Bounds of Location-2-Domination Number for Products of Graphs

G.Rajasekar¹ and A.Venkatesan²

¹Department of Mathematics, Jawahar Science College, Neyveli,
Tamilnadu, India. Email: grsmaths@gmail.com
²Department of Mathematics, St. Joseph’s College of Arts and Science College
(Autonomous) Cuddalore. Tamilnadu, India.
Email: suresh11venkat@gmail.com

Received 1 November 2017; accepted 4 December 2017

Abstract. In this paper Location-2-Domination set and their properties are being studied. A subset \(S \subseteq V \) is Location-2-Dominating set of \(G \) if \(S \) is 2-Dominating set of \(G \) and for any two vertices \(u, v \in V \setminus S \) such that \(N(u) \cap S \neq N(v) \cap S \), its denoted by \(R^2(G) \). Based on this definition the bounds of the Location-2-domination number for direct product, Cartesian product and semi-strong product of graphs namely \(P_n \bowtie C_m \), \(C_n \bowtie S_m \), \(C_n \times S_m \), \(P_n \times P_m \), \(C_n \bowtie P_m \), \(C_n \bowtie C_m \) have been found.

Keywords: 2-Domination, Location Domination, Product of Graphs

AMS Mathematics Subject Classification (2010): 05C69

1. Introduction

Throughout this paper let us follow the terminology and notation of Harary [11]. Cockayne and Hedetniemi [7] introduce the concept dominating set. A subset \(S \) of vertices from \(V \) is called a dominating set for \(G \) if every vertex of \(G \) is either a member of \(S \) or adjacent to a member of \(S \). A dominating set of \(G \) is called a minimum dominating set if \(G \) has no dominating set of smaller cardinality. The cardinality of minimum dominating set of \(G \) is called the dominating number for \(G \) and it is denoted by \(\gamma(G) \) [6].

Harary and Haynes [5] introduced the concepts of double domination in graphs. A dominating set \(S \) of \(G \) is called double dominating set if every vertex in \(V-S \) is adjacent to at least two vertices in \(S \). Given a dominating set \(S \) for graph \(G \), for each \(u \) in \(V-S \) let \(S(u) \) denote the set of vertices in \(S \) which are adjacent to \(u \). The set \(S \) is called locating dominating set, if for any two vertices \(u \) and \(w \) in \(V-S \) one has \(S(u) \) not equal to \(S(w) \) and the minimum cardinality of Location Domination set is denoted by \(RD(G) \) [7]. The Cartesian product \(G \bowtie H \) of graphs \(G \) and \(H \) is the graph with vertex set \(V(G) \times V(H) \) and edge set is \((u,a)(v,b) \in E(G \bowtie H) \) if and only if \(a = b \) and...
G. Rajasekar and A. Venkatesan

$uv \in E(G)$ or $u = v$ and $ab \in E(H)$ [3]. The direct product $G \times H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and edge set is $(u, a)(v, b) \in E(G \times H)$ if and only if $uv \in E(G)$ and $ab \in E(H)$ [14]. The Semi-Strong Product of two graphs G and H is the graph $G \bowtie H$ with vertices $V(G \bowtie H) = V(G) \times V(H)$ and edges $E(G \bowtie H) = \{(a, x)(b, y)\}$ if and only if $(a, b) \in E(G)$ and $x = y$ or $(a, b) \in E(G)$ and $(x, y) \in E(H))$ [12].

2. Preliminaries
2.1 Location-2-domination

Definition 2.1.1. [8] A subset $S \subseteq V$ is Location – 2 -Dominating set of G if S is a 2 Dominating set of G and if for any two vertices $u, v \in V - S$ such that $N(u) \cap S \neq N(v) \cap S$.

The minimum cardinality of Location-2-Dominating is denoted by $R_2^D(G) = |S|$.

2.2. Location-2-domination for simple graphs

Theorem 2.2.1. [9] In Location-2-Domination for any graph the vertex $\{v\}$ is a pendent vertex then $\{v\} \in R_2^D(G)$ only.

