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Abstract. The aim of this paper is to introduce the concegtgd; ;) F-y-semiopen
(respectively &, J;) F 4-semiclosed) sets in fuzzy bitopological spavdsch is weaker
than the concept ofd( o)) F-strongly semiopen (respectively, () F-strongly
semiclosed) sets and stronger than the concept, 6f) (F-y open (respectively, ;) F-y
closed) sets anddi( d;) F-semi-pre-open (respectively,(d;) F-semi-pre-closed)sets.
Their properties and relationship between othes aat relevant concepts are studied in
fuzzy bitopological spaces. Also, the notion &f §) F--semi interior and«, d;) F--
semi closure are introduced and their propertieslecussed.
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1. Introduction

Fuzzy topology, as an important researchdfigh fuzzy set theory, has been
established by Chang [3] in 1968, who introducexdbncept of fuzzy topological space
which is a natural generalization of topologicahsps based on Zadeh's [15] concept of
fuzzy sets. Let X be a non-empty set and | be thieinterval [0, 1]. A fuzzy setin X is a
mapping from X into I. Since then much attentior6[2,8] has been paid to generalize
the basic concepts of general topology in fuzzjregs.

Azad [1] introduced the notions of fuzzy semi o@ad fuzzy semi closed sets
with specific attention to weaker forms of fuzzyntauity in fuzzy topological spaces.
Hanafy [4] introduced the notion of Fuzzzopen sets and Fuzzycontinuity in fuzzy
topological spaces and discussed the fundamentglepies of these sets. In 1989,
Kandil and El-Shafee [5] introduced the concepfuaizy bitopological spaces (Fbts, in
short) as an extension of fuzzy topological spacekas a generalization of bitopological
spaces which was introduced by Kelly.
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Throughout this paper (%, ;) (or simply X), denote fuzzy bitopological spaces
(Fbts). For a fuzzy set A in a fuzzy bitopologisplce Xgi-cl(A), di- int(A) denote the
closure, interior with respect to the topologyrespectively. Using the union of the
concepts of &, ;) F semiopen[12],&, ;) F preopen [11], F.S. Mahmoud, M.A. Fath
Alla and M.M. Khalaf [7] introduced and studied Byz-open sets and fuzzy-
continuity in fuzzy bitopological spaces which isaker than each of them. The
objective of this paper is to introduce and study motion of §;, J;) F--semiopen sets in
fuzzy bitopological spaces which is weaker thandbecept of §, ;) F-strongly-semi
open and stronger than the conceptdfd&) F--open andd;, ;) F-semi-pre-open. We
discuss the concepts and properties that are needei$ paper in the third section. We
introduce and study the concepts af,d)F-y-semiopen (respectivelydi( o;)F-y-
semiclosed) sets in fuzzy bitopological spaces@with their properties in the fourth
section. Using this concept, in section 4.1 andve2lefine and deal with the concepts of
(i, 0;)-F-y-semi interior and &, ¢;)-F-y-semi closure and investigate some of the
fundamental properties of these concepts.

2. Preliminaries

In this section, we give some elementary concepiisrasults which will be used in the
sequel. Let X be a nonempty set and I= [0, 1]. Azfuset (briefly F-set) A in X is a
mapping from X to |. A fuzzy set A of X is contathe a fuzzy set B of X denoted by A
< B if and only if A(X)< B(x) for each X1 X. A fuzzy point [14] with singleton support
xO X and the valuex[0, 1] is denoted by x The complement A' of a fuzzy set X is 1
A defined by (+A) (X)= 1-A(x) for each xO X. A fuzzy point xOA if and only if
B<A(X).A fuzzy set A is the union of all fuzzy point¢hich belong to A. A fuzzy pointsx
is said to be quasicoincident with the fuzzy setehoted by pgA if and only iff + A(x)

> 1[10]. A fuzzy set A is said to be quasicoincitieith B denoted by AgB if and only if
there exists X1 X such that A(x) + B(x) > 1. A B if and only ifI(AgB") [10].

Definition 2.1. Let A be a fuzzy set of a fuzzy topological spaced)X;Then A is called
(a) a F semiopen (briefly FSO) set of Xlik cl (int (1)) [1] ;

(b) a F semiclosed (briefly FSC) set of Xlif> int (cl (1)) [1];

(c) a F preopen (briefly FPO) set of XAf< int (cl (A)) [6];

(d) a F preclosed (briefly FPC) set of XAf > cl (int (1)) [6];

(e) a F strongly semiopen (briefly FSSO) set of X< int (cl (int (1)) [2];

(f) a F strongly semiclosed (briefly FSSC) set af X > cl (int (cl (1))) [2];

(g) a F semi-preopen (briefly FSPO) set of Xlif< cl (int (cl (1)) [8];

(h) a F semi-preclosed (briefly FSPC) set of X i int (cl (int (1)) [8];

The set of all F-so(resp. F-sc), F-po(resp. Faso(resp. F-ssc), F-spo(resp. F-spc) of
a fuzzy topological space will be denoted by FSQf&sp. FSC(X)), FPO(X) (resp.
FPC(X)), F-SSO(X) (resp. F-SSC(X)), F-SPO(X) (resf8PC(X)).

