{\tilde{0}, \tilde{1}, A, B, A \lor B\}$  and  $\delta_2 = \{\tilde{0}, \tilde{1}, C\}$ . A,B,C,E and F are fuzzy sets defined in X as, A={a\_0,b\_{0.2},c\_{0.1}}, B={a\_{0.3},b\_{0.6},c\_{0}}, C={a\_{0.1},b\_{0.2},c\_{0.1}}, E={a\_{0.3},c\_{0.1}}, F={a\_{0.3},b\_{0.3},c\_{0}}, E \land F={a\_{0,0},b\_{0.3},c\_{0}}. Here E and F are  $(\delta_l, \delta_2)$  F- $\gamma$ -so but E  $\land$  F is not  $(\delta_l, \delta_2)$  F- $\gamma$ -so.

**Theorem 4.11.** Arbitrary union of  $(\delta_i, \delta_j)$ F- $\gamma$ -so sets is a  $(\delta_i, \delta_j)$ F- $\gamma$ so in a F-bts  $(X, \delta_i, \delta_j)$ . **Proof:** Let  $\{A_{\alpha}\}_{\alpha \in \Delta}$  be a collection of  $(\delta_i, \delta_j)$ F- $\gamma$ -so sets in  $(X, \delta_i, \delta_j)$ . For each  $\alpha \in \Delta$ ,  $A_{\alpha}$  is  $(\delta_i, \delta_j)$  F- $\gamma$ -so. Then for each  $\alpha \in \Delta$ ,  $A_{\alpha} \leq \delta_j$ - cl  $(\delta_i - \gamma \operatorname{int}(A_{\alpha}))$ . That is  $\bigvee_{\alpha \in \Delta} A_{\alpha} \leq \bigvee_{\alpha \in \Delta} \delta_j$ -cl $(\delta_i - \gamma \operatorname{int}(A_{\alpha}))$ . Then  $\bigvee_{\alpha \in \Delta} A_{\alpha} \leq \delta_j$ -cl $(\bigvee_{\alpha \in \Delta} \delta_i - \gamma \operatorname{int}(A_{\alpha}))$  which implies  $\bigvee_{\alpha \in \Delta} A_{\alpha} \leq \delta_j$ -cl $(\delta_i - \gamma \operatorname{int}(\bigvee_{\alpha \in \Delta} A_{\alpha}))$ , by Remark 2.11. Thus,  $\bigvee_{\alpha \in \Delta} A_{\alpha}$  is  $(\delta_i, \delta_i)$ F- $\gamma$ -so.

**Proposition 4.12.** The intersection of two  $(\delta_i, \delta_j)$ F- $\gamma$ -sc sets is a  $(\delta_i, \delta_j)$ F- $\gamma$ -sc in a F-bts

**Remark 4.13.** The union of two  $(\delta_i, \delta_j)$ F- $\gamma$ -sc sets need not be  $(\delta_i, \delta_j)$ F- $\gamma$ -sc as shown below.

**Example 4.14.** Let  $(X, \delta_1, \delta_2)$  be a F-bts with X={a,b,c},  $\delta_1 = \{0, 1, A, B, A \lor B\}$ ,  $\delta_2 = \{0, 1, C, D\}$  and A,B,C,D,E,F are fuzzy sets defined in X as, A={a\_0,b\_{0,2},c\_{0,1}}, B={a\_{0,3},b\_{0,2},c\_{0,1}}, A \lor B={a\_{0,3},b\_{0,2}, c\_{0,1}}, C={a\_{0,1}, b\_{0,2}, c\_{0,1}}, D={a\_{0,8}, b\_{0,9}, c\_{0,9}}, E={a\_0, b\_{0,3}, c\_{0,1}}, F={a\_{0,3},b\_{0,3},c\_0}. Since E'  $\geq \delta_2$ -int( $\delta_1$ - $\gamma$  cl(E'))=C and F'  $\geq \delta_2$ -int( $\delta_1$ - $\gamma$  cl(F'))= C, E' and F' are  $(\delta_1, \delta_2)$ F- $\gamma$ -sc, but E'  $\lor$  F' is not  $(\delta_1, \delta_2)$ F- $\gamma$ -sc as,  $\delta_2$ -int( $\delta_1$ - $\gamma$  cl(E' $\lor$ F')) = 1  $\leq E' \lor F'$ 

**Theorem 4.15.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Arbitrary intersection of  $(\delta_i, \delta_j)$  Fysc sets is  $(\delta_i, \delta_j)$  Fysc.

**Proof:** Let  $\{A_{\alpha}\}_{\alpha \in \Delta}$  be a collection of  $(\delta_{i}, \delta_{j})$ F- $\gamma$ -sc sets in X. For each  $\alpha \in \Delta$ ,  $A_{\alpha}$  is  $(\delta_{i}, \delta_{j})$ F- $\gamma$ -sc. Then for each  $\alpha \in \Delta$ ,  $A_{\alpha}'$  is  $(\delta_{i}, \delta_{j})$ F- $\gamma$ -so which implies  $\vee_{\alpha \in \Delta} A_{\alpha}'$  is  $(\delta_{i}, \delta_{j})$ F- $\gamma$ -so. Let

 $B=\bigvee_{\alpha\in\Delta}A_{\alpha}'. \text{Then } B'=(\bigvee_{\alpha\in\Delta}A_{\alpha}')' \text{ is } (\delta_{i},\delta_{j})F-\gamma-\text{sc. So, } B'=\wedge_{\alpha\in\Delta}(A_{\alpha}')' \text{ is } (\delta_{i},\delta_{j})F-\gamma-\text{sc. Thus, } \wedge_{\alpha\in\Delta}A_{\alpha} \text{ is } (\delta_{i},\delta_{j})F-\gamma-\text{sc. }$ 

**Theorem 4.16.** In a F-bts  $(X, \delta_i, \delta_j)$ , every  $\delta_i$  Fo is  $(\delta_i, \delta_j)$  F $\gamma$ -so and every  $\delta_i$ -F $\gamma$ o is  $(\delta_i, \delta_j)$ F- $\gamma$ so.

