Abstract. In this article we introduce a new separation axioms to define Gem-regular space, Gem-normal space, Gem-completely normal space, Gem-perfectly normal space and G^*-T_i-spaces for $i = 3, 4, 5$ and 6 under the idea of “Gem-set” and study some of its basic properties and relations among them.

Keywords: Gem-set, Gem-regular space, Gem-normal space Gem-completely normal space and Gem-perfectly normal space, and G^*-T_i-spaces.

AMS Mathematics Subject Classification (2010): 46M20

1. Introduction
The concept of ideals in topological spaces are treated in the standard text by Kuratowski [8] and Vaidyanathaswamy [16]. In ‘general topology’ Hamlett and Jankovic [2, 3, 4, 17, 18] introduced the application of topological ideal as defined below : An ideal J on a topological space (X, τ) is a non empty collection of subsets of X having the following properties : (i) $A \in J$ and $B \subseteq A$ implies $B \in J$. (ii) $A \in J$ and $B \in J$ implies $A \cup B \in J$. An ideal topological space is a topological space (X, τ) with an ideal J on X and is denoted by (X, τ, J). In addition K. Kuratowski[8] defined the local function for $A \subseteq X$ with respect to J and τ as below : $A^*(J, \tau)$ or $A^*(J) = \{ x \in X : A \cap U \notin J \ \text{for any} \ U \in \tau(x) \}$ where $\tau(x) = \{ U \in \tau : x \in U \}$. We simply write A^* instead of $A^*(J)$. Arenas, Dontchev and Puertas [5] introduced some weak separation axioms under the concept of ideal. Swidi and Sada[10] introduced a new type of ideal for a single point x denoted as J_x and is defined as below : $J_x = \{ U \subseteq X : x \in U^c \}$, where U is a non-empty subset of X. Swidi and Nafee [9] introduced a new set in topological space namely “Gem-set” depending on the J_x and defined a new separation axioms by using the idea of the “Gem-set” namely I^*-T_i-spaces and I^{***-T_i}-spaces for $i = 0, 1$ and 2. They also defined two mappings namely “I^*-map” and “I^{**}-map” to carry properties of the “Gem-set” from one space to another space and give more properties for new separation axioms. Swidi and Ethary [12] introduced a new class of maps namely “A-map”, “AO-map” and “Am-map” under the idea of the Gem-set and studied some of its basic properties and relations as well as the properties of the separation axioms of I^*-T_i-spaces and I^{***-T_i}-spaces for $i = 0, 1$ and 2 with the functions and their effect upon them are also established.
Aim of this article is to introduce the separation axioms to define Gem-regular space (G-T_3), Gem-normal space(G-T_4), Gem-completely normal space(G-T_5), Gem-perfectly normal space(G-T_6) and G^*T_i-spaces for i = 3, 4, 5 and 6 and study some of its basic properties. Also we study the relations as well as the properties of G-T_i-spaces and G^*T_i-spaces for i = 3, 4, 5 and 6 in connection with the functions “I^*’-map”, “I^**-map” “A-map” and “AO-map” and the effect upon them.

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned.

2. Preliminaries

Definition 2.1. Let (X, τ) be a topological space, for A ⊆ X and x ∈ X we define A^x with respect to (X, τ) as follows:
A^x = { y ∈ X : G ∩ A /∈ τ, for every G ∈ τ(y) }, where τ(y) = { G ∈ τ : y ∈ G }. The set A^x is called “Gem-set”.

Definition 2.2. Consider the mapping f : (X, τ) → (Y, σ), then f is called
• I^*’-map if and only if, for every subset A of X, x ∈ X, f(A^x) = (f(A))^f(x).
• I^**-map if and only if, for every subset A of Y, y ∈ Y, f^{-1}(A^{*y}) = (f^{-1}(A))^{f^{-1}(y)}.

Definition 2.3. Consider the mapping f : (X, τ) → (Y, σ), then f is an
• A-map at x ∈ X, if and only if ∀ B ⊆ Y, ∃ A ⊆ X : f(A^x) ⊆ B^{f(x)}.
• A-map on X if and only if it is an A-map at each point on X.
• AO-map if and only if ∀ A ⊆ X, ∃ B ⊆ Y : B^{*y} ⊆ f(A^{f^{-1}(y)}).

3. Gem-separation axioms

In this section we define Gem-regular space, Gem-normal space, Gem-completely normal space, Gem-perfectly normal space and G^*T_i-spaces for i = 3, 4, 5 and 6 and derive some of its basic properties.