Definition 2.2. [4] Let (X, J) be a fuzzy topological space.Theis called a F+open(Fy
closed) set of X i <int(cl(v)) v cl(int(v)) (v=> cl(int(v)) A int(cl(v))).

The family of all Fy open (respectively Fclosed) sets of X is denoted by®{X)
(respectively FC(X)).
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Lemma 2.3. [1] For a family {\ Jof fuzzy sets of a Fts Xcl(A,)<cl(VA,) andVint(A,)<
int(VA,).

Lemma 2.4. [1] For a fuzzy seh of a F-ts X, (i)(intd))’ = cl(A') and (ii) (clQ\))' = intA")
Lemma 2.5. [1] For a fuzzy seh of a F-ts X, (a)int A=cl(1-A) and (b)Xcl A=int(1-A).

Definition 2.6. [5] A set X on which are defined two (arbitrary}épologiess; andd, is
called F- bitopological space (briefly F-bts) arehdted by X, d1, d,).As to the notions,
we shall writedi-int(1) anddi-cl(A) to mean respectively the interior and closure ¢
setA with respect to the F-topologyin F-bts ¥, d;, 9;), with §i-F-0 set andj-F-c set, we
mean respectively-F-open andi-F-closed set. The indices i and j take values2fl,
throughout this paper anetij, i = j gives the known results in F-ts.

Definition 2.7. [12] Let A be a fuzzy set of a F-btX,(di,5;). ThenA is called

(@) a @i, 9;) F semiopen (brieflyX, d;) F-so) set of X ifA < d;-cl (di-int (A));

(b) a @i, ) F semiclosed (brieflyd, ;) F-sc) set of X ifA> dj-int (di-cl (A));

The set of alld, 6;) F-so, (resp.&, d;)F-sc) sets of a F-bts X will be denoted by &)
FSO(X), (resp.d;, d;) FSC(X)).

Definition 2.8. [11] LetA be a fuzzy set of a F-btX,(d;, J;). ThenA is called

(a) a ¢i, o)) F strongly semiopen (brieflyi( J;) F-sso) set of X ifi< (d-int (A)));

(b) a ©i,0))F strongly semiclosed (brieflyi( d;)F-ssc) set of X i >di-cl(dj-int(di-cl (A)));
(c) a ¢, 9;) F preopen (brieflyd, ;) F-po) set of X ifA < gi-int (6-cl (A));

(d) a ¢, 9)) F preclosed (brieflyX, d;) F-pc) set of X ifA > gi-cl (g;-int (A));

The set of alld;, J;) F-sso, §, ;) F-ssc, &, J;) F-po, ¢i, §;) F-pc sets of a F-bts X will be
denoted byd;, 9;) FSSO(X), §,0;) FSSC(X), §i,0;) FPO(X) and ;,d;) FPC(X)
respectively.

Definition 2.9. [9] Let A be a fuzzy set of a F-bts (¥, J;). ThenA is called

(a) a ¢i, o)) F semi-preopen (briefly{, ;) F-spo) set of X ifA<g;-cl (di-int (d;-cl (1)));
(b) a @i, 9;) F semi-preclosed (brieflyi( 6;) F-spc) set of X il> g;-int (di-cl (5-int (A)));
The set of alld;, J;) F-spo, (resp.X, ;) F-spc) sets of a F-bts X will be denoted 8y d;)
FSPO(X), (resp.&, 9;) FSPC(X)).

Definition 2.10. [7] Let A be a fuzzy set of a F-btX,(d;, J;).ThenA is called ad;, 3;) Fy
open (resp.&, J;) Fy closed), briefly &, J;) F-yo (resp. §, J;) F+c) if

A < oi-int (9-cl(A)) v g;-cl (di-int(A)), respectively A > gi-cl (5-int(A)) A gi-int (6i-cl(A)).
The family of all ¢;, 5;) F-yo (resp. §, 9;) F-yc) sets of X is denoted by(d;) F-O(X)
and (resp.d, ;) FC(X)).

Remark 2.11. [7] (i) The union of §;, ;) F-yo sets is aX, J;) F-yo set.
(i) The intersection ofd, d;) F-c sets is aX, J;) F-yc set.
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Definition 2.12. [7] Let A be a fuzzy set of a F-btX,§;, ;). Then thed;, J;) y-closure
((9i, 9) y-cl for short) andd;, d;) y-interior (@, o;) y-int for short) ofA are defined as
(63, 0y) y-cl(A) = A{v:Vis (0, 6;) F closed andl < v}
(03, ;) y-int(A) = v{v : vis (9, 9;) F- open and/ < A}

Remark 2.13. (i) (di,0) y-cl(A) is the intersection of alb{;)F-y ¢ sets of X containing.
(ii) (a3, 65 y-int(A) is the union of alld;, ¢;) F-o sets of X contained ik

(iii) oi-y cl(A) is the intersection of alb{,;)F-yc sets of X containing with respect ta.

(iv) di-y int(A) is the union of allg;, J;)F-yo sets of X contained itwith respect to thé;.