**Proof:** Follows from Definition 4.1.

**Example 4.17.** The converse of the above theorem is not true. Let  $(X, \delta_1, \delta_2)$  be a F-bts, X={a,b,c},  $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$ ,  $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$  and A, B, C are fuzzy sets in X as, A={a\_{0.5}, b\_{0.3}, c\_{0.4}\}, B={a\_{0.5}, b\_{0.6}, c\_{0.3}}, C={a\_{0.5}, b\_{0.4}, c\_{0.5}}\}. The set C (resp. C') is $(\delta_1, \delta_2)$ F- $\gamma$ -so (resp.  $(\delta_1, \delta_2)$ F- $\gamma$ -so (resp.  $\delta_1$ -F  $\gamma$  o (resp.  $\delta_1$ -F  $\gamma$  o (resp.  $\delta_1$ -F  $\gamma$  c).

**Theorem 4.18.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Then every  $(\delta_i, \delta_j)$  F- $\gamma$ -so set is  $(\delta_i, \delta_j)$  F $\gamma$ o. **Proof:** Follows from Definition 4.1.

**Example 4.19.** The converse of the above result need not be true.Let  $(X, \delta_1, \delta_2)$  be a F-bts with X = {a, b, c},  $\delta_1 = \{\tilde{0}, \tilde{1}, A\}, \delta_2 = \{\tilde{0}, \tilde{1}, B\}$  and A, B, C are fuzzy sets defined in X as, A={a<sub>0.5</sub>,b<sub>0.2</sub>,c<sub>0.6</sub>}, B={a<sub>0.5</sub>,b<sub>0.4</sub>,c<sub>0.3</sub>}, C={a<sub>0.3</sub>,b<sub>0.1</sub>,c<sub>0.5</sub>}. Here C (resp. C') is  $(\delta_1, \delta_2)$ F- $\gamma$ o (resp.  $(\delta_1, \delta_2)$ F- $\gamma$ c) and C (resp. C') is not  $(\delta_1, \delta_2)$ F- $\gamma$ -so (resp.  $(\delta_1, \delta_2)$ F- $\gamma$ -sc).

**Theorem 4.20.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Then every  $(\delta_i, \delta_j)$ F-s-so set is  $(\delta_i, \delta_j)$ F- $\gamma$ -so. **Proof:** Let A be  $(\delta_i, \delta_j)$  F-s-so in X. Then  $A \leq \delta_i$ -int $(\delta_j$ -cl $(\delta_i$ -int(A))). Define  $B = \delta_j$ cl $(\delta_i$ int(A)). Then  $A \leq \delta_i$ -int(B) and  $A \leq B$ . That is  $A \leq \delta_j$ -cl $(\delta_i$ -int(A)). Thus,  $A \leq \delta_j$ -cl $(\delta_i$ - $\gamma$  int(A)).

**Example 4.21.** The converse need not be true always which is shown by the example. Let  $(X, \delta_1, \delta_2)$  be a F-bts with X={a,b,c}, $\delta_1$ ={ $\tilde{0}, \tilde{1}, A$ },  $\delta_2$ ={ $\tilde{0}, \tilde{1}, B$ } and A,B,D are fuzzy setsdefined in X as, A={ $a_{0.5}, b_{0.2}, c_{0.6}$ },B={ $a_{0.5}, b_{0.4}, c_{0.3}$ },D={ $a_{0.5}, b_{0.3}, c_{0.6}$ }. The set D (resp.D') is ( $\delta_1, \delta_2$ )F- $\gamma$ -so (resp.( $\delta_1, \delta_2$ ) F- $\gamma$ -sc). But D (resp.D') is not ( $\delta_1, \delta_2$ ) Fsso (resp. ( $\delta_1, \delta_2$ ) Fssc).

**Theorem 4.22.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Let A be a fuzzy set in X. If A is  $(\delta_i, \delta_j)$  F- $\gamma$ -so then A is  $(\delta_i, \delta_j)$  F-so and the converse also holds. **Proof:** Suppose A is  $(\delta_i, \delta_j)$ F- $\gamma$ -so then A  $\leq \delta_i$ -cl $(\delta_i$ - $\gamma$  int(A)). By Corollary 3.4, A is  $(\delta_i, \delta_j)$ 

F-so. Now suppose A is  $(\delta_i, \delta_j)$  F-so then  $A \leq \delta_j$ -cl $(\delta_i$ - int(A)). Then A is  $(\delta_i, \delta_j)$  F- $\gamma$  so.