Definition 3.1. A topological space (X, τ) is a
• Gem-regular space or G-T_3-space if and only if for each disjoint pair consisting a point x and a set C in X, there exists subsets A, B of X such that x /∈ B^y and C /∈ A^x.
• Gem-normal space or G-T_4-space if and only if for each pair C and D of disjoint sets in X, there exists subsets A, B of X such that C /∈ B^y and D /∈ A^x.
• Gem-completely normal space or G-T_5-space if and only if for each pair of separated sets C and D in X, there exists subsets A, B of X such that C /∈ B^y and D /∈ A^x.
• Gem-perfectly normal space or G-T_6-space if and only if for each pair of C and D of disjoint sets in X, there exists continuous map f : X → [0, 1] such that C^x ≠ f^{-1}([1]) and D^{*y} ≠ f^{-1}([0]).
• G^*T_3-space if and only if for each disjoint pair consisting a point x and a set C in X, there exists subset A of X such that x /∈ A^y and C /∈ A^x.
• G^*T_4-space if and only if for each pair C and D of disjoint sets in X, there exists subset A of X such that C /∈ A^y and D /∈ A^x.
Gem-Separation Axioms in Topological Space

- G^*-T_2-space if and only if for each pair of separated sets C and D in X, there exists subset A of X such that $C \not\subseteq A^x$ and $D \not\subseteq A^x$.
- G^*-T_6-space if and only if for each pair C and D of disjoint sets in X, there exists a continuous map $f : X \to [0, 1]$ such that $C^{x^*} = f^{-1}((1])$ and $D^{y^*} = f^{-1}((1])$ or $C^{x^*} = f^{-1}((0))$ and $D^{y^*} \neq f^{-1}((0))$

Theorem 3.2. For a topological space (X, τ) the following properties hold good:

1. Every T_3-space is a $G-T_3$-space.
2. Every T_4-space is a $G-T_4$-space.
3. Every T_5-space is a $G-T_5$-space.
4. Every T_6-space is a $G-T_6$-space.
5. Every T_3^*-space is a G^*-T_3-space.
6. Every T_4^*-space is a G^*-T_4-space.
7. Every T_5^*-space is a G^*-T_5-space.
8. Every T_6^*-space is a G^*-T_6-space.

Proof: 1. Let $x \in X$ and C be a closed set in X with $x \notin C$. Since (X, τ) is a T_3-space. Then there exists disjoint open sets U, V such that $x \in U$ and $C \subseteq V$. Then $U^{x^*} \cap V^{y^*} = \phi$. Let $A = U, B = V$. It follows that there exists subsets A, B of X such that $x \notin B^{y^*}$ and $C \not\subseteq A^x$. Hence (X, τ) is a $G-T_3$-space.

2. Let C and D be the disjoint closed sets in X and (X, τ) is a T_4-space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{x^*} \cap V^{y^*} = \phi$. Let $A = U, B = V$. It follows that there exists subsets A, B of X such that $C \subseteq B^{y^*}$ and $D \not\subseteq A^x$. Hence (X, τ) is a $G-T_4$-space.

3. Let C and D be the separated sets in X (i.e. $C \cap D = C \cap \bar{D} = \phi$) and (X, τ) is a T_5-space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{x^*} \cap V^{y^*} = \emptyset$. Let $A = U, B = V$. It follows that there exists subsets A, B of X such that $C \subseteq B^{y^*}$ and $D \not\subseteq A^x$. Hence (X, τ) is a $G-T_5$-space.

4. Let C and D be the disjoint closed sets in X and (X, τ) is a T_6-space. Then there exists a continuous map $f : X \to [0, 1]$ such that $C = f^{-1}((0))$ and $D = f^{-1}((1])$. Then $C^{x^*} \cap D^{y^*} = \phi$. It follows that there exists a continuous map $f : X \to [0, 1]$ such that $C^{x^*} = f^{-1}((1])$ and $D^{y^*} \neq f^{-1}((0))$. Hence (X, τ) is a $G-T_6$-space.

5. Let $x \in X$ and C be a closed set in X with $x \notin C$. Since (X, τ) is a T_3-space. Then there exists disjoint open sets U, V such that $x \in U$ and $C \subseteq V$. Then $U^{x^*} \cap V^{y^*} = \phi$. Let $U = V = A$. It follows that there exists a subset A of X such that $x \notin A^{y^*}$ and $C \not\subseteq A^x$. Hence (X, τ) is a G^*-T_3-space.

6. Let C and D be the disjoint closed sets in X and (X, τ) is a T_4-space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{x^*} \cap V^{y^*} = \phi$. Let $U = V = A$. It follows that there exists subsets A, B of X such that $C \not\subseteq A^{y^*}$ and $D \not\subseteq A^x$. Hence (X, τ) is a G^*-T_4-space.

7. Let C and D be the disjoint sets in X and (X, τ) is a T_5-space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{x^*} \cap V^{y^*} = \phi$. Let $U = A = V$. It follows that there exists subset A of X such that $C \not\subseteq A^x$. Hence (X, τ) is a G^*-T_5-space.

8. Let C and D be the disjoint closed sets in X and (X, τ) is a T_6-space. Then there exists a continuous map $f : X \to [0, 1]$ such that $C = f^{-1}((0))$ and $D = f^{-1}((1])$. Then
Let \(A \) and \(B \) of \(Y \) such that \(\text{disjoint pairs} \) of \(Y \) is a \(G^* \)-space.

Remark: The converse of the above theorem need not be true.

3.1. \(G-T_3 \)-space

In this section we proved some theorems in connection with \(I^* \)-map, \(I^{**} \)-map, A-map and AO-map for \(G-T_3 \)-space.

Theorem 3.1.1. If \(f : (X, \tau) \to (Y, \sigma) \) is one-one \(I^* \)-map of a \(G-T_3 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G-T_3 \)-space.