3. Propertiesof (¢, 9;) F-y closureand (d;, d;) F-y interior

Proposition 3.1. Let (X, di, J) be a F-bts. Then ever§F o set is §, ;) F~o.
Proof: Let A bedi-F o in X, thendi-int(dj-cl(A)) Voj-cl(di-int(A)) = di-int(d;-cl(A)) V o
cl(A) > gi-int(d;-cl(A)) VA= A. Then A< gi-int(dj-CI(A)) V g;-cl(di-int(A)). Thus,A is i, J))
F-yo.

Remark 3.2. The converse of the above is not true.Every;JF-yo(c) need not bé;-

Fo(c).

Let (X,0,0,) be a F-bts with X={a,b,c},0,={0,1,A},9,={0,1,B} and fuzzy sets
A={aos5b02 Co4, B ={aosbneCost-Here B (resp. B) isdy,d2)F-y0 (resp. §1,6,)F-yc) but
notd;-Fo (respds-F ¢ ).

Proposition 3.3. Let A be a F-set of a Fb¥§g;,0;). Then A isgiFo if and only if A isoiF
70.

Corollary 3.4. () g-int(A) = g;-yint(A)  (b)di-cl(A) = oi-ycl(A).
Proof: Follows from Definition 2.12

Theorem 3.5. Let (X, d;, ;) be a F-bts. Then for fuzzy sets A and B of X,

(i) (6, &) y-int(0) =0, (5, 5) y-int(1) =1 and @, ) y-int(A) < A

(i) A'is (o5, 9)) F o if and only if A = §;, J;) y-int(A)

(iii) (i, o) y-int(A) is (0i, 0;) F-0 set andd;, d;)y-int((di, J;)y-int(A))=(di, J;)y-int(A)

(iv) If A<B, then i, J;) y-int(A) < (3, 9;) y-int(B)

(v) (6, 8) y-cl(0) =0 (1, 5) y-cl(1) =1 and A(5;, ;) y-Cl(A)(vi) A is (5, 6;) F- closed if
and only if A = ¢, ;) y-cl(A).

(vil) (61, 9) 7-CI(A) i (61, &) F-c set andd;, 4)y-cl((di, 3)y-cl(A)) = (3,6)y-Cl(A).

(viii) If A < B, then §;, ) y-cl(A) < (di, J;) y-cl(B).

Proof: Follows from Remark 2.11, Remark 2.13 and Defimit?.12.

Remark 3.6. Theorem 3.5 also holds when single topolégg considered.
Proposition 3.7. Let A and B be any two fuzzy sets of a F-btsj(¥;). Then
(i) (31, &) -int(A A B) = @, ) 7-int(A) A (3, ) 7-int(B)

(ii) (a3, 6)) y-int(AV B) > (di, 9;) y-int(A) Vv (o, ;) y-int(B)
Proof: Follows from Definition 2.12

176



(91,07) F-Semiopen and(,0;) F--Semiclosed sets in Fuzzy Bitopological Spaces

Remark 3.8. Equality need not hold in Proposition 3.9 (ii). (&t J,, J2) be a F-bts with
X:{a,b,C}, 51={6,1,Y}, 52 :{ﬁi’ilz} and fuZZy sets Y:{a5lb0.6100.7}l Z:{a0.5lb0.3100.2}1
A={ao50.4Cog}, B={aos0.7C0.7} and AvB={agsb07Cog= Z'. Then @1, d2)y-int(AVB)
=AVB, (51,52)V'int(A):Z, (51,52)]/”“(8):8 So, 61,52)V'int(A) V(él,éz)y'int(B):B and
AVB > B.

Proposition 3.9. Let A and B be any two fuzzy sets of a F-bts ¢g;). Then
(i) (di, 6) y-Cl(A Vv B) = (i, ;) y-Cl(A) V (4i, 6)) y-cl(B)

(i1) (61, ) 7-CI(A A B) < (i, 3) y-CI(A) A (6, ) y-cI(B)

Proof: Follows from Definition 2.12

Remark 3.10. Equality need not hold in Proposition 3.13 (i)t (&, J4, J,) be a F-bts
with Z={a,b,c},8,={0,1,X} and 5,={0,1,Y} where X={ag 500607 Y={@0500.3C02}
A={a0,5,b0,6, C()'g}, B :{a0.5,b0'7,C0.7}, ANB :{aol5,b0.6,C0'7}=X. Then (61,52)))'C|(A/\B)=A/\B,
(?(1A52)BV)'C|(A):Y', (J1, 62)y-cl(B)=Y" and s0 §1,02)y-Cl(A)A(01,52)y-Cl(B)=Y" =(d1, J2) v-
CI(AAB).

4. (di, 9;) fuzzy-y-semiopen and (d;, 9;) fuzzy-y-semiclosed sets

Definition 4.1. Let A be a fuzzy set of a F-btX,(;, 4;). Then A is called a

(1) (6, ;) Fuzzyy-semiopen (brieflyd;, J;) F+-so) set if A< gj-cl (§i-y int(A))

(i) (01, 0)) Fuzzyy-semiclosed (brieflyd, J;) F+-sc) set if A> §;- int (3i-y cl(A))

The family of all ¢;, 5;) F-y so (respectivelyX, d;) F-y sc)sets of X is denoted by, (;)F-
y SO(X) and (respectivelyi( ;) F-y SC(X)).

