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Abstract. In this article, we consider a discrete time service facility system under MDP 
structure. Decisions are taken at discrete time epochs to control both admission and 
service processes in the service facility system. Here the queue before the server is 
divided into eligible queue(with finite capacity N) and an unlimited potential queue. The 
number of arrivals and service completion with rate b follow general distributions with 
probability mass functions (p.m.f) ( )p ⋅ and ( )bq ⋅  respectively. Control systems are used 
to(i) transfer customers from potential queue to eligible queue and (ii) change the service 
rate depending on the number of customers in the system. The system is formulated as a 
Markov Decision Process and an optimal control policy is obtained using Policy Iteration 
Method. Numerical example is provided to illustrate the problem with managerial insight. 

Keywords: Markov decision processes, service control, admission control, discrete-time 
service facility system, reward analysis. 
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1. Introduction 
Markov decision Process is a versatile and powerful tool for analyzing probabilistic 
sequential decision models with finite/ infinite planning horizon. MDP is a fusion of two 
concepts Markov Process and Dynamic programming. 
 Last three decades, many researchers in the field of operations and resource 
management contributed many results (Berman and Sapna [3], Berman and Kim [2], 
Arivarigan [1], Elango [5], Krishnamoorthy [8]). In most of the studies mentioned above, 
the system is considered as a Markov process with finite or infinite state space. The 
expressions for transition probability functions and the infinitesimal generator matrix of 
the Markov process are derived. The steady state probability distribution of the states has 
been found. Then by computing proper system performance measures and imposing 
respective cost structure, the cost analysis is done to get the optimal parameters of the 
system. 
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 So for in the literature on discrete/continuous MDP models only admission 
control or service rate control problems are studied. We believe that an integrated 
approach like Markov Decision Process model is most appropriate to study service 
facility system (Queues- Inventory) and Machine maintenance systems (Machine-
Spares). Berman and Sapna [4] studied one such service facility–inventory system under 
MDP structure using LPP method to control the service rates. Hild Mohamed et al. [6] 
analyzed a Markov decision problem: Optimal control of servers in a service facility 
holding perishable inventory with impatient customers.  

In this paper, we imposed the Markov Decision Process (MDP) frame on a 
simple service facility (Queue system) to implement sequential decision making on both 
admission and service rate. This kind of decision problems arrive in feed back control of 
engineering systems, portfolio management and supply chain management etc. The 
standard mathematical formulation of this problem involves MDPs. Thus the states of the 
system is modeled as Markov chain, whose transitions probabilities depends on the 
appropriate action choices, by considering the state action dependent reward incurred at 
each stage. 

Recently Kim [7] considered the admission control and the inventory 
management problem of a make-to-order (MTO) facility with a common component, 
which is purchased from a supplier under stochastic lead time with setup cost. Arriving 
demands of MTO type (customized types) are satisfied by using common (single) 
component. Selvakumar et al. [11] considered a discrete time MDP in a service facility 
system in which inventory is maintained to complete the service. Decisions are taken at 
discrete time epochs to control both admission and inventory control in service facility 
systems. Control system is used to transfer customers from potential queue to eligible 
queue, but with single demand class. 

In this paper, we try to control both the admission and service in a service facility 
system under periodic review (equally spaced time epochs). The queue before the server 
is divided into eligible queue and potential queue. Here, we use policy iteration method 
to optimize the expected total reward. In the last section a numerical example is provided 
to illustrate the model. 

 
2. Model description 

 
We formulate the model as follows: Decision epochs of the system correspond to 

the beginning of each period (Figure 2). The system is observed every 0η >  unit of time 
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and the decision epochs are ,2 ,..., ,L Lη η η < ∞ (finite horizon).Admissions to the service 
facility is controlled, by observing the number of customers in the system (eligible queue 
+ server). Service is controlled by selecting a service rate from the set of rates B=1 2{ , }b b . 