Theorem 2.2.2. [8] Location-2-Domination number of a Path P_n is

$$R_2^D(P_n) = \begin{cases} \frac{n - 1}{2} + 1, & \text{n is odd} \\ \frac{n}{2} + 1, & \text{n is even} \end{cases}$$

Theorem 2.2.3. [8] Location-2-Domination for any cycle C_n, for $n \neq 4$ is

$$R_2^D(C_n) = \begin{cases} \frac{n}{2}, & \text{n is even} \\ \frac{n - 1}{2} + 1, & \text{n is odd} \end{cases}$$

2.3 Location-2-domination for Cartesian product of graphs

Theorem 2.3.1. [10] For any graph $G = (P_n \boxtimes S_m)$,

$$R_2^D(G) = \begin{cases} R_2^D(P_n) + \frac{m(n - 1)}{2}, & \text{n is odd} \\ \frac{n}{2} (m + 1), & \text{n is even} \end{cases}$$

Theorem 2.3.2. [10] Location-2-Domination for any graph $G = (P_n \boxtimes P_m)$ is
Bounds of Location-2-Domination Number for Products of Graphs

\[R_2^D(G) = \begin{cases} \frac{nm}{2} & \text{if } n \text{ is even, } m \text{ is either even or odd} \\ \frac{nm-1}{2} & \text{if } n \text{ is odd, } m \text{ is odd} \end{cases} \]

Theorem 2.3.3. [10] Location-2-domination for any graph \(G = (C_n \sqcap C_m) \) is

\[R_2^D(G) = \begin{cases} \frac{nm}{2} & \text{if } n \text{ is even, } m \text{ is either even or odd} \\ \frac{nm-1}{2} & \text{if } n \text{ is odd, } m \text{ is odd} \end{cases} \]

2.4. Location-2-domination for direct product of graphs

Theorem 2.4.1. [10] For graphs \(P_n \) (\(n \neq 3 \)) and \(S_m \), \(R_2^D(P_n \times S_m) = nm, n, m = 1, 2, 3, \ldots \)

Theorem 2.4.2. [10] Location-2-Domination for \(P_n \) and \(P_m, m \neq 3 \),

\[R_2^D(P_n \times P_m) = \begin{cases} \frac{nm}{2} + 2 & \text{if } n, m \text{ is even} \\ \frac{nm}{2} + 2 & \text{if } \text{either } n \text{ is odd, } m \text{ is even} \\ \frac{n(m+1)}{2} & \text{if } n \text{ is odd but } n < m \end{cases} \]

Theorem 2.4.3. [10] For \(n, m \geq 5 \),

\[R_2^D(C_n \sqcap C_m) = \frac{nm}{2}, \ n, m \text{ is even}, \]
\[R_2^D(C_n \sqcap C_m) = \frac{(n-1)m}{2}, \ n \text{ is odd } m \text{ is even}, \]
\[R_2^D(C_n \sqcap C_m) = \frac{n(m-1)}{2}, \ n \text{ is even } m \text{ is odd}, \]
\[R_2^D(C_n \sqcap C_m) = \frac{n(m-1)}{2}, \ n, m \text{ is odd but } n > m, \]
\[R_2^D(C_n \sqcap C_m) = \frac{m(n-1)}{2}, \ n, m \text{ is odd but } n < m. \]
3. Location -2-domination of products of graph

3.1. Location -2-domination (Cartesian product) of $C_n \square P_m$, $C_n \square S_m$

Theorem 3.1.1. For any graph P_m and C_n we have

$$R_2^D(G) = \left\{ \begin{array}{ll}
\frac{nm}{2} & \text{n is even, m is either even (or) odd} \\
\frac{nm}{2} + 1 & \text{n is odd m is even} \\
\frac{nm + 1}{2} & \text{n is odd, m is odd}
\end{array} \right.$$

Proof: Consider path of m vertices and Cycle of n vertices. The Vertex set of P_m and C_n are $\{1, 2, ..., m\}$ and $\{1, 2, ..., n\}$ respectively. Clearly $|G| = nm$ in which $2n$ vertices are degree 3 and $(m-2)n$ vertices are degree 4 and let S - Set denote Location-2-Domination of G.