**Theorem 4.23.** Let  $(X, \delta_i, \delta_j)$  be a F-bts.Then every  $(\delta_i, \delta_j)$  F- $\gamma$ -so is $(\delta_i, \delta_j)$  F-spo. **Proof:** Let A be a  $(\delta_i, \delta_j)$  F- $\gamma$ so set in X then  $A \leq \delta_j$ -cl $(\delta_i\gamma$  int(A)). Now  $\delta_j$ -cl $(\delta_i$ int $(\delta_j$ cl(A)))  $\geq \delta_j$ -cl $(\delta_i$ int(A)  $\geq A$ . Since  $\delta_j$ -cl $(A) \geq A$ ),  $A \leq \delta_j$ -cl $(\delta_i$ -int $(\delta_j$ -cl(A))). Thus, A is  $(\delta_i, \delta_j)$ F-s-po.

**Example 4.24.** The converse of the above result need not be true. Let  $(X, \delta_1, \delta_2)$  be a F-bts with X ={a,b,c},  $\delta_1$  ={ $\tilde{0}$ ,  $\tilde{1}$ ,A}, $\delta_2$ ={ $\tilde{0}$ ,  $\tilde{1}$ ,B}and A,B,C are fuzzy sets defined in X as, A={a<sub>0.3</sub>, b<sub>0.4</sub>,c<sub>0.5</sub>}, B={a<sub>0.3</sub>,b<sub>0.5</sub>,c<sub>0.4</sub>},C={a<sub>0.6</sub>,b<sub>0.5</sub>,c<sub>0.2</sub>}. The set C (resp.C') is ( $\delta_1, \delta_2$ ) F-s-po (resp.( $\delta_1, \delta_2$ )F-s-pc). But C(resp. C') is not ( $\delta_1, \delta_2$ )F- $\gamma$ -so(( $\delta_1, \delta_2$ )F- $\gamma$ sc).

**Remark 4.25.** It is now clear that a  $(\delta_i, \delta_j)$  F- $\gamma$ -s open set is weaker than the concept of  $(\delta_i, \delta_j)$  F-s-s open and stronger than the concept of  $(\delta_i, \delta_j)$  F- $\gamma$ -open and  $(\delta_i, \delta_j)$  F-s-p open.



The following results can be easily verified.

**Proposition 4.26.** If A is  $(\delta_i, \delta_j)$  F- $\gamma$  o set and A is not  $(\delta_i, \delta_j)$  F-p o then A is  $(\delta_i, \delta_j)$ F- $\gamma$ -s o.

**Corollary 4.27.** If A is  $(\delta_i, \delta_j)$ F- $\gamma$  o set and A is not  $(\delta_i, \delta_j)$  F- $\gamma$ -s o then A is  $(\delta_i, \delta_j)$  F-p o.

**Corollary 4.28.** If A is  $(\delta_i, \delta_j)$  F- $\gamma$  o set and  $\delta_i$ -int $(\delta_i$ -cl(A)) =  $\tilde{0}$ , then A is  $(\delta_i, \delta_j)$  F- $\gamma$ -s o.

**Corollary 4.29.**(a) If A is  $(\delta_i, \delta_j)$ F- $\gamma$ o set and A is not  $(\delta_i, \delta_j)$ F-so then A is  $(\delta_i, \delta_j)$  F-po. (b) If A is  $(\delta_i, \delta_j)$  F- $\gamma$  o set and  $\delta_i$ -int $(\delta_j$ -cl(A)) =  $\tilde{0}$ , then A is  $(\delta_i, \delta_j)$  F-s o.

**Proposition 4.30.** Each  $(\delta_i, \delta_j)$  F- $\gamma$  o set which is  $\delta_i$  F-c is  $(\delta_i, \delta_j)$  F- $\gamma$ -so.

**Proposition 4.31.** Each  $(\delta_i, \delta_j)$  F-s-p o set which is  $\delta_j$  F-c is  $(\delta_i, \delta_j)$  F- $\gamma$ -so.

**Theorem 4.32.** Let  $(X, \delta_{i}, \delta_{j})$  be a F-bts. Let A be a fuzzy set in X. Then A is  $(\delta_{i}, \delta_{j})$ F- $\gamma$ -so if and only if for each fuzzy point  $x_{\beta} \in A$  there exists a  $(\delta_{i}, \delta_{j})$ F- $\gamma$ -so set U such that  $x_{\beta} \in U \leq A$ .

**Proof:** Necessity: Assume A is  $(\delta_i, \delta_j)$ F- $\gamma$ -so. Let  $x_\beta \in A$ . By Theorem 4.6, there exists a  $\delta_i$  F $\gamma$ o set U such that U  $\leq A$ . By Theorem 4.16, U is  $(\delta_i, \delta_j)$ F- $\gamma$ -so. Suppose  $x_\beta \notin U$ , then  $\beta \notin U \leq A$ . That is $\beta \notin A$ . Then  $x_\beta \notin A$ , a contradiction.

**Sufficiency:** Suppose for every  $x_{\beta} \in A$  there exists a  $(\delta_i, \delta_j)F - \gamma$ -so set U such that  $x_{\beta} \in U \leq A$ . Then  $\{U_{\beta}\}$  is a collection of  $(\delta_i, \delta_j)F - \gamma$ -so set such that for every  $x_{\beta} \in A$ ,  $x_{\beta} \in U_{\beta i} \leq A$ ,  $\beta_i \in \Delta$ . Further  $\bigcup_{\beta i \in \Delta} \bigcup_{\beta i} = A$  and  $\bigcup_{\beta i}$  is  $(\delta_i, \delta_j)F - \gamma$ -so. Then by Theorem 4.11, A is  $(\delta_i, \delta_j)F - \gamma$ -so.