Proof: Let \(x_1 \) and \(C_1 \) of \(X \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((X, \tau) \) is \(G-T_3 \)-space, there exists subsets \(A, B \) of \(X \) such that \(x_1 \notin B^{x_2} \) and \(C_1 \notin A^{x_1} \), so that \(f(x_1) \notin f(B^{x_2}) = f(B)^{f(x_2)} \) and \(f(C_1) \notin f(A^{x_1}) = (f(A))^{f(x_1)} \). Thus \(y_1 \notin (f(B))^{f(x_2)=y_2} \). Thus \(Y \) is a \(G-T_3 \)-space.

Theorem 3.1.2. If \(f : (X, \tau) \to (Y, \sigma) \) is one-one \(I^{**} \)-map of a space \(X \) onto \(G-T_3 \)-space \(Y \), then \(X \) is a \(G-T_3 \)-space.

Proof: Let \(x_1 \) and \(C_1 \) be a disjoint pairs of \(X \). Since \(f \) is one-one and onto, there exists disjoint pairs \(y_1 \) and \(C_2 \) of \(Y \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((Y, \sigma) \) is \(G-T_3 \)-space, there exists subsets \(A, B \) of \(Y \) such that \(y_1 \notin B^{y_2} \) and \(C_2 \notin A^{y_1} \), so that \(f^{-1}(y_1) \notin f^{-1}(B^{y_2}) = (f^{-1}(B))^f((y_2)) \) and \(f^{-1}(C_2) \notin f^{-1}(A^{y_1}) = (f^{-1}(A))^{f^{-1}(y_1)} \). This implies \(x_1 \notin (f^{-1}(B))^{x_2} \) and \(C_1 \notin (f^{-1}(A))^{x_1} \). Thus \(X \) is a \(G-T_3 \)-space.

Theorem 3.1.3. If \(f : (X, \tau) \to (Y, \sigma) \) is one-one \(A \)-map of a \(G-T_3 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G-T_3 \)-space.

Proof: Let \(x_1 \) and \(C_1 \) be a disjoint pair of \(X \). Since \(f \) is one-one and onto, there exists a disjoint pair \(y_1 \) and \(C_2 \) of \(X \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((X, \tau) \) is \(G-T_3 \)-space, there exists subsets \(A_1, A_2 \) of \(X \) such that \(x_1 \notin A_2^{x_2} \) and \(C_1 \notin A_1^{x_1} \), so that \(f(x_1) \notin f(A_2^{x_2}) \subseteq B_2^{f(x_2)} \) and \(f(C_1) \notin f(A_1^{x_1}) \subseteq B_1^{f(x_1)} \). This implies \(y_1 \notin B_2^{y_2} \) and \(C_2 \subseteq B_1^{y_1} \). Thus \(Y \) is a \(G-T_3 \)-space.

Theorem 3.1.4. If \(f : (X, \tau) \to (Y, \sigma) \) is one-one \(AO \)-map of a space \(X \) onto \(G-T_3 \)-space \(Y \), then \(X \) is a \(G-T_3 \)-space.

Proof: Let \(x_1 \) and \(C_1 \) be a disjoint pair of \(X \). Since \(f \) is one-one and onto, there exists a disjoint pair \(y_1 \) and \(C_2 \) of \(Y \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((Y, \sigma) \) is \(G-T_3 \)-space, there exists subsets \(B_1, B_2 \) of \(Y \) such that \(y_1 \notin B_2^{y_2} \subseteq f(A_2^{f^{-1}(y_2)}) \) and \(C_2 \subseteq B_2^{y_1} \subseteq f(A_1^{f^{-1}(y_1)}) \), so that \(f^{-1}(y_1) \notin f^{-1}(f(A_1^{f^{-1}(y_1)})) \) and \(f^{-1}(C_2) \notin f^{-1}(f(A_2^{f^{-1}(y_2)})) \). This implies \(x_1 \notin A_2^{x_2} \) and \(C_1 \subseteq A_1^{x_1} \). Thus \(X \) is a \(G-T_3 \)-space.
Gem-Separation Axioms in Topological Space

3.2. G_{T_4}-space

In this section we proved some theorems in connection with I^*-map, I^{**}-map, A-map and AO-map for G_{T_4}-space.

Theorem 3.2.1. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^*-map of a G_{T_4}-space X onto a space Y, then Y is a G_{T_4}-space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G_{T_4}-space, there exists subsets A and B of X such that $f^{-1}(C_2) \not\subseteq B^{x_2}$ and $f^{-1}(D_2) \not\subseteq A^{x_1}$, so that $f^{-1}(f(C_2)) = f^{-1}(f(D_2))$. This implies $C_1 \not\subseteq (f^{-1}(B))^{x_2}$ and $D_1 \not\subseteq (f^{-1}(A))^{x_1}$. Thus Y is a G_{T_4}-space.

Theorem 3.2.2. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^{**}-map of a space X onto G_{T_4}-space Y, then X is a G_{T_4}-space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, σ) is G_{T_4}-space, there exists subsets A, B of Y such that $C_2 \not\subseteq B^{y_2}$ and $D_2 \not\subseteq A^{y_1}$, so that $f^{-1}(f^{-1}(B^{y_2})) = f^{-1}(f^{-1}(A^{y_1}))$. This implies $C_1 \not\subseteq (f^{-1}(B))^{x_2}$ and $D_1 \not\subseteq (f^{-1}(A))^{x_1}$. Thus X is a G_{T_4}-space.