Case (i): Suppose n is even and m is either even or odd, in this situation $|V(G)| = nm$ even number of vertices. In G fix any vertex from C_1 and form open path through vertices of P_1, continue the open path starts with C_2 through P_2, continue the same process till C_n through P_m, each time the process of continuation of open path from C_1 to C_n done only by either towards right or left direction only not alternatively. Finally the collection of vertices from C_1 to C_n through P_1 to P_m forms a cycle of length even with nm vertices. So by the Theorem: 2.2.3, $|S| = \frac{nm}{2}$, i.e. $R_2^D(G) = \frac{nm}{2}$.

Case (ii): Suppose n is odd, but m is even, in this situation $|V(G)| = nm$ is even, in G fix any vertex from C_1 and form open path through vertices of P_1, continue the open path starts with C_2 through P_2, continue the same process till C_n through P_m, each time in the process of continuation open path from C_1 to C_n done only by either towards right or left direction only not for alternatively. Finally the collection of vertices from C_1 to C_n through P_1 to P_m forms a path of length even with nm vertices. So by the Theorem: 2.2.2 $|S| = \frac{nm}{2} + 1$, i.e. $R_2^D(G) = \frac{nm}{2} + 1$.

Case (iii): Suppose n is odd and m is odd. Clearly $|G| = nm$ odd number of vertices, From G, let us consider $|S| = |S_1| + |S_2|$ where $|S_1|$ denote the Location-2-Domination for $\{C_1, C_3, ..., C_m\}$ and $|S_2|$ denote the Location-2-Domination for $\{C_2, C_4, ..., C_{m-1}\}$, but
Bounds of Location-2-Domination Number for Products of Graphs

\[|C_1|=|C_2|=...=|C_{m-1}|=|C_m|=n. \text{ And for } S_1=\{C_1,C_3,...,C_m\} \text{ the vertex set of } S_1 \text{ are } \{C_{11},C_{12},...,C_{1n},C_{31},C_{32},...,C_{3n},...,C_{m1},C_{m2},...,C_{mn}\}. \text{ By the Theorem: 2.2.3 Location-2-Domination for Cycle of length odd is } \frac{n-1}{2}+1=\frac{n+1}{2}. \text{ Therefore } |C_i|=\frac{n+1}{2}, i=1,3,...,m. \text{ Clearly } S_1 \text{-set contains } \frac{m+1}{2} \text{ times of cycle with odd length. Therefore } |S_1|=\left(\frac{m+1}{2}\right)\left(\frac{n+1}{2}\right) \text{ and } S_2=\{C_2,C_4,...,C_{m-1}\} \text{ the vertex set of } S_2 \text{ are } \{C_{21},C_{22},...,C_{2n},C_{41},C_{42},...,C_{4n},...,C_{(m-1)1},C_{(m-1)2},...,C_{(m-1)n}\}, \text{ now collect the vertex from } C_2 \text{ as } N(V-S_1)-S_1 \text{ in } C_1. \text{ This gives } \frac{n-1}{2} \text{ vertices in } C_2. \text{ Continuing the same process for } \{C_4,C_6,...,C_{m-1}\}, \text{ i.e. collect the vertex for } C_{i+1} \text{ as } N(V-S_i)-S_i \text{ from } C_i \text{ for } i=1,2,...,m-2. \]

Clearly \(S_2\)-set contains \(\frac{m-1}{2}\) times of \(C_{i+1}\), \(i=1,2,...,m-2\). i.e. \(|S_2|\)=\(\left(\frac{m-1}{2}\right)\left(\frac{n-1}{2}\right)\)

\[|S|=\left(\frac{m+1}{2}\right)\left(\frac{n+1}{2}\right)+\left(\frac{m-1}{2}\right)\left(\frac{n-1}{2}\right)=\frac{nm+1}{2}. \text{ Therefore, } R_2^D(G)=|S|=\frac{nm+1}{2}.\]

Theorem 3.1.2. For graphs \(P_n\) and \(S_m\), \(R_2^D(C_n\triangle S_m)=\begin{cases} \frac{n(m+1)}{2} & n \text{ is even} \\ \frac{n+1}{2}+\frac{m(n-1)}{2} & n \text{ is odd} \end{cases}\)