The service rates1b and 2b denote the high and low efficiency servers respectively and 
they can be changed depending on the number of customers in the system. Assume that 
the maximum capacity of waiting space is N (finite). Arriving number of customers to 
service facility system follows a probability mass function ( )p ⋅ and the arriving customers 
are placed in potential queue. Possible number of service completion follows a general 
probability mass function ( ).bq ⋅  with rate b. The controller uses ( )bq ⋅ in period t and uses 

( )bq ′ ⋅  in period t+1 means that a sever change occurs. Maximum number of customers to 
be admitted at time epoch t = maximum capacity of waiting space (N) - Number of 
customers in the eligible queue. Remaining customers are assumed to be rejected. All 
serviced customers depart the system at the end of period.  

 
3. Main results 
3.1. MDP formulation 
We consider the problem as MDP having five components (tuples) ( ),p (, | ), ( ) ., s t tT S A r⋅ ⋅  

Decision Epochs: { },2 ,..., ,T L Lη η η= < ∞ (finite). 

State Space:  
{ } { } { }1 2 3 1 20,1,2,... 0,1,2,...,N , ,S S S S b b= × × = × ×  
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Rewards: 
The expected reward as a function of state and action is 

{ }2 2 1 2 3( , ) min( , ) ( ) (b,b ), , ( , , ).t t s
s S

r s a r E Y i a w i a c a A A s i i i
∈

′= × + − + − ∈ = =∪
 

The expected number of service completion in period t  is given by  

{ }
2

2

1

2 2
1

min( , ) q (n) ( ) q (n).
i a N

t b b
n n i a

E Y i a n i a
+ −

= = +
+ = + +∑ ∑

 

and the server changing cost is given by 

( ) { } { }1 2 1 2

( )
, , , , , .

( )

K d b b b
c b b b b b b b b

d b b b

′ ′+ ≠′ ′ ′ ′= = = ′=
 

The stationary reward structure consist of three components: the rewardr  for 
service completions and a waiting cost 2w(i )a+  per period when there are 2(i )a+  

customers in the system (eligible queue) and a service rate cost d(b)per period  for using 

server ( )1 2b b orb and a fixed cost K  per period for changing service rate. 

 
3.2. Analysis 

Clearly ( ){ }(t) (t) (t)
1 2 3, , : 0,1,...,LI I I t = is a Markov chain with state space 

{ } { } { }1 20,1,2,... 0,1,2,...,N , .S b b= × × Let tZ  is the number of customers arrive during 

the period t . Customers arriving during the period 1t − enter the potential queue. Let (t)1I  

denote the number of customers in the potential queue, (t)
2I  denote the number of 

customers in the system and (t)3I current service rate, immediately prior to the decision 

epoch t . Let tY  denote the number of “possible service completions” during period t . 

At the decision epoch ,t  the controller admits ( )(t)
2N I

+
− (number of waiting 

space in the system at time epoch t)  tu=  of customers from the potential queue into the 
system, 1,2,.., .t L=  
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Table 1: State of the service facility system 
 
            Hence t + denotes a point in time immediately after the control has been 
implemented but prior to any service completion. 
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We can admit only (t)
2tu N I= −  customers, so that 0 , 1,2,..., .tu N t L≤ ≤ =  

The random variable tY  takes non-negative integer values and follows a time 

invariant probability mass function { }q ( ) Pr , 1,2,...,b tn Y n t L= = = and tZ assumes  non-

negative values which follows a time invariant probability mass function

{ }p( ) Pr , 0,1,2,..., .tn Z n t L= = =
 

 
The one step reward are given by, ( ) ( )1 2 3, , ,,tr where is ia s i= denote the state of the 

system at decision epoch t (beginning of tht  period). Assume the stationary policy R  and 
hence the transition probability 

( ) ( ) ( ){ }(t 1) (t 1) (t 1) (t) (t) (t)
1 2 3 1 2 3r =| s, , , , , |  ( , )  tp I I I I Is a P s s a w erI h e+ + +′ ′= =  

( ) ( )1 2 3 1 2 3, , , , , ,i i i i is is′ = ′ =′ ′
 regardless the past history of the system up to time epoch t . 