Example 4.2. Let (X,0.,0,) be a F-bts where X={a, bj,= {0,1,A} and 6,={0,1,B}. A
and B are fuzzy sets defined in X as, A={@ys)tand B={ay4b0 5. Here @1, J2) F-y-0
sets =0, 1,A,B} The sets A and B (resp. A' and B'") ad, ¢2)F-y-so (resp. &y, d2) F--
SC).

Theorem 4.3. A fuzzy set A of a F-btsX| d;, 9)) is (0i,0)F-y-sc if and only if A" is §;,0;)F-
7-S0.
Proof: Follows from Definition 4.1.

Remark 4.4. The concepts ofd(, J;) F+-so (resp. d;, J;)F-y-sc) and §;,0;) F--so (resp.
(05,01) F--sc) sets are independent. The following examplstiiates this.

Example 4.5. Let (X, d1, 3,) be a F-bts with X={a, b}g, ={0, 1, A} and 5, ={0, 1, B}and
A, B are fuzzy sets defined in X as, Asfabys)}, B ={aos n3)}.Here A (resp.A") isdy,
d2)Fy-so (resp. di,02)F--sc). But A (resp. A') is not§, 61)F--so (@2, d1)F--sc). Also,
B (resp. B") isd,, 01) F-y-so(resp. &z, d1)F-y-sc) and notdi, d2)F-y-so ((resp.dy, d2) F--
sc))

Theorem 4.6. Let (X, d;, J;) be a F-bts. Then a fuzzy subset A of Xdsd;) F--so if and
only if there exists ad F¢ o set U, such that U< A < ¢~y cl(U).
Proof: Let A be ¢, J)F-y-so in X. Thendgi- y int(A) < A < gi-cl(di- y int(A)). Let d; y
int(A) = U and U isg; F 0. Then U< A < gi-cl(U), that is U< A < 6;- y cl(U).
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Conversely, suppose there existh B-0 set U such that § A < g;-y cl(U).Then U< ;-
yint(A). Then by Theorem 3.%;-y cl(U) < d;-y cl(d;-y int(A))= d;-cl(di-y int(A)). Thus, A
< gy cl(V) < g;-cl(d;+ int(A)). Hence A is &, J;)F-y-so.

Theorem 4.7. Let (X, 6, 9;) be a F-bts. Then a fuzzy subset B of Xjisd) F+-sc if and
only if there exists @ F-y c set F, such thaj-y int(F)<B <F.

Proof: Let B be §;, d;)F-y-sc in X. Thens- cl(B) = B 24;- int(di- y cl(B)). Let F =g~y
cl(B), then F iss; F» c and Fz B 2¢- int(F)) which impliesd;- y int(F) < B < F.
Conversely, suppose there existgifyc set F such thaj- int(F) < B < F. Thend;-
ycl(B)< F. That igj-int(di-y cl(B))<d; int(F))=d;+ int(F)<B.Then B>g;-int(di-y cl(B)). Thus,
B is (0i,0;))F-y-sc.

Proposition 4.8. The union of two d,0)F--so sets is ad(d;)F-y-so set in a F-bts
(Xﬂélaéj)

Remark 4.9. The intersection of tway(,6;)F-y-so sets need not b&,§;)F-y-so in a F-bts
(X,0,0))as given below.

Example 4.10. Let (X, d1,0-) be a F-bts with X={a, b, c§;={0, 1, A, B, AvB} and &,
={0,1,C}. A,B,C,E and F are fuzzy sets defined in XAs{ao,bo2 Co.}, B={a0.300,c0)},

C={ao1,b0.5,C0}, E={20,bo.5,Co}, F={a03b03,Co}, EAF={0, b, €)}. Here E and F are
(61, 02) F-y-s0 but BF is not §,0,) F--so.

Theorem 4.11. Arbitrary union of §;,;)F-y-so sets is &(,6;)F-yso in a F-btsX,d;,0;).
Proof: Let {Aq}«oa be a collection ofd, 6;)F-y-so sets inX, d;, ;). For eactulA, A, is
(i, ;) F-y-so. Then for eactiJA, Aq < d- ¢l (0i- y INt(Ag)). That iSVanaAe<Vanadj-Cl(di-y
iNt(Aq)). Then VqaoaA<o-Cl(Vamadiy int(Aq)) which implies VooaAg < di-Cl(di
iNt(VanaAa)), by Remark 2.11. ThuSymaAq is (0i,0;)F-y-so.

Proposition 4.12. The intersection of twa(,6;)F-y-sc sets is a(,d;)F-y-sc in a Fbts

Remark 4.13. The union of two d;, ¢;)F-y-sc sets need not bé;,§)F--sc as shown
below.

Example 4.14. Let (X, 6,0,) be a F-bts with X={a,b,c},8,={0, 1,A,B, AVB},
5,={0,1,C,D} and AB,C,D,E,F are fuzzy sets defined in X%, aA={ag,by»C01)},
B={a0.30,C0)}, AVB={aos o2 i}, C={ao1, b2 G, D={acs e G.o,E={ao, bus
Co.1}, F={a03,0003Co}. Since E>d,-int(d,-y cl(E"))=C and F=d,-int(é,-y cl(F"))= C, E' and
F' are §y, 0-)F-y-sc, but EV F'is not 6, d,) F-y-sc asg,-int(d- ycl(EVF)) = 1€ E'V F'

Theorem 4.15. Let (X,0i,0;) be a F-bts. Arbitrary intersection af,§;) Fysc sets is&,d;)
Fysc.