Theorem 3.2.3. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one A-map of a I^*-space X onto a space Y, then Y is a G_{T_4}-space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists a disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G_{T_4}-space, there exists subsets A_1, A_2 of X such that $C_1 \not\subseteq A_2^{x_2}$ and $D_1 \not\subseteq A_1^{x_1}$, so that $f^{-1}(f^{-1}(B^{y_2})) = f^{-1}(f^{-1}(A^{y_1}))$. This implies $C_2 \not\subseteq B_2^{y_2}$ and $D_2 \not\subseteq B_1^{y_1}$. Thus Y is a G_{T_4}-space.

Theorem 3.2.4. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one AO-map of a space X onto G_{T_4}-space Y, then X is a G_{T_4}-space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists a disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, σ) is G_{T_4}-space, there exists subsets B_1, B_2 of Y such that $C_2 \not\subseteq B_2^{y_2}$ and $D_2 \not\subseteq B_1^{y_1}$, so that $f^{-1}(f^{-1}(B^{y_2})) = f^{-1}(f^{-1}(A^{y_1}))$. This implies $C_1 \not\subseteq A_2^{x_2}$ and $D_1 \not\subseteq A_1^{x_1}$. Thus X is a G_{T_4}-space.

3.3. G_{T_5}-space

In this section we proved some theorems in connection with I^*-map, I^{**}-map, A-map and AO-map for G_{T_5}-space.
Theorem 3.3.1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^* \)-map of a \(G-T_5 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G-T_5 \)-space.

Proof: Let \(C_2 \) and \(D_2 \) be separated sets in \(Y \). Since \(f \) is one-one and onto, there exists separated sets \(C_1 \) and \(D_1 \) of \(X \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((X, \tau) \) is \(G-T_5 \)-space, there exists subsets \(A \) and \(B \) of \(X \) such that \(C_1 \notin B^{x_2} \) and \(D_1 \notin A^{x_1} \), so that \(f(C_1) \notin f(B^{x_2}) = f(B)^{f(x_2)} \) and \(f(D_1) \notin f(A^{x_1}) = f(A)^{f(x_1)} \). Thus \(C_2 \notin (f(B))^{f(x_2) = y_2} \) and \(D_2 \notin (f(A))^{f(x_1) = y_1} \). Thus \(Y \) is a \(G-T_5 \)-space.

Theorem 3.3.2. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^{**} \)-map of a space \(X \) onto \(G-T_5 \)-space \(Y \), then \(X \) is a \(G-T_5 \)-space.

Proof: Let \(C_2 \) and \(D_2 \) be separated sets in \(Y \). Since \(f \) is one-one and onto, there exists separated sets \(C_1 \) and \(D_1 \) of \(X \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((X, \tau) \) is \(G-T_5 \)-space, there exists subsets \(A \), \(B \) of \(Y \) such that \(C_2 \notin B^{y_2} \) and \(D_2 \notin A^{y_1} \), so that \(f^{-1}(C_2) \notin f^{-1}(B^{y_2}) = (f^{-1}(B))^{f^{-1}(y_2)} \) and \(f^{-1}(D_2) \notin f^{-1}(A^{y_1}) = (f^{-1}(A))^{f^{-1}(y_1)} \). This implies \(C_1 \notin (f^{-1}(B))^{x_2} \) and \(D_1 \notin (f^{-1}(A))^{x_1} \). Thus \(X \) is a \(G-T_5 \)-space.

Theorem 3.3.3. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(A \)-map of an \(G-T_5 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G-T_5 \)-space.

Proof: Let \(C_2 \) and \(D_2 \) be separated sets in \(Y \). Since \(f \) is one-one and onto, there exists separated sets \(C_1 \) and \(D_1 \) of \(X \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((X, \tau) \) is \(G-T_5 \)-space, there exists subsets \(A_1 \), \(A_2 \) of \(X \) such that \(C_1 \notin A_2^{x_2} \) and \(D_1 \notin A_1^{x_1} \), so that \(f(C_1) \notin f(A_2^{x_2}) \subseteq B_2^{f(x_2)} \) and \(f(D_1) \notin f(A_1^{x_1}) \subseteq B_1^{f(x_1)} \). This implies \(C_2 \notin B_2^{y_2} \) and \(D_2 \notin B_1^{y_1} \). Thus \(Y \) is a \(G-T_5 \)-space.

Theorem 3.3.4. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(AO \)-map of a space \(X \) onto \(G-T_5 \)-space \(Y \), then \(X \) is a \(G-T_5 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be separated sets in \(X \). Since \(f \) is one-one and onto, there exists separated sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((X, \tau) \) is \(G-T_5 \)-space, there exists subsets \(B_1 \), \(B_2 \) of \(Y \) such that \(C_2 \notin B_2^{y_2} \subseteq f(A_2^{f^{-1}(y_2)}) \) and \(D_2 \notin B_1^{y_1} \subseteq f(A_1^{f^{-1}(y_1)}) \), so that \(f^{-1}(C_2) \notin f^{-1}(B_2^{y_2}) \subseteq f^{-1}(A_2^{f^{-1}(y_2)}) \) and \(f^{-1}(D_2) \notin f^{-1}(B_1^{y_1}) \subseteq f^{-1}(A_1^{f^{-1}(y_1)}) \). This implies \(C_1 \notin A_2^{x_2} \) and \(D_1 \notin A_1^{x_1} \). Thus \(X \) is a \(G-T_5 \)-space.