Then ( ){ }(t) (t) (t)
1 2 3 : 0,1,...,, , t LI I I = is a Markov chain with discrete state space

1 2 3.S S S S× ×= Thet - step transition probabilities of the Markov chain under policy R  is 
given by 

( )( ) ( ) ( ){ }( ) (t) (t) (t) (0) (0) (0)
1 2 3 1 2 3Pr = || s , , ,  ,  ,tp R I I I I Is Is s′ ′= =  

Let ( ), ,tV s R denote the total expected reward over the first t  decision epochs 

with initial state ( )1 2 3, ,i i i  when policy R  is adopted. 

Then 

( ) ( ) ( )( ) ( ) ( ) ( )
1

' 1 2 3 1
0

3'
'

2|s,R ,, , , , , 
t

k
t s s

k s S

V i i i ip s s R r s iR s i
−

= ∈

′ ′ ′′ ′= = =∑∑  

where  
( )  s rr R r w L cφ α= ⋅ − × − ⋅  

r  - reward for service completion; w - waiting cost of customer/period;( , )c ⋅ ⋅ -  service 

cost for server per period;rφ - number of customers served per period;L - number of 
customers in the eligible queue + 1 in service counter;α - denote the current service rate. 
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3.3. Reward analysis 
The average reward function ( )sg R  is given by  

( ) ( ) ( )1 2 3

1
lim s,R , , ,ts
t

g R V i i i S
t→∞

= ∈ . The elements of the above average reward function 

is due to the Theorem (Puterman [9] and Tijms [10]).   
 
Theorem 3.3.1. 

For all ( ) ( )1 2 3 1 2 3, , , , , ,s si i i i i i S′′ = =′ ′ ∈ ( ) ( )( )
1

1
lim |

t
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t
t

k

p s s R
t→∞ =
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( )( )
'

1

1
1

lim |

0 ' ,

t
k

s
t

k

if state s is recurrent
p s s

t
if state s is transient

µ
→∞ =


′′ = 




∑  

where 'sµ  denote the mean recurrent time from state ( )1 2 3, ,i i i′ ′ ′  to itself. 

Also ( ) ( )( ) ( ') (k)
( )

1 1

1 1
lim | lim .

t t
k s

s t
t t

k k

p s s f p s
t t→∞ →∞= =

′ ′=∑ ∑   

Since the Markov Chain ( ){ }(t) (t) (t)
1 2 3, , : 0,1,2,...,I I I t L= is a unichain, irreducible, all its 

states are Ergodic and have a unique equilibrium distribution. 

Thus, ( ) ( ) ( )( )( )
'

1

1
lim | ,

t
k

s t
k

R p s s R
t

π
→∞ =

′= ∑ exist and is independent of initial state, 

such that Pπ π=  and  ( ) 1.s
s S

π
∈

=∑  

3.4. Optimal policy 
A stationary policy *R is said to be an average reward optimal policy if 

( ) ( )
1 2 3 1 2 3, , , ,*i i i i i ig R g R≤  for each stationary policy R  uniformly with the initial state

( )1 2 3, ,i i i . 

The relative value associated with a given policy Rprovides a tool for 
constructing anew policy *R  whose average reward is more than that of the current 
policy R . 

The objective is to improve the given policy R  whose average reward is ( )g R  

and relative value ( ) ( ) ( )
1 2 3 1 2 3, , , , , .i i iv R i i i S∈  

By constructing a new policy  R  such that for each s=( )1 2 3, ,i i i S∈ , 

( ) ( ) ( ) ( ), ' '
'

 * *s ss s
S

s
s

R g R Rr p v v
∈

− + ≤∑
                                                               (1)  

,where ( )1 2 3, ,s i i i′ ′ ′′ = , we obtain an improved policy *R with  ( ) ( )*g R g R≤ . We 

have to find the optimal policy *R  satisfying (1) which maximizes the reward functions  

( ) ( ) ( ) ( )'
'

 g | s,ai t
s

s
S

r R p s v Ra
∈

′− +∑  over all actions ( )a A s∈ . 