Proof: Let {Aq}«a be a collection ofd,d;)F-y-sc sets in X. For eadJA, Ay is (@i,0;)F-
y-sc.Then for eacluJA, A, is (6i,0)F-y-so which impliesvVqmaAd' is (0i,0)F-y-so. Let
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B=VamnAq.Then B'= {qmnA4)' IS ©0i,0)F-y-sc. So, B'2qoa(Ad)' is ©i,0;)F--sc. Thus,
AarnPq 1S (01,0 F-y-sc.

Theorem 4.16. In a F-bts X,d;,0), everyo; Fo is ¢;,0;)) Fy-so and everyi-Fyo is ©,0;)F-
7S0.
Proof: Follows from Definition 4.1.

Example 4.17. The converse of the above theorem is not true.(X@t,0,) be a F-bts,
X={a,b,c}, 4, ={0, 1,A}, 6,={0,1,B} and A, B, C are fuzzy sets in X as, Agfalys,
C0.4}1 Bz{aO.SlbO.SlcO.?:}l C:{a0.5! h).4! C0.5)}' The Set C (resp CI) 6:(’ 62)F'V'So (resp
(01,02) F-y-sc) but C (resp. C'") is nét-F o (respdi-F c) as well as nak-F-y 0 (respos-
F-yc).

Theorem 4.18. Let (X, 4, §) be a F-bts. Then every,(5;) F+-so set isd;, ;) Fyo.
Proof: Follows from Definition 4.1.

Example 4.19. The converse of the above result need not be euéxl.d,, d,) be a F-bts
with X = {a, b, ¢},6,={0, 1, A}, 6, ={0, 1, Bland A, B, C are fuzzy sets defined in X as,
A:{aO.SlbO.ZlCO.G}! Bz{a0.5!b0.4lc0.3}! Cz{a0.3!b0.l!CO.5}' Here C (resp C') IS&L 52)F'V0 (resp
(91, 32) Fc) and C (resp. C') is naiy( 5,) F-y-so (resp.dy, d2) F+-sc).

Theorem 4.20. Let (X, o;, ;) be a F-bts. Then every,¢;)F-s-so set isX,d;)F-y-so.
Proof: Let A be §i0) F-s-so in X. Then Adj-int(d;-cl(di-int(A))). Define
B=oicl(siint(A)). Then A< 6i-int(B) and A< B. That is A g;-cl(di-int(A)). Thus, A< d;-
cl(di-y int(A)).

Example 4.21. The converse need not be true always which is sHowthe example.
Let (X,01,0,) be a F-bts with X={a,b,c},={0,1,A}, §,={0,1,B} and A,B,D are fuzzy
setsdefined in X as, A={&,bo2Ce,B={aosbo0.4Co3,D={a050b03C e The set D
(resp.D") is §1,02)F-y-so (respdy,d,) F-y-sc). But D (resp.D") is not{,d,) Fsso (resp.
(01,02) Fssc).

Theorem 4.22. Let (X, 4, §) be a F-bts. Let A be a fuzzy set in X. If Ads ¢;) F-so
then A is 6, 9;) F-so and the converse also holds.

Proof: Suppose A is&,d;)F-y-so then A< g;-cl(d;-y int(A)). By Corollary 3.4, A isd;,6;)
F-so. Now suppose A i9i(J;) F-so then A< g;-cl(di- int(A)). Then A is §;, J;) F-vy so.

Theorem 4.23. Let (X,0i,0) be a F-bts.Then every( d) F--so is¢i, J;) F-spo.
Proof: Let A be a§;,d;) F-so set in X then Adj;-cl(diy int(A)). Now g;-cl(diint(d;cl(A))) >
oi-cl(giint(A) > A. Sincedj-cl(A)>A), A<d-cl(di-int(d;-cl(A))). Thus, A is §i,0;)F-s-po.

Example 4.24. The converse of the above result need not be ltetgX, J,,0,) be a F-bts
with X ={a,b,c}, 6, ={0, 1,A},5,={0, 1,B}and A,B,C are fuzzy sets defined in X as,
A={aps y.4Cosh, B={ao3b05C04C={a06005C02.The set C (resp.C’) isi{,6;) F-s-po
(resp.f1,0,)F-s-pc). But C(resp. C") is naty(d,)F-y-so((01,02) F-ysc).
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Remark 4.25. It is now clear that aj(, J;) F-y-s open set is weaker than the concept of
(0i,0;) F-s-s open and stronger than the concepi;of( F--open andd;, J;) F-s-p open.

5i_ F O 15i_ F
C)

A ]
(01, ) F-S-S O (9}, o) F-

/ s-i C) \

(5i: 5]) F-S O ('5i: 5]) (5i: 51) F‘V'S 0 ('5i: 5]) Fe— (éi, 51) F-P O (léi, 51)
F-S C) y-SC) 0 — > |F-PC)
\ (5“ 5]) F—’Y—O ((5i, 5])
F+-C)

(0l o) F-SPO @, 0) F-S
P C)

The following results can be easily verified.