# **4.1.** $(\delta_i, \delta_j)$ fuzzy- $\gamma$ -semi interior and $(\delta_i, \delta_j)$ fuzzy- $\gamma$ -semi closure

**Definition 4.1.1.** Let A be a fuzzy set of a F-bts (*X*,  $\delta_i$ ,  $\delta_j$ ). Then the ( $\delta_i$ ,  $\delta_j$ )  $\gamma$ -semi closure (( $\delta_i$ ,  $\delta_j$ ) $\gamma$ -scl for short) and ( $\delta_i$ ,  $\delta_j$ ) $\gamma$ -semi interior (( $\delta_i$ ,  $\delta_j$ ) $\gamma$ -sint for short) of A are defined as ( $\delta_i$ ,  $\delta_j$ )  $\gamma$ -scl(A) =  $\land$  { B : B is ( $\delta_i$ ,  $\delta_j$ ) F-  $\gamma$ -s closed and A  $\leq$  B } ( $\delta_i$ ,  $\delta_j$ )  $\gamma$ -sint(A) =  $\lor$  { B : B is ( $\delta_i$ ,  $\delta_j$ ) F-  $\gamma$ -s open and B  $\leq$  A }

**Example 4.1.2.** Let  $(X, \delta_l, \delta_2)$  be a F-bts with  $X = \{a, b, c\}, \delta_l = \{\tilde{0}, \tilde{1}, A\}, \delta_2 = \{\tilde{0}, \tilde{1}, B\}$ . A,B,C and D are fuzzy sets defined in X as,  $A = \{a_{0.5}, b_{0.3}, c_{0.4}\}, B = \{a_{0.5}, b_{0.6}, c_{0.3})\}, C = \{a_{0.2}, b_{0.1}, c_{0.3}\}, D = \{a_{0.5}, b_{0.4}, c_{0.5}\}.$   $(\delta_l, \delta_2)\gamma$ -sint(A)=A;  $(\delta_l, \delta_2)\gamma$ -sint(B)=0; $(\delta_l, \delta_2)\gamma$ -sint(C)=0; $(\delta_l, \delta_2)\gamma$ -sint(D)=D,  $(\delta_l, \delta_2)\gamma$ -scl(A')=A',  $(\delta_l, \delta_2)\gamma$ -scl(B')=1,  $(\delta_l, \delta_2)\gamma$ -scl(C')=1;  $(\delta_l, \delta_2)\gamma$ -scl(D') = D'

**Proposition 4.1.3.** Let A be a fuzzy set of a F-bts (*X*,  $\delta_i$ ,  $\delta_j$ ). Then (i)  $(\delta_i, \delta_j) \gamma$ -scl(A') =  $((\delta_i, \delta_j) \gamma$ -sint(A))'(ii)  $(\delta_i, \delta_j) \gamma$ -sint(A') =  $((\delta_i, \delta_j) \gamma$ -scl(A))'. **Proof:** Follows from Definition 4.1.1

**Definition 4.1.4.** Let  $(X, \delta_i, \delta_j)$  be a fuzzy bitopological space and  $x_\beta$  is a fuzzy point of X. A fuzzy set A of X is called

(a)  $(\delta_i, \delta_j)$  F- $\gamma$  semi neighbourhood (briefly  $(\delta_i, \delta_j)$  F- $\gamma$ -semi nbhd) of  $x_\beta$  if there exists a  $(\delta_i, \delta_j)$  F- $\gamma$ -so set O such that  $x_\beta \in O \leq A$ 

(b)  $(\delta_i, \delta_j)$ F- $\gamma$  semi q neighbourhood (briefly  $(\delta_i, \delta_j)$  F- $\gamma$ -semi q nbhd)of  $x_\beta$  if there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -so set O such that  $x_\beta q O \le A$ 

**Example 4.1.5.** Let  $(X, \delta_1, \delta_2)$  be a F-bts,  $X = \{a, b, c\}, \delta_1 = \{\tilde{0}, \tilde{1}, A\}$  and  $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ . A,B,C and D are fuzzy sets defined in X as,  $A = \{a_{0.5}, b_{0.3}, c_{0.4}\}, B = \{a_{0.5}, b_{0.6}, c_{0.3}\}, C = \{a_{0.5}, b_{0.4}, c_{0.5}\}$  and D =  $\{a_{0.8}, b_{0.7}, c_{0.6}\}$ . Let  $\beta = 0.4$ . Then  $x_{\beta} = x_{0.4} \in C \leq D$ . Thus, D is a  $(\delta_1, \delta_2)$  F- $\gamma$ -semi nbhd of  $x_{0.4}$ . Now, let  $\rho = 0.7$ , then  $x_{\rho} = x_{0.7}$ . Thus,  $x_{0.7} q C$  since 0.7 + 0.4 = 1.1 > 1.

**Theorem 4.1.6.** In a F-bts (X,  $\delta_i$ ,  $\delta_j$ ) a fuzzy set A is ( $\delta_i$ ,  $\delta_j$ ) F- $\gamma$ -so if and only if for each fuzzy point  $x_{\beta} \in A$ , A is a ( $\delta_i$ ,  $\delta_j$ ) F- $\gamma$ -semi neighbourhood of  $x_{\beta}$ . **Proof:** Follows from Theorem 4.32and Definition 4.1.4.