 
 



Optimal Admission and Service Co Optimal Admission and Service Control in a Discrete 
time Service Facility Systems: MDP Approach 

321 
 

3.5. Algorithm 
Step 0: (Initialization) 
Choose a stationary policy R  for the periodic review based admission and service control 
in service facility system with inventory. 
 
Step 1: (Value determination step) 
For the current policyR , compute the unique solution ( )( ),v ( )sg R R  to the following 

linear equations  

( ) ( ) ( )( ) ( ) ( )
'

1 2 3'| s , , , ,t s
s

s
S

s p s R v R sv r R g R i i i S
∈

′= − + ∈=∑

0,iv where i is an arbitarily chosen state in S= . 
 
Step 2: (Policy improvement) 
For each state ( )1 2 3, ,is i i S= ∈  determine the actions yielding, optimal reward, that is  

( ) ( ) ( ) ( )'
'

*a arg max .' | s,a
s

t s
s

s
a A

S

p s vg Rr a R
∈∈

 ∈ − + 
 

∑  

The new stationary policy *R  is obtained by choosing* sR a= . 
 
Step 3: (Convergence test) 
If the new policy *R R= (the old one), then the searching process stops with policyR . 
Otherwise go to Step 1 with R  replaced by new *R . 
 
8. Numerical example 
Consider a MDP formulation of a service facility system under periodic review which 
controls the transfer of customers from potential queue to eligible queue and change the 
service rate.  Decisions at equidistant time epochs are taken to admit the eligible number 
of customers and select the service rate depending on the number of customers in the 
system. 
  
For the system, we assume, 5N = .  The state space become  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 2 1 2 1 2 1 2 1 25, , 5, , 4, , 4, , 3, , 3, , 2, , 2, , 1, , 1, , 0, , 0, .S b b b b b b b b b b b b=
  

Action set at ( )1 2 3, ,i i i S∈  is 

( ) { } { } { }{ }
1 2 3

2, ,
, , 0,1,2,..., , 0,1 ,si i i

N iα β α βΑ = ∈Α = − =  

Assume the reward 1r =  for service completion per customer, waiting cost 
w 0.35=  per customer/ period, service rate cost:1d(b ) 1= for using server 1b , and 

2d(b ) 0.7= for using server 1b per period. A fixed cost 0.4K =  per period is assumed for 
changing service rate (b1 to b2 or b2 to b1) . 
 
Computational procedure 
For any given policy ,R  the policy improvement quantity is given by 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )'
'

a, ' | a, .s s t s s s s
s S

T R r a g R p s s a v a where T R v R for a R
∈

= − + = =∑
 

 

u r(u) 

0 1(0) = 0 

1 1(0 x 0.20 + 1 x 0.80) = 0.80 

2 1(0 x 0.02 + 1 x 0.43 + 2 x 0.55) = 1.53 

3 1(0 x 0.08 + 1 x 0.26 + 2 x 0.34 + 3 x 0.32) = 1.90 

4 1(0 x 0.07 + 1 x 0.19 + 2 x 0.22 + 3 x 0.28 + 4 x 0.24) = 2.53 

5 1(0 x 0.07 + 1 x 0.19 + 2 x 0.22 + 3 x 0.28 + 4 x 0.24) = 2.53 

Table 2: Expected reward for service completion using service rate b1 

u r(u) 

0 1(0) = 0 

1 1(0 x 0.40 + 1 x 0.60) = 0.60 

2 1(0 x 0.25 + 1 x 0.40 + 2 x 0.35) = 1.1 

3 1(0 x 0.10 + 1 x 0.31 + 2 x 0.30 + 3 x 0.29) = 1.78 

4 1(0 x 0.09 + 1 x 0.29 + 2 x 0.27 + 3 x 0.21 + 4 x 0.14) = 2.02  

5 1(0 x 0.09 + 1 x 0.29 + 2 x 0.27 + 3 x 0.21 + 4 x 0.14) = 2.02 

Table 3: Expected reward for service completion using service rate b2 

 