Proposition 4.26. If A is (9, 6;) F- 0 set and A is noty, d;) F-p o then A isd;,d;)F-y-s o.
Corollary 4.27. If A is (di, 0))F-y 0 set and A is nobf, J;) F+-s o then Aisd, ¢;) F-p o.
Corollary 4.28. If A is (d, 5) F-y 0 set and-int(5-cl(A)) = 0, then A is §;, 6;) F-y-s 0.

Corollary 4.29.(a) If A is (9;, 6;)F-yo set and A is noty(, 6;)F-so then A isd;, J;) F-po.
(b) If Ais (4, 6;) Fy o set andi-int(5;-cl(A)) = 0, then A is §, 5)) F-s o.

Proposition 4.30. Each §;, 6;) F- o set which i) F-c is ¢, ;) F--so.
Proposition 4.31. Each §;, J;) F-s-p o set which i§ F-c is ¢;, J;) F-y-so.

Theorem 4.32. Let (X,0;,0;) be a F-bts. Let A be a fuzzy set in X. Then Adigj)F-y-so
if and only if for each fuzzy pointskJA there exists a¥,0;)F-y-so set U such thagXU<
A

Proof: Necessity: Assume A is &, J;)F-y-so. Let x[JA. By Theorem 4.6, there exist9ia
Fyo set U such that § A. By Theorem 4.16, U is){, 6;)F-y-so. SupposegkiU, thenp%
U<A. That i€ A. Thenx[A, a contradiction.

Sufficiency: Suppose for everygkXIA there exists ad(, J;)F-y-so set U such thagXU<
A. Then {Ug} is a collection of §;,0;)F-y-so set such that for every¥A, xsO0 Ug < A,
BiUJA. Further UgjcaUgi = A and U is (@i, 6;) F-so. Then by Theorem 4.11, A i&,(
0j)F-y-so.

4.1. (9i, 9;) fuzzy- y-semi interior and (d;, d;) fuzzy- y-semi closure
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Definition 4.1.1. Let A be a fuzzy set of a F-btX,(5;, J;). Then the d;, ;) y-semi closure
(4, 9;)y-scl for short) and&, d;)y-semi interior (§i,d;)y-sint for short) of A are defined as
(63, 6;) y-scl(A) =A { B : Biis (9, 9;) F-y-s closed and A B }

(01, 05) y-sint(A) =V {B : B is (, 9;) F-y-s open and B A }

Example 4.1.2. Let (X,1,0,) be a F-bts with X ={a,b,c}9,={0,1,A}, 5,={0,1, B}. A,B,C
and D are fuzzy sets defined in X as, As{80.2,Co.4,B={a0.500.6C0.3}C={a0.2b0.1 Co3},
Dz{a0.5,b0.4,C0.5}. (51,52)V'Sint(A):A; (51,52)y'3int(8):0;61,52)y'3int(C)=0;61,52)))'
sint(D)=D, ©1,02)y-sCl(A)=A", (01,02)y-SCl(B)=1, (01,02)y-scl(C)=1; (01,02)y-scl(D) = D'

Proposition 4.1.3. Let A be a fuzzy set of a F-bt%, (i, J;). Then
(i) (9, 6) y-scl(A) = (61, ) y-sint(A))(ii) (i, Jy) y-Sint(A) = (%, Jj) y-scl(A))'.
Proof: Follows from Definition 4.1.1

Definition 4.1.4. Let (X, d;, 9;) be a fuzzy bitopological space anglisxa fuzzy point
of X. A fuzzy set A of X is called

(a) ©i, 0;) F semi neighbourhood (brieflyi( 6;) F--semi nbhd) of xf there exists a
(01,0;)F-y-so set O such thagXO < A

(b) (9i, 9j)F-y semi q neighbourhood (brieflyi( ;) F-y-semi q nbhd)of gif there exists a
(64, 0j)F-y-so set O such thagx O< A

Example 4.1.5. Let (X,01,0.) be a F-bts, X={a,b,c$;={0,1,A}and §,={0,1,B}. A,B,C
and D are fuzzy sets defined in X as, A 54a%3, C4, B ={aos e G2 C = {ags
o4, G5t and D = {& 500 7Cog. Let B = 0.4. Then x= %40 C<D. Thus, D is adj, d,)
F-y-semi nbhd of x.. Now, letp=0.7, then ¥=xo7. Thus, %;q C since 0.7+0.4=1.1>1.

Theorem 4.1.6. In a F-bts X, d;, 9;) a fuzzy set A isd, J;) F--so if and only if for each
fuzzy point xUA, A is a @, J;) F--semi neighbourhood ofx
Proof: Follows from Theorem 4.32and Definition 4.1.4.

Theorem 4.1.7. In a F-bts X, di, 9;) a fuzzy set A isq, J;) F--so if and only if for every
fuzzy point xg A, A is a ¢;, 9;) F-y-semi g nbhd of

Proof: Let A be ¢i,0)F-yso. SupposeggA. By Definition4.1.4, A is ad;,d;)F-y-semi q
nbhd of x. Conversely, suppose for every fuzzy poigg &, A is a ¢, ¢;) F--semi q
nbhdof x%.Then for each fuzzy pointgA, there exists adf, J;)F-y-so set B such that
xggB and B< A. Now if xg:0A, then there exists a&;fJ;))F-y-so set B such that xqB;
and B < A. Similarly, if xs,0A, then there exists a&;/;)F-y-so set B such that 0B,
and B, <A. Then A =U 4B, Thus, Ais §, J;) F+-so.