Proof: Consider the vertex set of \(G\) namely \(\{v_j\}\) for \(1\leq i \leq n, 1 \leq j \leq m+1.\) Clearly \(|G|=nm\). Let \(S-\text{set denote Location-2-Dominating set, by observing } G, d_G(v_{ij})=m+1\) for \(i=1,n,\text{ and } 1 \leq j \leq m+1\) also \(d_G(v_{ij})=4\) for \(2 \leq i \leq n-1, 2 \leq j \leq m+1.\) i.e. \(v_{ij}, i=1,2,...,n\) is adjacent with \(v_{ij}, 2 \leq j \leq m+1.\)

Case (i): Suppose \(n\) is even and \(m\) is either even or odd. Clearly \(|G|=nm\) has even number of vertices, in this sense now collect \(S-\text{set possibly by } \{v_{ij}\}, i=1,3,5,...,n-1\) and \(\{v_{ij}\}\) for \(i=2,4,...,n, 2 \leq j \leq m+1,\) or \(\{v_{ij}\}, i=2,4,6,...,n\) and \(\{v_{ij}\}\) for \(i=1,3,...,n-1, 2 \leq j \leq m+1,\) this gives \(\frac{n}{2}\) times a single vertex and \(\frac{n}{2}\) times \(m\) vertices or \(\{v_{ij}\}\) for \(i=1,3,5,...,n-1, 1 \leq j \leq m+1,\) this gives \(\frac{n}{2}\) times \(m+1\) vertices.
\[|S| = \frac{n}{2} + \frac{nm}{2} = \frac{n(m+1)}{2} \]

therefore \(R^b_2(G) = \frac{n(m+1)}{2} \).

Suppose, \(\{v_{ij}\} \notin S \) for \(i = 2, 4, \ldots, n \), \(2 \leq j \leq m+1 \) or some \(\{v_{ij}\} \notin S \) for \(i = 2, 4, \ldots, n \), \(2 \leq j \leq m+1 \). Clearly this contradicts the definition of Location-2-Domination or minimum cardinality of \(S^- \) set or some \(\{v_{ij}\} \notin S \) for \(i = 2, 4, \ldots, n \), \(2 \leq j \leq m+1 \), in this situation \(\{v_{ij}\}, i = 1, 3, \ldots, n-1, 1 \leq j \leq m+1 \) needs additional vertex, clearly it also contradicts the minimum cardinality of \(S^- \) set.

Case (ii): Suppose \(n \) is odd, \(m \) is either even or odd. Clearly \(|V(G)| = nm \) gives even number of vertices, in this sense now collect \(S^- \) set possibly by \(\{v_{ij}\}, i = 1, 3, \ldots, n \) and \(\{v_{ij}\} \) for \(i = 2, 4, \ldots, n-1 \), \(2 \leq j \leq m+1 \), this gives \(\frac{n+1}{2} \) times a single vertex and \(\frac{n-1}{2} \) times \(m+1 \) vertices.

That is, \(|S| = \frac{n+1}{2} + \frac{(n-1)m}{2} \) and therefore \(R^b_2(G) = \frac{n+1}{2} + \frac{m(n-1)}{2} \).

Suppose, \(\{v_{ij}\} \notin S \) for \(i = 1, 3, \ldots, n \), \(2 \leq j \leq m+1 \) this gives \(|S| = \frac{n-1}{2} + \frac{(n+1)m}{2} \) contradicts minimum cardinality of \(S^- \) set or some \(\{v_{ij}\} \notin S \) for \(i = 2, 4, \ldots, n \), \(2 \leq j \leq m+1 \), clearly it contradicts the definition of Location-2-Domination.

3.2. Location-2-domination (Direct product) of \(P_n \times W_m, P_n \times C_m \)

Theorem 3.2.1. For any Graphs \(P_n, n \neq 2 \) and \(W_m, m \neq 5 \) we have

\[
R^b_2(G) = \begin{cases}
\frac{nm}{2} & \text{if } n \text{ is even} \\
\frac{m(n+1)}{2} & \text{if } n \text{ is odd}
\end{cases}
\]