\s s′  

(5
,b

1)
 

(5
,b

2)
 

(4
,b

1)
 

(4
,b

2)
 

(3
,b

1)
 

(3
,b

2)
 

(2
,b

1)
 

(2
,b

2)
 

(1
,b

1)
 

(1
,b

2)
 

(0
,b

1)
 

(0
,b

2)
 

(5,b1) 0.04 0 0.06 0 0.14 0 0.21 0 0.30 0 0.25 0 
(5,b2) 0 0.18 0 0.30 0 0.25 0 0.15 0 0.07 0 0.05 
(4,b1) 0 0 0.07 0 0.10 0 0.20 0 0.35 0 0.28 0 
(4,b2) 0 0 0 0.17 0 0.29 0 0.25 0 0.19 0 0.10 
(3,b1) 0 0 0 0 0.14 0 0.22 0 0.40 0 0.24 0 
(3,b2) 0 0 0 0 0 0.18 0 0.35 0 0.28 0 0.19 
(2,b1) 0 0 0 0 0 0 0.18 0 0.45 0 0.37 0 
(2,b2) 0 0 0 0 0 0 0 0.20 0 0.44 0 0.36 
(1,b1) 0 0 0 0 0 0 0 0 0.38 0 0.62 0 
(1,b2) 0 0 0 0 0 0 0 0 0 0.4 0 0.6 
(0,b1) 0 0 0 0 0 0 0 0 0 0 1.0 0 
(0,b2) 0 0 0 0 0 0 0 0 0 0 0 1.0 

Table 4:  Pre-specified transition probabilities of the system 
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Iteration 1: 
Policy iteration algorithm is initialized with 

( ) { } { } { } { } { } { } { } { } { } { } { } { }( )1 0,0 , 0,0 , 0,0 , 0,0 , 0,0 , 0,0 , 0,0 , 0,0 , 0,0 , 0,0 ,4,0 , 3,0 ,R =
which prescribes the transfer of 4 customers from potential queue to the system(eligible 
queue + 1 in server) in state 1(0, )b  and 3 customers at state 2(0, )b  respectively.  Solving 

the system of linear equations connecting the average reward (1)( )g R  by assuming 

0 , 1,2iv i =  we get 

( )
( )

( )
( )

( )
( )

1 2 1

1 1 1
5, 5, 4,.9826193917, 1( ) .270295063, .6050411 8( 10( ,) )b b bv R v R R= − = − = −

( )
( )

( )
( )

( )
( )

2 1 2

1 1 1
4, 3, 3,.7950209374, .( ) 8381333138, .6370426829( ( ) ,)b b bv R v R v R= − = − = −

( )
( )

( )
( )

( )
( )

1 2 1

1 1 1
2, 2, 1,.7572777341, .( ) 8525000000,  .935483871( ( ) ,)b b bv R v R v R= − = − = −

( )
( )

( )
( )

( )
( ) ( )

2 1 2

1 1 1 1
1, 0, 0, .8000000000, 0, 0,  .030000000.( ) ( ) ( ) ( )b b bv R v R v R g R= − = = =

 

{\ ,s α β
 
 