Theorem 4.1.8. Let (X, di, J;) be a F-bts. Let A be a fuzzy set in X, thedl Xdi, J;)y-
scl(A) if and only if every &, d;))F-y-semi q nbhd of xis quasicoincident with A.
Proof: Necessity: Suppose a0 (di, J;) y-scl(A). If possible let there exist &;,0;) F-y-
semi g nbhd B of xsuch that|(BgA). Then B< A’. By Definition4.1.4,there exists a
(0i,0))F-y-so set B such that B, and B<B. As (+B;(x)>1, B>B'(x). Now, B <
A'implies 1(B;gA) Then A< By and B' is (5,0)F--sc. So §,0)y-scl(A)< By. By
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assumption, B<(d;0;)y-scl(A)<B,'.Thus p=Bi(x). Hence x[O(d, d)y-scl(A), a
contradiction.

Sufficiency: Suppose everyd{ oJ)F--s q nbhd of x is quasicoincident with A.
Assume x[(d;, 9j) y-scl(A), thenp>(d;, d;)y-scl(A). That is, there exists at least oag (
o))F-y-sc set BA and3>B. Then x[B and sof+B'(x)>1.Thus, B is (;0;)F-y-so and
xgqB'. As B<A’,[(B'gA). Then B(xX)+A(X)<1, B(X)+A(x) <B + B'(X). That isp> A(X)
.Then %0A,s0 %0A’, thusp < A". That is|(xegA) which is a contradiction.

Theorem 4.1.9. Let x,be a fuzzy point of X and A be a fuzzy set in at&{,d;, J).

Then x%q 6;,9)y-scl(A) if and only if for every &, J;) F- y-s g nbhd B of x BgA.

Proof: Necessity: Suppose q (0i, J;)y-Scl(A). Thenp+(di, J;)y-scl(A(x))>1. If possible
there exists aj(,d;) F-y-semi q nbhd B of,gﬂ(BqA) which implies B< A’. Since B is §;,

o)F-y-semi q nbhd of x there exists ad{d;)F-yso set B such that xB,, Bi< B. By
Theorem4.1.8, XJ(d;,0))y-scl(A). Then xO[(di,0;)yscl(A)]". That ip<[(d;,0;)y-scl(A(X))]'.

Thus](qu(éi,5j)y—scI(A)). A contradiction, which proves the themmre

Sufficiency: Suppose everyy, J;)F-y-s q nbhd of xis quasicoincident with A. If (g(J;,

;) v-scl(A)). Then p<[(di,05)y-sCl(A(X))]. That is xO[(di,0;)y-cl(A)]’, which implies
Xo0(01,0;)y-scl(A). By Theorem 4.1.8, this IeadsTt(lxp g A) which is a contradiction.

Theorem 4.1.10. Let (X, d;, 9;) be a F-bts. Let A be a fuzzy set in X andIRo;, J;)F-y-
so(x), such that (A q B) then| ((5, d)) y-scl(A) g B).

Proof: Suppose B (6;,0;))F-y-so(x), then B is {,d;)F-y-so. Now |(AgB) implies A<B'.
Since B is (0;,0;)F-y-sc, ¢i,0)y-scl(A)<B'. Thus]((éi,éj)y-scI(A) g B).

4.2. Propertiesof (4, d;) y-semi interior and (i, d;) y-semi closure operators
Theorem 4.2.1. Let (X, di,0;) be a F-bts.Then for any fuzzy sets A and B of X,

(i) (6, 6;) y-s int@) =0 and ¢, &) y-s int@) =1 (ii) o int(A) < (5, 6;) y-s INt(A) < A

(iii) Ais (0i, 0;) F+y so if and only if A = §;, 6;) y-s int(A)

(iv) (6, 9;)y-s int(A) is ¢i,0;)F-y-so set and,d;)y- s int(©;,0;)y-s int(A)) = ©i,0;)y-s int(A)
(v) If A <B, then §, o) y-s int(A) < (9, ;) y-s int(B)

Proof: (i) and (ii). Follows from Definition 4.1..

(iii) Let A be (i, 6;)F-y so. Thend;, ;) y-s int(A) = A. Conversely, if A =§,9;)y-s int(A),
then by Definition 4.1.1, A isj(, 9;)F-y so.

(iv) From Definition 4.1.14;,0;)y-sint(A) is ©,0;)F-yso. From (iii) other result holds.
(v) Let A< B. From (i), ¢i,05)y-s int(A)<A< B. By (iv), (0i,0))y-s int(A) < (d;,0;)y-s int(B).

Proposition 4.2.2. Let (X,0;,0;) be a F-bts and A and B be any two fuzzy sets.afh¥n
(i) (81, )y-s INt(A A B) = (51, 6)) y-S int(A) A (3, &) y-sint(B)

(i) (01, 9;) y-s int(Av B) > (6i, ;) y-S int(A) V (di, J;) y-sint(B)

Proof: (i) By Theorem 4.2.1,&,9;)y -Sint(AAB) < (9,0))y-sint(A), (6i,6;)y-sint(AAB) <(a;,
9j)y sint(B). Thus, &, o;) y-s int(A A B) < (di, d;) y-S int(A) A (63, J;) y-S int(B).