**Theorem 4.1.7.** In a F-bts (X,  $\delta_i$ ,  $\delta_j$ ) a fuzzy set A is ( $\delta_i$ ,  $\delta_j$ ) F- $\gamma$ -so if and only if for every fuzzy point  $x_{\beta}q$  A, A is a ( $\delta_i$ ,  $\delta_j$ ) F- $\gamma$ -semi q nbhd of  $x_{\beta}$ .

**Proof:** Let A be  $(\delta_i, \delta_j)$ F- $\gamma$ so. Suppose  $x_\beta qA$ . By Definition4.1.4, A is a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_\beta$ . Conversely, suppose for every fuzzy point  $x_\beta q A$ , A is a  $(\delta_i, \delta_j)$  F- $\gamma$ -semi q nbhdof  $x_\beta$ . Then for each fuzzy point  $x_\beta qA$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -so set B such that  $x_\beta qB$  and  $B \leq A$ . Now if  $x_{\beta 1}qA$ , then there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -so set B<sub>1</sub> such that  $x_{\beta 1}qB_1$  and  $B_1 \leq A$ . Similarly, if  $x_{\beta n}qA$ , then there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -so set B<sub>n</sub> such that  $x_{\beta n}qB_n$  and  $B_n \leq A$ . Then  $A = \bigcup_{\alpha \in \Delta} B_{\alpha}$ . Thus, A is  $(\delta_i, \delta_j)$  F- $\gamma$ -so.

**Theorem 4.1.8.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Let A be a fuzzy set in X, then  $x_{\beta} \in (\delta_i, \delta_j)\gamma$ -scl(A) if and only if every  $(\delta_i, \delta_j)F$ - $\gamma$ -semi q nbhd of  $x_{\beta}$  is quasicoincident with A. **Proof: Necessity:** Suppose  $x_{\beta} \in (\delta_i, \delta_j) \gamma$ -scl(A). If possible let there exist a  $(\delta_i, \delta_j) F$ - $\gamma$ -semi q nbhd B of  $x_{\beta}$  such that  $\exists (BqA)$ . Then  $B \leq A'$ . By Definition4.1.4, there exists a  $(\delta_i, \delta_j)F$ - $\gamma$ -so set B<sub>1</sub> such that  $x_{\beta}qB_1$  and  $B_1 \leq B$ . As  $\beta$ +B<sub>1</sub>(x)>1,  $\beta$ >B<sub>1</sub>'(x). Now, B<sub>1</sub>  $\leq A'$  implies  $\exists (B_1qA)$  Then  $A \leq B_1'$  and  $B_1'$  is  $(\delta_i, \delta_j)F$ - $\gamma$ -sc. So  $(\delta_i, \delta_j)\gamma$ -scl(A) $\leq B_1'$ . By

assumption,  $\beta \leq (\delta_i, \delta_j)\gamma$ -scl(A) $\leq B_1'$ . Thus  $\beta = B_1'(x)$ . Hence  $x_\beta \notin (\delta_i, \delta_j)\gamma$ -scl(A), a contradiction.

**Sufficiency:** Suppose every  $(\delta_i, \delta_j)$ F- $\gamma$ -s q nbhd of  $x_\beta$  is quasicoincident with A. Assume  $x_\beta \notin (\delta_i, \delta_j) \gamma$ -scl(A), then  $\beta > (\delta_i, \delta_j) \gamma$ -scl(A). That is, there exists at least one  $(\delta_i, \delta_j)$ F- $\gamma$ -sc set B $\geq$ A and  $\beta$ >B. Then  $x_\beta \notin$ B and so  $\beta$ +B'(x)>1.Thus, B' is  $(\delta_i, \delta_j)$ F- $\gamma$ -so and  $x_\beta$ qB'. As B' $\leq$ A', (B'qA). Then B'(x)+A(x) $\leq$ 1, B'(x)+A(x)  $<\beta$  + B'(x). That is  $\beta > A(x)$ . Then  $x_\beta \notin A$ , so  $x_\beta \in A'$ , thus,  $\beta \leq A'$ . That is  $(x_\beta qA)$  which is a contradiction.

**Theorem 4.1.9.** Let  $x_p$  be a fuzzy point of X and A be a fuzzy set in a F-bts  $(X, \delta_i, \delta_j)$ . Then  $x_p q$   $(\delta_i, \delta_j)\gamma$ -scl(A) if and only if for every  $(\delta_i, \delta_j)$  F-  $\gamma$ -s q nbhd B of  $x_p$ , BqA. **Proof: Necessity:** Suppose  $x_p q$   $(\delta_i, \delta_j)\gamma$ -scl(A). Then  $p+(\delta_i, \delta_j)\gamma$ -scl(A(x))>1. If possible there exists a  $(\delta_i, \delta_j)$  F- $\gamma$ -semi q nbhd B of  $x_p$ , |(BqA) which implies  $B \le A'$ . Since B is  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_p$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_p$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_p$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_p$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_p$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi q nbhd of  $x_p$ , there exists a  $(\delta_i, \delta_j)$ F- $\gamma$ -semi  $q_1$  such that  $x_p q B_1$ ,  $B_1 \le B$ . By Theorem4.1.8,  $x_p \notin (\delta_i, \delta_j)\gamma$ -scl(A). Then  $x_p \in [(\delta_i, \delta_j)\gamma$ scl(A)]'. That isp $\leq [(\delta_i, \delta_j)\gamma$ -scl(A(x))]'. Thus,  $(x_p q(\delta_i, \delta_j)\gamma$ -scl(A)). A contradiction, which proves the theorem.

