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Abstract. Granulate the similar things is an essential part in multivalued information 
system. Rough set theory plays a vital role to solve imprecise problem. In Particular, 
multigranular rough set is an efficient tool to work on multivalued information system. 
Soft set theory is also deal uncertainty. In this paper we propose multigranular rough soft 
set and its properties. 
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1. Introduction 
With the help of granulation we can encapsulate the indiscernible thing into a single 
capsule. For a partition of equivalence relation or multi equivalence relations 
multigranulation is an emerging mathematical tool in uncertain data processing. Even 
though rough set is a powerful tool to solve imprecise problems occur in engineering 
environmental sciences, physics and so many fields, it is unigranular that is we work on 
single equivalence relation with rough sets. In this paper we introduce one hybrid notion 
of rough set. 

In 1999, Molosdtov [5] recognized soft set theory to handle uncertainty. Soft set 
is defined as the image of the function from attribute subset to the power set of the 
universal set. Beside soft set theory, Pawlak [3] identified rough set as an approximations 
holding set. Both the sets have so many extension and applications. Vinay et al. [9] gave 
the definition of rough soft sets using soft relations.  
 
2. Preliminaries 
Let U be a common universe and let E be a set of parameters. 
 
Definition 2.1. ([1]) A pair (F, E) is called a soft set (over U) if and only if F is a 
mapping of E into the set of all subsets of the set U, where F is a mapping given by F: E 
→ P (U). 

In other words, the soft set is a parameterized family of subsets of the set U. 
Every set F(e) (e ∈ E), from this family may be considered as the set of e-elements of the 
soft sets (F, E), or as the set of e-approximate elements of the soft set.  
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Definition 2.2. ([6]) For two soft sets (F, A) and (G, B) over U, (F, A) is called a soft 
subset of (G, B) if  

(1) A ⊂ B and 
(2) ∀e∈ A, F (e) and G (e) are identical approximations. 

This relationship is denoted by (F, A)⊂~ (G, B). 
Similarly, (F, A) is called a soft superset of (G, B) if (G, B) is a soft subset of (F, A). This 
relationship is denoted by (F, A) ⊃~  (G, B). 
 
Definition 2.3. [6] Two soft sets (F, A) and (G, B) over U are called soft equal if (F, A) is 
a soft subset of(G, B) and (G, B) is a soft subset of (F, A). 
 
Definition 2.4. [6] The intersection of two soft sets (F, A) and (G, B) over U is the soft 
set (H, C), where C = A∩B and ∀e ∈ C, H(ε) = F (e) or G(e) (as both are same set). This 
is denoted by (F, A) ∩~  (G, B) = (H, C). 
 
Definition 2.5. [6] The union of two soft sets (F, A) and (G, B) over U is the soft set (H, 
C), where C = A∪B and ∀e ∈ C,  
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This is denoted by (F , A) ∪~  (G, B) = (H, C). 
 
Definition 2.6. [6] NULL SOFT SET. A soft set (F, A) over U is said to be a NULL soft 
set denoted by Φ, if  e ∈ A, F(e) = ∅. 
 
Definition 2.7. [3] Let R be an equivalence relation on U. The pair (U, R) is called a 
Pawlak approximation space. The equivalence R is often called an indiscernibility 
relation R, one can define the following two rough approximations: 
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)(* xR And  )(* XR  are called the pawlak lower approximation and thee pawlak upper 
approximation of X, repectively. 
 
Definition 2.8. [11] Let EBA ⊆,  and ),(),,( BGAF be soft sets. Then a soft relation 

from (F, A) to (G,B) is a soft subset of ),(),( BGXAF . 
 
Definition 2.9. [12] A soft relation R on a soft set (F,A) is called  

i. Soft reflexive if AaRaFXaF ∈∀∈ ,)()(  

ii. Soft symmetric if AXAbaaFXbFRbFXaF ∈∀⇒∈ ),(),()()()(  
iii.  Soft transitive if  

AcbacFXaFcFXbFRbFXaF ∈∀⇒∈ ,,),()()()(,)()(  
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Definition 3.5. [11] Let (F,A) be soft. Then 
},,)'()(:)'({)]([ AaaRaFXaFaFaF ∈′∀∈=  

 
3. Multigranular rough soft sets 
Definition 3.1.  Let ),,( RAF be a soft approximation space. Let RQP ∈, . Then soft 

lower approximation and soft upper approximation of ),(),( AFBG ⊆ , are defined as 
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respectively. The multigranular boundary region is defined as 
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then ),( BG is called multigranular rough soft set. 

Example 3.2. Let },,,,,{ 654321 uuuuuuU = , 

},,,,{},,,,,{ 5432154321 eeeeeAeeeeeE ==  and },,{ 531 eeeB = . ),( AF  and ),( BG  

defined as follows 
}),,{,(}),,,,{,(}),,,,{,(}),,,{,{(),( 52465323654223211 uueuuuueuuuueuuueAF =   

})},,,{,{ 64315 uuuue  

and })},{,(}),,{,(}),,,{,{(),( 3155233211 uueuueuuueBG = . Also, consider a soft 

relation }:)]({[ AeforalleFR ∈= .           

 Let )}()(),()(),()(),()({ 53544321 eFXeFeFXeFeFXeFeFXeFP = and 

)}()(),()(),()(),()(),()({ 5552445341 eFXeFeFXeFeFXeFeFXeFeFXeFQ =
Then 
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Proposition 3.3. For a soft approximation space ),,( RAF , for all subset ),(),,( CHBG
of ),( AF and RQP ∈,  
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vii. )),(),((),(),( CHBGaprCHaprBGapr
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viii.  ),(),()),(),(( CHaprBGaprCHBGapr
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Proof: From the definition3.1 and operations on soft set. 
Each fact of the above proposition verified with the following example.  
 
Example 3.4. Let },{ 21 uuU = and },{},,,{ 21321 eeAeeeE == . (F, A) defined as 

}),{,(}),,{,{( 212211 uueuue  Then the subset of (F,A) are 
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The equivalence soft relation R,P and Q are 
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In the above example, 
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Proposition 3.5. Let (F, A, R) be a soft approximation space and R be soft equivalence 
relation. Then for all the subsets ),( BG of ),( AF  

i. ),(),( BGaprBG
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4. Conclusion 
In this paper, we defined multigranular rough soft set and its properties alone. In future 
we will find the reduction of the attributes using multigranular rough soft set and define 
the topological structure of multigranular rough soft set. 
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