Let CU [(d5, 9;) y-s Int(A) A (9, ) y-s int(B)]. Then C is aX,d;)F-y so set and &€ AAB.
Then C< (6i,0)y-s Int(AAB). Thus, [6i, J))y-s int(A) A (6i,0;)y-S int(B)] < (di, ) y-S
int(AAB). Hence §;, d;) y-s int(A A B) = (9, ;) y-S int(A) A (9, ;) y-s int(B).

(if) By Theorem 4.2.1(v),&, 9)) v -s int(Av B) > (d;, ;) v -s int(A) V (d;, ;) v -s int(B).
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Remark 4.2.3. Equality need not hold in Proposition 4.2.2(ii) athiis given by the
example below. LetZd.,d,) be a F-bts with Z={a,b,c}¢,={0,1, X}, 6.={0,1,Y} and

fuzzy sets X={35bo6C7)}, Y={ao0s5003C02} Af{ﬁo.s,bo.mco.s}: B={a0.50.%.Co.7},

AvB={apsbn7 Gg=Y. Here (©@,02)Fy-so sets=,1, X,B,AVB} and (@1, d.)y-s
intf(AVB)=AVB, (61, d2)y-s int(A)=0, ¢, d2) p-s int(B) = B. Then, d,0.)y-

SiNt(A)V(91,02)y-sint(B)=B. Thus, §1,0,)y-SINt(AVB) > (01,0,)y-Sint(A)V(d1,02)y-sint(B).

Theorem 4.2.4. Let (X,0;,0;) be a F-bts. For fuzzy sets A and B of X, thedwihg holds:
(i) (6, &) y-s cl@) =0 and ¢, &;) y-s cl@) =1 (ii) A < (6, 6;) y-s cl(A) < & cl(A)

(iii) A'is (i, 0;) F-y sc if and only if A = §;, J;) y-s cl(A)

(iv) (6, 9;)y-s cl(A) is @i, 6))F-y-sc set andd, d;) y-s cl((, ;) y-s cl(A)) = @i, J;) y-s cl(A)
(v) If A <B, then §;, ) y -s cl(A) < (di, ;) y -s cl(B)

Proof: Follows from Definition 4.11.

Proposition 4.2.5. Let (X, d;, d;) be a F-bts and A and B be any two fuzzy sets afhén
(i) (6, 3)) y-s cl(AV B) = (i, 6)) y -s cl(A) v (di, ) y -s cl(B)

(if) (01, 9;) y-s Cl(AA B) < (63, ;) y -s Cl(A) A (di, J;) y -s cl(B)

Proof: (i) Consider §;, J;) y-s cl(AV B) = [(di, 9)) y-s int(Av B)T'=[(di, 6;) y-s int(AA B")]'
=[(6i, 6) y-s Int(A) A (61, 6) y-s Int(B)]' = [6i, 5)) y-s INt(A)]'V [(41, 6)) »-s int(B)]'

= (3, 0) 7-S Cl(A) V (3, 6) y-s cl(BY = @, 3) 1-S cl(A)V (6, &) -5 CI(B).

Thus, i, ;) y-s Cl(AVB) = (di, ;) y-s cl(A) V (i, 9)y-s cl(B)

(if) Consider §;, J;) y-s cl(A A B) = [((d, ) y-s Cl(AA B))'

= [(&, G)y-s int(AA B)T = [, 6)y-S int(A'V B) > [(8, &)y~ INt(A) V (5, 6)y-sint(B)
[(61, &) -5 Int(A)]' A [(J1, &) 7S Int(B)]' = [, &) -5 Cl(A)TAL(S,, &)y-s cl(B)T

= (i, 9j)y-s Cl(A)A(di, 9;)y-s cl(B). Thus, &,5;) y-s cl(AAB) <(di,0)y-s CI(A)A(di,0;)y-s cl(B)

Remark 4.2.6. Equality need not hold in Proposition 4.2.4 (iigtl(Zg,,0,) be a F-bts
with  Z={a,b,c},0:={0,1, X}, 6,={0,1,Y} with fuzzy sets X={aebosCod
Y={ao3b05C1, A={aoshsts, B={aonbosCd and AVB={ay:bosCog=Y', AAB
={a0.6 P03, Cozt-Then (61,02)y-s cl(AAB’) = A'AB', (01,02)y-s cl(A)=1 and §1,5,)y-scl(B)
= B'. Then @1, d5) y-CI(A")A(d1,02)y-s cl(B)=B' and AAB'<B'". Thus, §;,;)y-Cl(A'AB’) <
(61,07)y-Cl(A)A(91,6)vcl(BY).

7. Conclusion

In this paper, the notion obi( ;) F-semiopen §, d;) F--semi closed sets in fuzzy
bitopological spacesare introduced and their pt@sare discussed their relationship
with other sets are studied.

Acknowledgement. The authors are grateful to the reviewers for tlw@imments and
suggestions to improve the quality of the paper.
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