3.4. \(G-T_6 \)-space

In this section we proved some theorems in connection with \(I^* \)-map, \(I^{**} \)-map, \(A \)-map and \(AO \)-map for \(G-T_6 \)-space.

Theorem 3.4.1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^* \)-map of a space \(X \) onto \(G-T_6 \)-space \(Y \), then \(X \) is a \(G-T_6 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be two disjoint sets in \(X \). Since \(f \) is one-one and onto, there exists disjoint sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \(f \) is an \(I^* \)-map, so that \(f(C_1) = f(C_2) = f(D_1) = f(D_2) \), \(C_2 \) and \(D_2 \) are \(G-T_6 \)-space. Since \((Y, \sigma) \) is \(G-T_6 \)-space, there exists a continuous map \(g : Y \rightarrow [0, 1] \) such that \(g \notin g^{-1}([1]) \) and...
Gem-Separation Axioms in Topological Space

Theorem 3.4.3. If \(f : (X, \{1\}) \) and \(g(f(\{0\})) \). Thus

Theorem 3.4.2. Proof: Let

Theorem 3.4.4. If \(f : (X, \{0\}) \). Thus

In this section we proved some theorems in connection with

3.5. \(G^*T_3 \)-space

In this section we proved some theorems in connection with \(I^* \)-map, \(I^{**} \)-map, A-map and AO-map for \(G^*T_3 \)-space.
Theorem 3.5.1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^* \)-map of a \(G^*-T_3 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G^*-T_3 \)-space.

Proof: Let \(y_1 \) and \(C_2 \) be a disjoint pair of \(Y \). Since \(f \) is one-one and onto, there exists disjoint pair \(x_1 \) and \(C_1 \) of \(X \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((X, \tau) \) is \(G^*-T_3 \)-space, there exists subset \(A \) of \(X \) such that \(x_1 \notin A^{x_2} \) and \(C_1 \notin A^{x_1} \), so that \(f(x_1) \notin f(A^{x_2}) = (f(A))^{f(x_2)} \) and \(f(C_1) \notin f(A^{x_1}) = (f(A))^{f(x_1)} \). Thus \(y_1 \notin (f(A))^{f(x_2)} = y_2 \) and \(C_2 \notin (f(A))^{f(x_1)} = y_1 \). Thus \(Y \) is a \(G^*-T_3 \)-space.

Theorem 3.5.2. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^{**} \)-map of a space \(X \) onto \(G^*-T_3 \)-space \(Y \), then \(X \) is a \(G^*-T_3 \)-space.

Proof: Let \(x_1 \) and \(C_2 \) be a disjoint pair of \(X \). Since \(f \) is one-one and onto, there exists disjoint pairs \(y_1 \) and \(C_2 \) of \(Y \) such that \(f(x_1) = y_1 \) and \(f(C_2) = C_2 \). Since \((Y, \sigma) \) is \(G^*-T_3 \)-space, there exists subset \(A \) of \(Y \) such that \(y_1 \notin A^{y_2} \) and \(C_2 \notin A^{y_1} \), so that \(f^{-1}(y_1) \notin f^{-1}(A^{y_2}) = (f^{-1}(A))^{f^{-1}(y_2)} \) and \(f^{-1}(C_2) \notin f^{-1}(A^{y_1}) = (f^{-1}(A))^{f^{-1}(y_1)} \). This implies \(x_1 \notin (f^{-1}(A))^{x_2} \) and \(C_2 \notin (f^{-1}(A))^{x_1} \). Thus \(X \) is a \(G^*-T_3 \)-space.

Theorem 3.5.3. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(A \)-map of an \(G^*-T_3 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G^*-T_3 \)-space.

Proof: Let \(y_1 \) and \(C_2 \) be a disjoint pair of \(Y \). Since \(f \) is one-one and onto, there exists a disjoint pair \(x_1 \) and \(C_1 \) of \(X \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((X, \tau) \) is \(G^*-T_3 \)-space, there exists subsets \(A \) of \(X \) such that \(x_1 \notin A^{x_2} \) and \(C_1 \notin A^{x_1} \), so that \(f(x_1) \notin f(A^{x_2}) \subseteq B^{f(x_2)} \) and \(f(C_1) \notin f(A^{x_1}) \subseteq B^{f(x_1)} \). This implies \(y_1 \notin B^{y_2} \) and \(C_2 \notin B^{y_1} \). Thus \(Y \) is a \(G^*-T_3 \)-space.

Theorem 3.5.4. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(AO \)-map of a space \(X \) onto \(G^*-T_3 \)-space \(Y \), then \(X \) is a \(G^*-T_3 \)-space.