**Sufficiency:** Suppose every  $(\delta_i, \delta_j)$ F- $\gamma$ -s q nbhd of  $x_p$  is quasicoincident with A. If  $(x_pq(\delta_i, \delta_j) \gamma$ -scl(A)). Then  $\rho \leq [(\delta_i, \delta_j) \gamma$ -scl(A(x))]'. That is  $x_p \in [(\delta_i, \delta_j) \gamma$ -cl(A)]', which implies  $x_p \notin (\delta_i, \delta_j) \gamma$ -scl(A). By Theorem 4.1.8, this leads to  $\neg (x_p q A)$  which is a contradiction.

**Theorem 4.1.10.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. Let A be a fuzzy set in X and  $B \in (\delta_i, \delta_j)F-\gamma$ -so(x), such that  $\neg (A \neq B)$  then  $\neg ((\delta_i, \delta_j) \gamma$ -scl(A) q B).

**Proof:** Suppose  $B \in (\delta_i, \delta_j)F-\gamma-so(x)$ , then B is  $(\delta_i, \delta_j)F-\gamma-so$ . Now (AqB) implies  $A \leq B'$ . Since B' is  $(\delta_i, \delta_j)F-\gamma-sc$ ,  $(\delta_i, \delta_j)\gamma-scl(A) \leq B'$ . Thus,  $((\delta_i, \delta_j)\gamma-scl(A) \neq B)$ .

**4.2.** Properties of  $(\delta_{ib} \ \delta_j) \ \gamma$ -semi interior and  $(\delta_{ib} \ \delta_j) \ \gamma$ -semi closure operators **Theorem 4.2.1.** Let  $(X, \ \delta_{ib} \ \delta_j)$  be a F-bts. Then for any fuzzy sets A and B of X,

(i)  $(\delta_i, \delta_j) \gamma$ -s int $(\tilde{0}) = \tilde{0}$  and  $(\delta_i, \delta_j) \gamma$ -s int $(\tilde{1}) = \tilde{1}$  (ii)  $\delta_i$  int $(A) \le (\delta_i, \delta_j) \gamma$ -s int $(A) \le A$ 

(iii) A is  $(\delta_i, \delta_j)$  F- $\gamma$  so if and only if A =  $(\delta_i, \delta_j) \gamma$ -s int(A)

(iv)  $(\delta_b \ \delta_j)\gamma$ -s int(A) is  $(\delta_b \ \delta_j)F$ - $\gamma$ -so set and  $(\delta_b \ \delta_j)\gamma$ -s int( $(\delta_b \ \delta_j)\gamma$ -s int(A)) =  $(\delta_b \ \delta_j)\gamma$ -s int(A) (v) If A  $\leq$  B, then  $(\delta_b \ \delta_j)\gamma$ -s int(A)  $\leq (\delta_b \ \delta_j)\gamma$ -s int(B)

**Proof:** (i) and (ii). Follows from Definition 4.1.1.

(iii) Let A be  $(\delta_i, \delta_j)$ F- $\gamma$  so. Then  $(\delta_i, \delta_j) \gamma$ -s int(A) = A. Conversely, if A =  $(\delta_i, \delta_j) \gamma$ -s int(A), then by Definition 4.1.1, A is  $(\delta_i, \delta_j)$ F- $\gamma$  so.

(iv) From Definition 4.1.1  $(\delta_i, \delta_j)\gamma$ -sint(A) is  $(\delta_i, \delta_j)$ F- $\gamma$ so. From (iii) other result holds. (v) Let A  $\leq$  B. From (ii),  $(\delta_i, \delta_j)\gamma$ -s int(A) $\leq$ A $\leq$ B. By (iv),  $(\delta_i, \delta_j)\gamma$ -s int(A)  $\leq (\delta_i, \delta_j)\gamma$ -s int(B).

**Proposition 4.2.2.** Let  $(X, \delta_i, \delta_j)$  be a F-bts and A and B be any two fuzzy sets of X. Then (i)  $(\delta_i, \delta_j)\gamma$ -s int $(A \land B) = (\delta_i, \delta_j)\gamma$ -s int $(A) \land (\delta_i, \delta_j)\gamma$ -sint(B)(ii)  $(\delta_i, \delta_j)\gamma$ -s int $(A \lor B) \ge (\delta_i, \delta_j)\gamma$ -s int $(A) \lor (\delta_i, \delta_j)\gamma$ -sint(B) **Proof:** (i) By Theorem 4.2.1,  $(\delta_i, \delta_j)\gamma$ -sint $(A \land B) \le (\delta_i, \delta_j)\gamma$ -sint $(A), (\delta_i, \delta_j)\gamma$ -sint $(A \land B) \le (\delta_i, \delta_j)\gamma$ -sint(B). Thus,  $(\delta_i, \delta_j)\gamma$ -s int $(A \land B) \le (\delta_i, \delta_j)\gamma$ -s int $(A) \land (\delta_i, \delta_j)\gamma$ -s int(B). Let  $C \in [(\delta_i, \delta_j)\gamma$ -s int $(A) \land (\delta_i, \delta_j)\gamma$ -s int(B)]. Then C is a  $(\delta_i, \delta_j)\gamma$ -s os et and  $C \le A \land B$ . Then  $C \le (\delta_i, \delta_j)\gamma$ -s int $(A \land B)$ . Thus,  $[(\delta_i, \delta_j)\gamma$ -s int $(A) \land (\delta_i, \delta_j)\gamma$ -s int $(B)] \le (\delta_i, \delta_j)\gamma$ -s int $(A \land B)$ . Hence  $(\delta_i, \delta_j)\gamma$ -s int $(A \land B) = (\delta_i, \delta_j)\gamma$ -s int $(A) \land (\delta_i, \delta_j)\gamma$ -s int(B).