Proof: Label the vertices of \(G \) as \(\{v_{ij}\}, 1 \leq i \leq n, 1 \leq j \leq m \), clearly \(|G| = nm \) from \(G \).
\(d_G(v_{11}) = d_G(v_{mn}) = m-1, \quad d_G(v_{ij}) = d_G(v_{ij}) = 3, 2 \leq j \leq m \) and
\(d_G(v_{ij}) = 6, 2 \leq i \leq n-1, \quad 2 \leq j \leq m \). Now labels of \(G \) are partitioned into \(n \) different sets namely \(U_i, 1 \leq i \leq n \) are \(\{v_{ij}\}, 1 \leq i \leq n, 1 \leq j \leq m \) respectively. But there is no adjacency from \(v_{ij} \) to \(v_{ij} \) for \(1 \leq i \leq n, 1 \leq j \leq m \). Clearly, \(u_i \) is adjacent to \(u_{i-1} \) and \(u_{i+1} \) for \(i = 1, 2, \ldots, n \).
Bounds of Location-2-Domination Number for Products of Graphs

Case (i): Suppose \(n \) is even, then the collection of the sets \(U_i, i = 1, 3, ..., n-1 \) or \(i = 2, 4, ..., n \) will have \(\frac{n}{2} \) times \(m \) vertices i.e. \(|S| = \frac{nm}{2} \) therefore \(D_2^0(G) = \frac{nm}{2} \).

Case (ii): Suppose \(n \) is odd by based on Theorem 2.2.2, the collection of the sets \(U_i, i = 1, 3, ..., n-1 \) will have \(\frac{n-1}{2} \) times \(m \) vertices i.e. \(|S| = \frac{(n-1)m}{2} \) therefore \(D_2^0(G) = \frac{(n-1)m}{2} \). Suppose if we collect the sets \(U_i, i = 1, 3, ..., n \) this contradicts the minimum cardinality.

Result 3.2.1. \(D_2^0(P_2 \times W_m) = m \).

Result 3.2.2. \(D_2^0(P_n \times W_m) = \begin{cases} 3n, & n \text{ is even} \\ \frac{5(n+1)}{2} + \frac{n-1}{2}, & n \text{ is odd} \end{cases} \)

Theorem 3.2.2. For Graphs \(C_n \) and \(S_m \), \(D_2^0(C_n \times S_m) = nm n, m = 1, 2, 3, ... \)

Proof: The vertex set of \(G \) are \(\{v_i\}, 1 \leq i \leq n, 1 \leq j \leq m+1 \). Let \(S \) denote Location-2-Dominating set of \(G \). Clearly by observation of \(G \) \(d_{v_i}(v_{i+1}) = 2m, 1 \leq i \leq n \) and \(d_{v_i}(v_{i+1}) = 2, 1 \leq i \leq n, 2 \leq j \leq m+1 \). Now collect the \(S \)-set possibly by either \(v_i, 1 \leq i \leq n, 2 \leq j \leq m+1 \) or \(v_i, 1 \leq i \leq n \) and \(v_j, 1 \leq i \leq n, 3 \leq j \leq m+1 \) i.e. leaving anyone of the same base vertex of \(i = 1, 2, ... \) or \(j = 1, 2, ... \) clearly this \(n \) times \(m \) vertices. i.e. \(|S| = nm \). Suppose \(v_i \in S, i = 1, 2, 3, ..., n \) and \(v_j \not\in S, 1 \leq i \leq n, 2 \leq j \leq m+1 \) then this contradicts the definition of Location-2-Domination. Therefore \(D_2^0(G) = |S| = nm \).

3.3 Location-2-domination (semi-strong product) of \(P_n \bowtie P_m, C_n \bowtie P_m, C_n \bowtie C_m \)

Theorem 3.3.1. For any graphs \(P_n, n \neq 3 \) and \(P_m, m \neq 2, G = P_n \bowtie P_m \) is

\[
D_2^0(G) = \begin{cases} \frac{nm}{2}, & n \text{ is even, } m \text{ is even or odd} \\ \frac{nm+2}{2}, & n \text{ is odd, } m \text{ is even} \\ \frac{n(m+1)}{2}, & n, m \text{ is odd } n < m \\ \frac{m(n+1)}{2}, & n, m \text{ is odd } m < n \\ \frac{n(m+1)}{2}, & n, m \text{ is odd } n = m \end{cases}
\]
G. Rajasekar and A. Venkatesan

Proof: Label the vertices of G as $\{v_{ij}\}, 1 \leq i \leq n$ and $1 \leq j \leq m$. Let S-set be the Location-2-Domination set of G, then clearly $d_G(v_{ij}) \geq 2, i=1,2,...,n \ j=1,2,...,m$.