{5
,0

} 

{5
,1

} 

{4
,0

} 

{4
,1

} 

{3
,0

} 

{3
,1

} 

{2
,0

} 

{2
,1

} 

{1
,0

} 

{1
,1

} 

{0
,0

} 

{0
,1

} 

(5,b1) x x x x x x x x x x -.9826193918 -.83 
(5,b2) x x x x x x x x x x -1.270295063 -.72 
(4,b1) x x x x x x x x -.32 -.83 -.6050411108 -.48 
(4,b2) x x x x x x x x -.43 -.72 -.7950209374 -.37 
(3,b1) x x x x x x -.32 -.83 .03 -.48 -.8381333138 -.37 
(3,b2) x x x x x x -.43 -.72 -.08 -.37 -.6370426829 -.55 
(2,b1) x x x x -.32 -.83 .03 -.48 -.15 -.37 -.7572777341 -.70 
(2,b2) x x x x -.43 -.72 -.08 -.37 .03 -.55 -.8525000000 -.57 
(1,b1) x x -.32 -.83 .03 -.48 -.15 -.37 -.17 -.70 -.9354838710 -.085 
(1,b2) x x -.43 -.72 -.08 -.37 .03 -.55 -.30 -.57 -.8000000000 -.95 
(0,b1) -.62 -1.01 .03 -.48 -.15 -.37 -.17 -.70 -.55 -.85 -1.030000000 -1.1 
(0,b2) -.43 -.72 -.08 -.37 .03 -.55 -.30 -.57 -.45 -.95 -.7300000000 -1.4 

Table 5:  Iteration 1: reward matrix for different decisions 
 

The new policy will be
 ( ) { } { } { } { } { } { } { } { } { } { } { } { }( )2 0,1 , 0,1 , 1,0 , 0,1 , 1,0 , 1,0 , 2,0 , 1,0 , 3,0 , 2,0 ,4,0 , 3,0 .R =

Since the new policy ( )2R is different from the initial policy ( )1R , the searching process 
continues. 
Iteration 2: 
For the policy ( )2 ,R  solving the system of linear equations connecting the average reward 

( )( )2
g R  by assuming 0 , 1,2iv i =  we get 
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2 1

2 1 2 1

2 1 2 1 2

2 2 2
5, 5, 4,

2 2 2 2
4, 3, 3, 2,

2 2 2 2 2
2, 1, 1, 0, 0,

( ) ( ) ( )

( ) ( )

.9193548387, 1.148995148, .3763440860,

.5287981193, 0, .134146( ) ( )

( ) ( ) ( ) ( )

3415, 0,

0, 0, 0, 0, 0( ) ,

b b b

b b b b

b b b b b

v R v R v R

v R v R v R v R

v R v R v R v R v R

g

= − = − = −

= − = = − =

= = = = =
( )2 .030000( ) .000R =

 

{ }\ ,s α β
 
 

{5
,0

} 

{5
,1

} 

{4
,0

} 

{4
,1

} 

{3
,0

} 

{3
,1

} 

{2
,0

} 

{2
,1

} 

{1
,0

} 

{1
,1

} 

{0
,0

} 

{0
,1

} 

(5,b1) x x x x x x x x x x -.4093548388 -.83 
(5,b2) x x x x x x x x x x -.8589951478 -.72 
(4,b1) x x x x x x x x -.32 -.83 -.0263440860 -.48 
(4,b2) x x x x x x x x -.43 -.72 -.2387981193 -.37 
(3,b1) x x x x x x -.32 -.83 .03 -.48 -.1800000000 -.37 
(3,b2) x x x x x x -.43 -.72 -.08 -.37 -.0241463414 -.55 
(2,b1) x x x x -.32 -.83 .03 -.48 -.15 -.37 -.2000000000 -.70 
(2,b2) x x x x -.43 -.72 -.08 -.37 .03 -.55 -.3300000000 -.57 
(1,b1) x x -.32 -.83 .03 -.48 -.15 -.37 -.17 -.70 -.5800000000 -.085 
(1,b2) x x -.43 -.72 -.08 -.37 .03 -.55 -.30 -.57 -.4800000000 -.95 
(0,b1) -.62 -1.01 .03 -.48 -.15 -.37 -.17 -.70 -.55 -.85 -1.030000000 -1.1 
(0,b2) -.43 -.72 -.08 -.37 .03 -.55 -.30 -.57 -.45 -.95 -.7300000000 -1.4 

Table 6:  Iteration 2: reward matrix for different decisions 
 
The new policy will be 

( ) { } { } { } { } { } { } { } { } { } { } { } { }( )3 0,0 , 0,1 , 0,0 , 0,0 , 1,0 , 0,0 , 2,0 , 1,0 , 3,0 , 2,0 ,4,0 , 3,0 .R = Since 

the new policy ( )3R is different from the initial policy ( )2R , the searching process 
continues. 
 