(ii) By Theorem 4.2.1(v),  $(\delta_i, \delta_j) \gamma$  -s int $(A \lor B) \ge (\delta_i, \delta_j) \gamma$  -s int $(A) \lor (\delta_i, \delta_j) \gamma$  -s int(B).

**Remark 4.2.3.** Equality need not hold in Proposition 4.2.2(ii) which is given by the example below. Let  $(Z, \delta_l, \delta_2)$  be a F-bts with Z={a,b,c},  $\delta_l = \{\tilde{0}, \tilde{1}, X\}$ ,  $\delta_2 = \{\tilde{0}, \tilde{1}, Y\}$  and fuzzy sets X={a<sub>0.5</sub>,b<sub>0.6</sub>,c<sub>0.7</sub>}, Y={a<sub>0.5</sub>,b<sub>0.3</sub>,c<sub>0.2</sub>}, A={a<sub>0.5</sub>,b<sub>0.4</sub>,c<sub>0.8</sub>}, B={a<sub>0.5</sub>,b<sub>0.7</sub>,c<sub>0.7</sub>}, A $\vee$ B={a<sub>0.5</sub>,b<sub>0.7</sub>, c<sub>0.8</sub>}=Y'. Here  $(\delta_l, \delta_2)$ F- $\gamma$ -so sets={ $\tilde{0}, \tilde{1}, X, B, A \vee B$ } and  $(\delta_l, \delta_2)\gamma$ -s int(A $\vee$ B)=A $\vee$ B,  $(\delta_l, \delta_2)\gamma$ -s int(A)=0,  $(\delta_l, \delta_2)\gamma$ -s int(B) = B. Then,  $(\delta_l, \delta_2)\gamma$ -sint(A) $\vee$ ( $\delta_l, \delta_2$ ) $\gamma$ -sint(B)=B. Thus,  $(\delta_l, \delta_2)\gamma$ -sint(A $\vee$ B)  $\geq$  ( $\delta_l, \delta_2$ ) $\gamma$ -sint(A) $\vee$ ( $\delta_l, \delta_2$ ) $\gamma$ -sint(B).

**Theorem 4.2.4.** Let  $(X, \delta_i, \delta_j)$  be a F-bts. For fuzzy sets A and B of X, the following holds: (i)  $(\delta_i, \delta_j) \gamma$ -s cl $(\tilde{0}) = \tilde{0}$  and  $(\delta_i, \delta_j) \gamma$ -s cl $(\tilde{1}) = \tilde{1}$  (ii) A  $\leq (\delta_i, \delta_j) \gamma$ -s cl $(A) \leq \delta_i$  cl(A)(iii) A is  $(\delta_i, \delta_j)$  F- $\gamma$  sc if and only if A =  $(\delta_i, \delta_j) \gamma$ -s cl(A)(iv)  $(\delta_i, \delta_j)\gamma$ -s cl(A) is  $(\delta_i, \delta_j)$ F- $\gamma$ -sc set and  $(\delta_i, \delta_j) \gamma$ -s cl $((\delta_i, \delta_j) \gamma$ -s cl $(A)) = (\delta_i, \delta_j) \gamma$ -s cl(A)(v) If A  $\leq$  B, then  $(\delta_i, \delta_j) \gamma$ -s cl $(A) \leq (\delta_i, \delta_j) \gamma$ -s cl(B)**Proof:** Follows from Definition 4.1.1.

**Proposition 4.2.5.** Let  $(X, \delta_b, \delta_j)$  be a F-bts and A and B be any two fuzzy sets of X. Then (i)  $(\delta_i, \delta_j) \gamma$ -s cl(A  $\lor$  B) =  $(\delta_b, \delta_j) \gamma$  -s cl(A)  $\lor (\delta_b, \delta_j) \gamma$  -s cl(B) (ii)  $(\delta_b, \delta_j) \gamma$ -s cl(A  $\land$  B)  $\leq (\delta_b, \delta_j) \gamma$  -s cl(A)  $\land (\delta_i, \delta_j) \gamma$  -s cl(B) **Proof:** (i) Consider  $(\delta_b, \delta_j) \gamma$ -s cl(A  $\lor$  B) =  $[(\delta_b, \delta_j) \gamma$ -s int(A $\lor$  B)']'= $[(\delta_i, \delta_j) \gamma$ -s int(A'  $\land$  B')]' =  $[(\delta_b, \delta_j) \gamma$ -s int(A')  $\land (\delta_b, \delta_j) \gamma$ -s int(B')]' =  $[(\delta_b, \delta_j) \gamma$ -s int(A')]'  $\lor [(\delta_b, \delta_j) \gamma$ -s int(B')]' =  $(\delta_b, \delta_j) \gamma$ -s cl(A')'  $\lor (\delta_b, \delta_j) \gamma$ -s cl(B')' =  $(\delta_b, \delta_j) \gamma$ -s cl(A)  $\lor (\delta_b, \delta_j) \gamma$ -s cl(B). Thus,  $(\delta_b, \delta_j) \gamma$ -s cl(A  $\lor$  B) =  $[((\delta_b, \delta_j) \gamma$ -s cl(A)  $\lor (\delta_b, \delta_j) \gamma$ -s cl(B) (ii) Consider  $(\delta_b, \delta_j) \gamma$ -s cl(A  $\land$  B) =  $[((\delta_b, \delta_j) \gamma$ -s cl(A  $\land$  B))' =  $[(\delta_b, \delta_j) \gamma$ -s int(A  $\land$  B)']' =  $[(\delta_b, \delta_j) \gamma$ -s int(A'  $\lor$  B')  $\ge [(\delta_b, \delta_j) \gamma$ -s int(A')  $\lor (\delta_b, \delta_j) \gamma$ -sint(B')] \le  $[(\delta_b, \delta_j) \gamma$ -s int(A')]'  $\land [(\delta_b, \delta_j) \gamma$ -s int(B')]' =  $[(\delta_b, \delta_j) \gamma$ -s cl(A)]'  $\land [(\delta_b, \delta_j) \gamma$ -s cl(B). Thus,  $(\delta_b, \delta_j) \gamma$ -s cl(A)  $\land (\delta_b, \delta_j) \gamma$ -s int(B')]' =  $[(\delta_b, \delta_j) \gamma$ -s cl(A)]'  $\land (\delta_b, \delta_j) \gamma$ -s int(B')] \le