Proof: Let \(x_1 \) and \(C_1 \) be a disjoint pair of \(X \). Since \(f \) is one-one and onto, there exists a disjoint pair \(y_1 \) and \(C_2 \) of \(Y \) such that \(f(x_1) = y_1 \) and \(f(C_1) = C_2 \). Since \((Y, \sigma) \) is \(G^*-T_3 \)-space, there exists subset \(B \) of \(Y \) such that \(y_1 \notin B^{y_2} \subseteq f(A^{f^{-1}(y_2)}) \) and \(C_2 \notin B^{y_1} \subseteq f(A^{f^{-1}(y_1)}) \), so that \(f^{-1}(y_1) \notin f^{-1}(f(A^{f^{-1}(y_2)})) \) and \(f^{-1}(C_2) \notin f^{-1}(f(A^{f^{-1}(y_1)})) \). This implies \(x_1 \notin A^{x_2} \) and \(C_1 \notin A^{x_1} \). Thus \(X \) is a \(G^*-T_3 \)-space.

3.6. \(G^*-T_4 \)-space

In this section we proved some theorems in connection with \(I^* \)-map, \(I^{**} \)-map, \(A \)-map and \(AO \)-map for \(G^*-T_4 \)-space.

Theorem 3.6.1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^* \)-map of a \(G^*-T_4 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G^*-T_4 \)-space.

Proof: Let \(C_2 \) and \(D_2 \) be two disjoint sets in \(Y \). Since \(f \) is one-one and onto, there exists disjoint sets \(c_2 \) and \(D_1 \) of \(X \) such that \(f(C_2) = c_2 \) and \(f(D_2) = D_2 \). Since \((X, \tau) \) is \(G^*-T_4 \)-space, there exists a subset \(A \) of \(X \) such that \(C_1 \notin A^{x_2} \) and \(D_1 \notin A^{x_1} \), so that \(f(C_1) \notin f(A^{x_2}) = (f(A))^{f(x_2)} \) and \(f(D_1) \notin f(A^{x_1}) = (f(A))^{f(x_1)} \). Thus
Gem-Separation Axioms in Topological Space

Let $C_2 \not\subseteq (f(A))^{f(x_2)=y_2}$ and $D_2 \not\subseteq (f(A))^{f(x_1)=y_1}$. Thus Y is a G^*-T_4-space.

Theorem 3.6.2. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I''-map of a space X onto G^*-T_4-space Y, then X is a G^*-T_4-space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^*-T_4-space, there exists a subset A of Y such that $C_2 \not\subseteq A^{y_2}$ and $D_2 \not\subseteq A^{y_1}$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(A^{y_2}) = (f^{-1}(A))^{f^{-1}(y_2)}$ and $f^{-1}(D_2) \not\subseteq f^{-1}(A^{y_1}) = (f^{-1}(A))^{f^{-1}(y_1)}$. This implies $C_1 \not\subseteq (f^{-1}(A))^{x_2}$ and $D_1 \not\subseteq (f^{-1}(A))^{x_1}$. Thus X is a G^*-T_4-space.

Theorem 3.6.3. If $f : (X, \tau) \to (Y, \sigma)$ is one-one A-map of a space X onto a space Y, then Y is a G^*-T_4-space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists a disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^*-T_4-space, there exists a subset A of X such that $C_1 \not\subseteq A^{x_2}$ and $D_1 \not\subseteq A^{x_1}$, so that $f(C_2) \not\subseteq f(A^{x_2}) \subseteq B^{f(x_2)}$ and $f(D_2) \not\subseteq f(A^{x_1}) \subseteq B^{f(x_1)}$. This implies $C_2 \not\subseteq B^{y_2}$ and $D_2 \not\subseteq B^{y_1}$. Thus Y is a G^*-T_4-space.

Theorem 3.6.4. If $f : (X, \tau) \to (Y, \sigma)$ is one-one AO-map of a space X onto G^*-T_4-space Y, then X is a G^*-T_4-space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists a disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^*-T_4-space, there exists subsets B of Y such that $C_2 \not\subseteq B^{y_2} \subseteq f(A^{f^{-1}(y_2)})$ and $D_2 \not\subseteq B^{y_1} \subseteq f(A^{f^{-1}(y_1)})$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(f(A^{f^{-1}(y_2)}))$ and $f^{-1}(D_2) \not\subseteq f^{-1}(f(A^{f^{-1}(y_1)}))$. This implies $C_1 \not\subseteq A^{x_2}$ and $D_1 \not\subseteq A^{x_1}$. Thus X is a G^*-T_4-space.

3.7. G^*-T_5-space

In this section we proved some theorems in connection with I^*-map, I''-map, A-map and AO-map for G^*-T_5-space.

Theorem 3.7.1. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^*-map of a G^*-T_5-space X onto a space Y, then Y is a G^*-T_5-space.

Proof: Let C_2 and D_2 be separated sets in Y. Since f is one-one and onto, there exists separated sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G^*-T_5-space, there exists subset A of X such that $C_1 \not\subseteq A^{x_2}$ and $D_1 \not\subseteq A^{x_1}$, so that $f(C_1) \not\subseteq f(A^{x_2}) = (f(A))^{f(x_2)}$ and $f(D_1) \not\subseteq f(A^{x_1}) = (f(A))^{f(x_1)}$. Thus $C_2 \not\subseteq (f(A))^{f(x_2)=y_2}$ and $D_2 \not\subseteq (f(A))^{f(x_1)=y_1}$. Thus Y is a G^*-T_5-space.