Case (i): Suppose n is even and m is even or odd, now let us collect the S-set possibly by $\{v_{ij}\} i=1,3,...,n-1, j=1,2,...,m$ or $\{v_{ij}\} i=2,4,...,n, j=1,2,3,...,m$ this gives $\frac{nm}{2}$ vertices i.e. $|S| = \frac{nm}{2}$.

Case (ii): Suppose n is odd, m is even in this sense let us collect the S-set possibly by $\{v_{ij}\} i=1,2,3,...,n, j=1,3,...,m-1$ and v_{in}, v_{jm} and this gives $\frac{nm}{2} + 2$ vertices that is $|S| = \frac{nm}{2} + 2$ therefore $R_2^D(G) = \frac{nm}{2} + 2$. Suppose the vertices v_{in}, v_{jm} does not belong to S-set or $\{v_{ij}\} i=1,3,...,n-1, j=1,2,3,...,m$ then this is a contradiction to minimum cardinality.

Case (iii): Suppose n, m is odd but $n < m$, in this case let us collect the S-set possibly by $\{v_{ij}\} i=1,2,3,...,n, j=1,3,...,m-1$ and this gives n times $\frac{m+1}{2}$ vertices that is $|S| = \frac{n(m+1)}{2}$ therefore $R_2^D(G) = \frac{n(m+1)}{2}$. Then the collection $\{v_{ij}\} i=1,3,...,n-1, j=1,2,3,...,m$ is not a minimum cardinality set.

Case (iv): Similar to the case (iii).

Case (v): Suppose n, m is odd but $n = m$ in this case let us collect the S-set possibly by $\{v_{ij}\} i=1,2,3,...,n, j=1,3,...,m$ or $\{v_{ij}\} i=1,3,...,n, j=1,2,3,...,m$ then this gives $\frac{n(m+1)}{2}$ vertices that is $|S| = \frac{n(m+1)}{2}$ and hence $R_2^D(G) = \frac{n(m+1)}{2}$.

Result 3.3.1. $R_2^D(P_n \times P_2) = n$

Result 3.3.2. $R_2^D(P_3 \times P_m) = 2m$

Observation 3.3.1. The semi-strong product of $C_n \times P_m$ is not equal to $P_n \times C_m$

Theorem 3.3.2. For any graphs $C_n, n > 5$ and $P_m, m \neq 2$, $G=C_n \bowtie P_m$
Bounds of Location-2-Domination Number for Products of Graphs

\[R^0_2(G) = \begin{cases}
2 \left(\frac{m}{2} + 1 \right) + \frac{m}{2} + m \left(\frac{n-4}{2} \right) & n, m \text{ is even} \\
(m+1) + m \left(\frac{n-3}{2} \right) & n, m \text{ is odd} \\
m \left(\frac{n-3}{2} \right) + 2 (m+2) & n \text{ is odd } m \text{ is even} \\
3 \left(\frac{m+1}{2} \right) + m \left(\frac{n-4}{2} \right) & n \text{ even } m \text{ odd}
\end{cases} \]

Proof: \[|V(G)| = nm = \{v_{ij}\}, i = 1, 2, \ldots, n, \ j = 1, 2, \ldots, m \] Clearly \(d_G(v_{ij}) \geq 2 \) for \(i = 1, 2, \ldots, n, \ j = 1, 2, \ldots, m \)

Case (i): Suppose \(n, m \) is even, in this case cardinality of \(S \) - set contains the vertices are \(v_{ij}, i = 1, n; j = 1, 3, \ldots, m-1 \) \(m \) and \(v_{(n-1)j}, j = 1, 3, \ldots, m-1 \) also \(v_{ij} \) for \(i = 3, 5, \ldots, n-3, j = 1, 2, \ldots, m \). Clearly this gives \(2 \) times \(\frac{m}{2} + 1 \) vertices and \(\frac{m}{2} \) times a single vertex. Also \(\frac{n-4}{2} \) times \(m \) vertices. That is \(|S| = 2 \left(\frac{m}{2} + 1 \right) + \frac{m}{2} + m \left(\frac{n-4}{2} \right) \) and therefore \(R^0_2(G) = 2 \left(\frac{m}{2} + 1 \right) + \frac{m}{2} + m \left(\frac{n-4}{2} \right) \).