**Remark 4.2.6.** Equality need not hold in Proposition 4.2.4 (ii). Let  $(Z, \delta_1, \delta_2)$  be a F-bts with  $Z = \{a, b, c\}, \delta_1 = \{\tilde{0}, \tilde{1}, X\}, \quad \delta_2 = \{\tilde{0}, \tilde{1}, Y\}$  with fuzzy sets  $X = \{a_{0.6}, b_{0.5}, c_{0.6}\}, Y = \{a_{0.3}, b_{0.5}, c_{0.1}\}, A = \{a_{0.6}, b_{0.3}, c_{0.8}\}, B = \{a_{0.7}, b_{0.5}, c_{0.7}\}$  and  $A \lor B = \{a_{0.7}, b_{0.5}, c_{0.8}\} = Y', A \land B = \{a_{0.6}, b_{0.3}, c_{0.7}\}$ . Then  $(\delta_1, \delta_2)\gamma$ -s cl $(A' \land B') = A' \land B', (\delta_1, \delta_2)\gamma$ -s cl(A') = 1 and  $(\delta_1, \delta_2)\gamma$ -scl(B') = B'. Then  $(\delta_1, \delta_2)\gamma$ -cl $(A') \land (\delta_1, \delta_2)\gamma$ -s cl(B') = B' and  $A' \land B' \leq B'$ . Thus,  $(\delta_b, \delta_j)\gamma$ -cl $(A' \land B') \leq (\delta_b, \delta_j)\gamma$ -cl $(A' \land A')$ .

# 7. Conclusion

In this paper, the notion of  $(\delta_i, \delta_j)$  F- $\gamma$ -semiopen  $(\delta_i, \delta_j)$  F- $\gamma$ -semi closed sets in fuzzy bitopological spaces re introduced and their properties are discussed their relationship with other sets are studied.

*Acknowledgement.* The authors are grateful to the reviewers for their comments and suggestions to improve the quality of the paper.

# REFERENCES

- 1. A.K.Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, *Journal of Mathematical Analysis And Applications*, 82 (1981) 14–32.
- 2. B.S.Zong, Fuzzy strongly semiopen sets and fuzzy strongly semicontinuity, *Fuzzy* Sets Syst., 52 (1992) 345–351.

- 3. C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182–190.
- 4. I.M.Hanafy, Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math., 7 (2) (1999)
- 5. A.Kandil and M.E.El-Shafee, Biproximities and fuzzy bitopological spaces, *Simon Stevin*, 63 (1) (1989) 45–66.
- 6. A.S.Mashour, M.H.Ghanim and M.A.Fath Alla, On fuzzy non-continuous mappings, *Bull Calcutta Math. Soc.*, 78 (1986) 57–69.
- F.S.Mahmoud, M.A.Fath Alla, M.M.Khalaf, Fuzzy-γ-open sets and fuzzy-γcontinuity in fuzzy bitopological spaces, *Applied Mathematics and Computation*, 153 (2004) 117–126.
- 8. J.H.Park and B.Y.Lee, Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, *Fuzzy Sets Syst.*, 67 (1994) 359–364.
- 9. J.H.Park, On fuzzy pairwise semi-precontinuity, Fuzzy Sets Syst., 93 (1998) 375-379.
- 10. P.M.Pu and Y.M.Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl., 76 (1980) 571–599.
- 11. S.Sampath Kumar, On fuzzy pairwise α-continuity and fuzzy pre-continuity, *Fuzzy* Sets Syst., 62 (1994) 231–238.
- 12. S.Sampath Kumar, Semi-open sets, semi-continuity and semi-open mapping in fuzzy bitopological spaces, *Fuzzy Sets Syst.*, 64 (1994) 421–426.
- 13. S.S.Thakur and R.Malviya, Semi-open sets and semi-continuity in fuzzy bitopological spaces, *Fuzzy Sets Syst.*, 75 (1996) 451–456.
- 14. C.K.Wong, Fuzzy point and local properties of fuzzy topology, *J. Math. Anal. Appl.*, 46 (1974) 328–361.
- 15. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.