Theorem 3.7.2. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I''-map of a space X onto G^*-T_5-space Y, then X is a G^*-T_5-space.

Proof: Let C_1 and D_1 be separated sets in X. Since f is one-one and onto, there exists separated sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^*-T_5-space, there exists subset A of Y such that $C_2 \not\subseteq A^{y_2}$ and $D_2 \not\subseteq A^{y_1}$, so that
R. Rathinam and C. Elango

\[f^{-1}(C_2) \neq f^{-1}(A^{y2}) = (f^{-1}(A))^{f^{-1}(y_2)} \text{ and } f^{-1}(D_2) \neq f^{-1}(A^{y_2}) = (f^{-1}(A))^{f^{-1}(y_1)} \text{. This implies } C_3 \nsubseteq (f^{-1}(A))^{x_2} \text{ and } D_3 \nsubseteq (f^{-1}(A))^{x_1} \text{. Thus } X \text{ is a } G^*\text{-}T_5 \text{-space.} \]

Theorem 3.7.3. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one A-map of an \(G^*\text{-}T_5 \)-space \(X \) onto a space \(Y \), then \(Y \) is a \(G^*\text{-}T_5 \)-space.

Proof: Let \(C_2 \) and \(D_2 \) be separated sets in \(Y \). Since \(f \) is one-one and onto, there exists separated sets \(C_1 \) and \(D_1 \) of \(X \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((X, \tau) \) is \(G^*\text{-}T_5 \)-space, there exists subset \(A \) of \(X \) such that \(C_1 \nsubseteq A^{x_2} \text{ and } D_1 \nsubseteq A^{x_1} \), so that \(f(C_1) \nsubseteq f(A^{x_2}) \subseteq B^{f(x_2)} \) and \(f(D_1) \nsubseteq f(A^{x_1}) \subseteq B^{f(x_1)} \). This implies \(C_2 \nsubseteq B^{y_2} \text{ and } D_2 \nsubseteq B^{y_1} \). Thus \(Y \) is a \(G^*\text{-}T_5 \)-space.

Theorem 3.7.4. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one AO-map of a space \(X \) onto \(G^*\text{-}T_5 \)-space \(Y \), then \(X \) is a \(G^*\text{-}T_5 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be separated sets in \(X \). Since \(f \) is one-one and onto, there exists separated sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((Y, \sigma) \) is \(G^*\text{-}T_5 \)-space, there exists subset \(B \) of \(Y \) such that \(C_2 \nsubseteq B^{y_2} \subseteq f(A^{y_2}) \text{ and } D_2 \nsubseteq B^{y_1} \subseteq f(A^{y_1}) \), so that \(f^{-1}(C_2) \nsubseteq f^{-1}(f(A^{y_1})) \) and \(f^{-1}(D_2) \nsubseteq f^{-1}(f(A^{y_2})) \). This implies \(C_1 \nsubseteq A^{x_2} \text{ and } D_1 \nsubseteq A^{x_1} \). Thus \(X \) is a \(G^*\text{-}T_5 \)-space.

3.8. \(G^*\text{-}T_6 \)-space

In this section we proved some theorems in connection with \(I^*\text{-}map \), \(I^{**}\text{-}map \), A-map and AO-map for \(G^*\text{-}T_6 \)-space.

Theorem 3.8.1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^*\)-map of a space \(X \) onto \(G^*\text{-}T_6 \)-space \(Y \), then \(X \) is a \(G^*\text{-}T_6 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be two disjoint sets in \(X \). Since \(f \) is one-one and onto, there exists disjoint sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \(f \) is an \(I^*\)-map, so that \(f(C_1^{x_1}) = f(C_2^{y_1}) = C_2^{y_1} \text{ and } f(D_1^{x_2}) = f(D_2^{y_2}) = D_2^{y_2} \). Since \((Y, \sigma) \) is \(G^*\text{-}T_6 \)-space, there exists a continuous map \(g : Y \rightarrow [0, 1] \) such that \(C_2^{y_1} \neq g^{-1}([1]) \text{ and } D_2^{y_2} = g^{-1}([1]) \). This implies \(f(C_1^{x_1}) \neq g^{-1}([1]) \text{ and } f(D_1^{x_2}) = g^{-1}([1]) \). Now \(g(f(C_1^{x_1})) = (1) \text{ and } g(f(D_1^{x_2})) = (1) \). This implies \(h(C_1^{x_1}) = (1) \text{ and } h(D_1^{x_2}) = (1) \). Thus \(C_1^{x_1} \neq h^{-1}([1]) \text{ and } D_1^{x_2} = h^{-1}([1]) \text{ where } h = g \circ f : X \rightarrow [0, 1] \text{ is a continuous map. Hence by definition we have } (X, \tau) \text{ is a } G^*\text{-}T_6 \)-space.