Iteration 3: 
For the policy ( )3 ,R  solving the system of linear equations connecting the average reward 

( )( )2
g R  by assuming 0 , 1,2iv i =  we get 

( )
( )

( )
( )

( )
( )

1 2 1

3 3 3
5, 5, 4,( ) ( ).3645833333, .9631207758, 0( ) ,b b bv R v R v R= − = − =

 

( )
( )

( )
( )

( )
( )

( )
( )

2 1 2 1

3 3 3 3
4, 3, 3, 2,.1325301205, 0, 0, 0,( ) ( ) ( ) ( )b b b bv R v R v R v R= − = = =

( )
( )

2

3
2, ( )bv R =0, ( )

( )
1

3
1, ( )bv R =0, ( )

( )
2

3
1, ( )bv R =0, ( )

( )
1

3
0, ( )bv R =0, ( )

( )
2

3
0, ( )bv R =0, 

( )3( )g R = .03000000000. 
 

{\ ,s α β
 {5

,0
} 

{5
,1

} 

{4
,0

} 

{4
,1

} 

{3
,0

} 

{3
,1

} 

{2
,0

} 

{2
,1

} 

{1
,0

} 

{1
,1

} 

{0
,0

} 

{0
,1

} 

(5,b1) x x x x x x x x x x -.3645833333 -.83 



Optimal Admission and Service Co Optimal Admission and Service Control in a Discrete 
time Service Facility Systems: MDP Approach 

325 
 

(5,b2) x x x x x x x x x x -.7631207758 -.72 
(4,b1) x x x x x x x x -.32 -.83 0 -.48 
(4,b2) x x x x x x x x -.43 -.72 -.1325301205 -.37 
(3,b1) x x x x x x -.32 -.83 .03 -.48 -.1800000000 -.37 
(3,b2) x x x x x x -.43 -.72 -.08 -.37 0 -.55 
(2,b1) x x x x -.32 -.83 .03 -.48 -.15 -.37 -.2000000000 -.70 
(2,b2) x x x x -.43 -.72 -.08 -.37 .03 -.55 -.3300000000 -.57 
(1,b1) x x -.32 -.83 .03 -.48 -.15 -.37 -.17 -.70 -.5800000000 -.085 
(1,b2) x x -.43 -.72 -.08 -.37 .03 -.55 -.30 -.57 -.4800000000 -.95 
(0,b1) -.62 -1.01 .03 -.48 -.15 -.37 -.17 -.70 -.55 -.85 -1.030000000 -1.1 
(0,b2) -.43 -.72 -.08 -.37 .03 -.55 -.30 -.57 -.45 -.95 -.7300000000 -1.4 

Table 7:  Iteration 3: reward matrix for different decisions 
 
Since the new policy  

( ) { } { } { } { } { } { } { } { } { } { } { } { }( )4 0,0 , 0,1 , 0,0 , 0,0 , 1,0 , 0,0 , 2,0 , 1,0 , 3,0 , 2,0 ,4,0 , 3,0R = is 

identical with the policy, the searching process stops here. After three iterations we 
obtained the following optimal policy:

{ } { } { } { } { } { } { } { } { } { } { } { }( )* 0,0 , 0,1 , 0,0 , 0,0 , 1,0 , 0,0 , 2,0 , 1,0 , 3,0 , 2,0 ,4,0 , 3,0 .R =  

 
The optimal solution schedule is  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 25, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0,b b b b b b b b b b b b
 

 
{ } { } { } { } { } { } { } { } { } { } { } { }0,0 0,1 0,0 0,0 1,0 0,0 2,0 1,0 3,0 2,0 4,0 3,0

 
 

9. Conclusion and future research 
In this article we presented an application of Markov Decision Process (MDP) for 
admission and service control using classical approach namely ‘policy iteration’. The 
optimum admission of customers and service rates to be employed is found so that 
expected reward  is maximized. We are currently studying Markov Decision Process in 
discrete time with admission and service control. In future we would like to extend the 
model to control both service and replenishment  order simultaneously in a service 
facility with inventory management.. 
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