Case (ii): Suppose \(n, m \) is odd, now the \(S \) - set contains the vertices \(v_{ij}, i = 1, n; j = 1, 3, \ldots, m \) and also \(v_{ij} \) for \(i = 3, 5, \ldots, n-2, j = 1, 2, \ldots, m \). Then this gives \(2 \) times \(\frac{m+1}{2} \) vertices and \(\frac{n-3}{2} \) times \(m \) vertices. That is \(|S| = (m+1) + m \left(\frac{n-3}{2} \right) \) and therefore \(R^0_2(G) = (m+1) + m \left(\frac{n-3}{2} \right) \).

Case (iii): Proof is similar to Case (i) and hence \(R^0_2(G) = (m+2) + m \left(\frac{n-3}{2} \right) \).

Case (iv): Suppose \(n \) is even, \(m \) is odd, now the \(S \) - set contains the vertices \(v_{ij}, i = 1, n-1, n; j = 1, 3, \ldots, m \) and also \(v_{ij} \) for \(i = 3, 5, \ldots, n-3; j = 1, 2, \ldots, m \). Then this gives \(3 \) times \(\frac{m+1}{2} \) vertices and \(\frac{n-4}{2} \) times \(m \) vertices. That is \(|S| = 3 (m+1) + m \left(\frac{n-4}{2} \right) \) and therefore \(R^0_2(G) = 3 (m+1) + m \left(\frac{n-4}{2} \right) \).
G. Rajasekar and A. Venkatesan

Result 3.3.3. \(R^D_2(C_2 \times C_m) = m, m \neq 2, 3 \)

Result 3.3.4. \(R^D_2(C_3 \times C_m) = 2(m-1) \)

Result 3.3.5. \(R^D_2(C_4 \times C_m) = 2m \)

Theorem 3.3.3. For Graphs \(C_n, n \neq 2, 3, 4 \) and \(C_m \), \(G = C_n \bowtie C_m \) is 2

\[
R^D_2(G) = \begin{cases}
\frac{nm}{2} & \text{n, m is even} \\
\left(\frac{m-1}{2}\right)n & \text{n is even or odd, m is odd} \\
\left(\frac{n-1}{2}\right)m & \text{n is odd, m is even}
\end{cases}
\]

Proof: Let the vertices of \(G \) be \(\{v_{ij}\}, i = 1, 2, ..., n, j = 1, 2, ..., m \). Let \(S \) denotes Location-2-Dominating set.

Case (i): Proof is followed by Theorem 3.5 Case (i)

Case (ii): Suppose \(n \) is odd, \(m \) is odd and let us collect the \(S \)-set possibly by \(\{v_{ij}\}, i = 1, 3, ..., n-2, j = 1, 2, 3, ..., m \). Clearly this gives \(\frac{m-1}{2} \) times \(n \) vertices, that is \(|S| = n\left(\frac{m-1}{2}\right) \) and therefore \(R^D_2(G) = n\left(\frac{m-1}{2}\right) \).

Case (iii): suppose \(n \) is odd, \(m \) is even and let us collect the \(S \)-set possibly by \(\{v_{ij}\}, i = 1, 2, 3, ..., n, j = 1, 3, ..., m-1 \). Clearly this gives \(\frac{n-1}{2} \) times \(m \) vertices that is \(|S| = m\left(\frac{n-1}{2}\right) \) and hence \(R^D_2(G) = m\left(\frac{n-1}{2}\right) \). Suppose if anyone the vertex collection as \(\{v_{ij}\}, i = 1, 3, ..., n-2, n-1, j = 1, 2, 3, ..., m \) then this is once again a contradiction to minimum cardinality.

Acknowledgement. The authors thank the anonymous referees for their helpful suggestions.

REFERENCES

Bounds of Location-2-Domination Number for Products of Graphs