Theorem 3.8.2. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is one-one \(I^{**}\)-map of a space \(X \) onto \(G^*\text{-}T_6 \)-space \(Y \), then \(X \) is a \(G^*\text{-}T_6 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be two disjoint sets in \(X \). Since \(f \) is one-one and onto, there exists disjoint sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((Y, \sigma) \) is \(G^*\text{-}T_6 \)-space, there exists a continuous map \(g : Y \rightarrow [0, 1] \) such that \(C_2^{y_1} \neq g^{-1}([1]) \text{ and } D_2^{y_2} = g^{-1}([1]) \). So that \(f^{-1}(C_2^{y_1}) \neq f^{-1}(g^{-1}([1])) \text{ and } f^{-1}(D_2^{y_2}) = f^{-1}(g^{-1}([1])) \). This implies \(f^{-1}(C_2^{y_1}) = h^{-1}([1]) \text{ and } f^{-1}(D_2^{y_2}) = h^{-1}([1]) \). Since \(f \) is an \(I^{**}\)-map, we have \((f^{-1}(C_2))^{f^{-1}(y_1)} = h^{-1}([1]) \text{ and } (f^{-1}(D_2))^{f^{-1}(y_2)} = h^{-1}([1]) \). This implies
Gem-Separation Axioms in Topological Space

\(C_1^{x_1} \neq h^{-1}\{1\} \) and \(D_1^{x_2} = h^{-1}\{1\} \) where \(h = g \circ f : X \to [0, 1] \) is a continuous map. Thus by definition we have \((X, \tau) \) is a \(G^*\)-\(T_6 \)-space.

Theorem 3.8.3. If \(f : (X, \tau) \to (Y, \sigma) \) is one-one \(A \)-map of a space \(X \) onto \(G^*-\!T_6 \)-space \(Y \), then \(X \) is a \(G^*\)-\(T_6 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be two disjoint sets in \(X \). Since \(f \) is one-one and onto, there exists disjoint sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \(f \) is an \(A \)-map, so that \(f(C_1^{x_1}) \subseteq C_2^{f(x_1)} = C_2^{y_1} \) and \(f(D_1^{x_2}) \subseteq D_2^{f(x_2)} = D_2^{y_2} \). Since \((Y, \sigma) \) is \(G^*\)-\(T_6 \)-space, there exists a continuous map \(g : Y \to [0, 1] \) such that \(C_2^{y_1} \neq g^{-1}\{1\} \) and \(D_2^{y_2} = g^{-1}\{1\} \). This implies \(f(C_1^{x_1}) \subseteq C_2^{y_1} \neq g^{-1}\{1\} \) and \(f(D_1^{x_2}) \subseteq D_2^{y_2} = g^{-1}\{1\} \). This implies \(f(C_1^{x_1}) \neq g^{-1}\{1\} \) and \(f(D_1^{x_2}) = g^{-1}\{1\} \). Now \(g(f(C_1^{x_1})) \neq (1) \) and \(g(f(D_1^{x_2})) = (1) \). Thus \(C_1^{x_1} \not\subseteq h^{-1}\{1\} \) and \(D_1^{x_2} \subseteq h^{-1}\{1\} \) where \(h = g \circ f : X \to [0, 1] \) is a continuous map. Hence by definition we have \((X, \tau) \) is a \(G^*\)-\(T_6 \)-space.

Theorem 3.8.4. If \(f : (X, \tau) \to (Y, \sigma) \) is one-one \(AO \)-map of a space \(X \) onto \(G^*\)-\(T_6 \)-space \(Y \), then \(X \) is a \(G^*\)-\(T_6 \)-space.

Proof: Let \(C_1 \) and \(D_1 \) be two disjoint sets in \(X \). Since \(f \) is one-one and onto, there exists disjoint sets \(C_2 \) and \(D_2 \) of \(Y \) such that \(f(C_1) = C_2 \) and \(f(D_1) = D_2 \). Since \((Y, \sigma) \) is \(G^*\)-\(T_6 \)-space, there exists a continuous map \(g : Y \to [0, 1] \) such that \(C_2^{y_1} \neq g^{-1}\{1\} \) and \(D_2^{y_2} = g^{-1}\{1\} \). This implies \(f(C_1^{x_1}) \subseteq C_2^{y_1} \neq g^{-1}\{1\} \) and \(f(D_1^{x_2}) \subseteq D_2^{y_2} = g^{-1}\{1\} \). This implies \(f(C_1^{x_1}) \neq g^{-1}\{1\} \) and \(f(D_1^{x_2}) = g^{-1}\{1\} \). Now \(g(f(C_1^{x_1})) \neq (1) \) and \(g(f(D_1^{x_2})) = (1) \). This implies \(h(C_1^{x_1}) \neq (1) \) and \(h(D_1^{x_2}) = (1) \). Thus \(C_1^{x_1} \neq h^{-1}\{1\} \) and \(D_1^{x_2} = h^{-1}\{1\} \) where \(h = g \circ f : X \to [0, 1] \) is a continuous map. Hence by definition we have \((X, \tau) \) is a \(G^*\)-\(T_6 \)-space.

4. Conclusion

In this article, we studied some basic concepts and relations involving Gem-separation axioms. We also rename \(I^*\)-\(T_0 \)-space, \(I^*\)-\(T_1 \)-space, \(I^*\)-\(T_2 \)-space by Gem-Kolmogorov space(G-\(T_0 \)-space), Gem-accessible space or Gem-Frechlet space(G-\(T_1 \)-space) and Gem-Hausdorff space(G-\(T_2 \)-space) and \(I^*\)-spaces by \(G^*\)-\(T_i \)-spaces. In future the concepts used in nano-topology can be adopted to prove that Gem-set in nano topological space.

REFERENCES