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Abstract. The roots of the characteristic polynomial of the adjacency matrix A(G) of a 
graph G are called eigenvalues. The eigenvalues together with their multiplicities 
constitute the spectrum of G. Graphs having zero as an eigenvalue are called singular 
graphs. Nullity � of G is the multiplicity of the eigenvalue zero. The null spread of the 
edge e is defined as ηe(G) = η(G) – η(G−e). Null spread of the edges of singular graphs 
depends on the null spread of its pendant vertices. The concatenation or edge gluing of 
two graphs G1 and G2 is the graph obtained by identifying two edges of G1 and G2. In this 
paper we study on the spectrum of the concatenation of two graphs. The effect of 
concatenation on energy is also a part of the investigation. 
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1. Introduction 
Let G = (V(G), E(G)) be a finite, undirected simple graph of order n with vertex set V(G) 
and edge set E(G). The adjacency matrix A(G) of the graph G is a n x n matrix whose 
entries a�� are the number of edges from vertex	v� to the vertexv�. The characteristic 
polynomial of the adjacency matrix A(G) of the graph G is the characteristic polynomial 
of  G  and is denoted by ϕ(G, x). The roots of the equation ϕ(G, x) = 0 are called the 
eigenvalues of the graph G. The collection of the eigenvalues together with their 
multiplicities constitute the spectrum of G denoted by spec(G). Graphs having zero as an 
eigenvalue are called singular graphs. The nullity η(G) of the graph G is the multiplicity 
of zero in the graph’s spectrum. 
 
Definition 1.1. [3] Let	�	 − 	� be the induced sub graph of the graph G obtained on 
deleting the vertex u. The null spread of the vertex u is :�u (G) = η (G) – η (G − u). 
Obviously the null spread satisfies −1 ≤	nu (G) ≤ 1. If u is a core vertex, then nu (G) = 1. 
There are vertices with nu (G) = 0 and nu (G) = -1. Such vertices are called noncore 
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vertices of null spread zero and noncore vertices of null spread −1 respectively(See 
Figure 1). 

 
Figure 1: Three types of vertices 

 

 
Figure 2: The graphs of G and G – e. 

 
Definition 1.2. [3] Let G	 − 	e be the induced subgraph of the graph G obtained on 
deleting an edge e from G. The null spread of the edge e is defined as ηe(G) = η(G) – 
η(G−e). 
If G is any nonempty graph, then for each e ϵE(G), |η(G) − 	η(G − e)| ≤	2.In Figure 2, 
the graph G has nullity two and G−e has nullity zero. Thus ηe(G) = 2. Deletion of edges 
with positive null spread decreases the nullity of the graph.  
 
Definition 1.3. [9] Let G1 and G2 be two graphs with disjoint vertex sets. If a vertex u ϵ 
G1 is identified with a vertex v ϵ G2, then the graph G1 o G2  obtained of order |G�| + 
|G�| −	1, is said to be the coalescence of G1 and G2 with respect to u and v.  

The characteristic polynomial φ (G, x) of the graph G = G1 o G2 is given by the 
following theorem. 
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Theorem 1.1. [9] The characteristic polynomial of the coalescence G1 o G2  of two rooted 
graphs (G1,u) and (G2,w) obtained by identifying the vertices u and w so that the vertex v 
= u = w become a cut vertex of G1 o G2  is given by  
 φ(G1 o G2) = φ(G1) φ(G2− w) + φ(G1− u) φ(G2) −	x φ(G1− u) φ(G2 −	w)(1.1) 
We have the following results about the coalescence of graphs:  
 
Theorem 1.2. [6] The coalescence of two singular graphs with nullity η1 and η2 
coalesced at a core vertex yield a singular graph of nullity η1 + η2−	1.  
 
Theorem 1.3. [7] Let G1 be a nonsingular graph and G2 be a singular graph with nullity 
η2. If G1 and G2 are coalesced at a vertex u of G1 and a core vertex v of G2, then the 
nullity of G1 o G2 is η2 −1.  
 
Theorem 1.4. [7] Let G1 and G2 be two singular graphs of order n1 and n2 respectively. 
IfG1 o G2is the coalescence of G1 and G2 at  noncore vertices of null spread −1, then η( 

G1 o G2) = η1 + η2 + 1.  
 
Theorem 1.5. [7] Let G1 and G2 be two singular graphs with nullity η1 and η2 
respectively. The nullity of the coalescence of G1 and G2 at  noncore vertices of null 
spread zero is η1 + η2.  
 
Theorem 1.6. [7] Let G1 and G2 be two singular graphs with nullity η1 and η2 
respectively. The coalescence of G1 and G2 at a core vertex of G1 and at a noncore vertex 
(null spread 0 or -1) of G2 or vice versa yield a singular graph of nullity η1 + η2−1.  
 
Theorem 1.7. [7] Let G1 and G2 be two singular graphs with nullity η1 and η2 
respectively. The coalescence of G1 and G2 at a noncore vertex of null spread zero of G1 
and at a noncore vertex of null spread −1 of G2 or vice versa yield a singular graph of 
nullity η1 + η2. 

Theorem 1.8. [7] Let G1 be a non singular graph and G2 be a singular graph with nullity 
η2. Then the nullity of the coalescence of G1 and G2 with respect to any vertex of G1 and 
a noncore vertex of zero null spread of G2 is η2.  

Theorem 1.9. [7] Let G1 be a nonsingular graph and G2 be a singular graph of nullity η2. 
Then the nullity of the coalescence of G1 and G2 with respect to any vertex u of G1 and a 
noncore vertex w of G2 of null spread −1 is  

1. η2 + 1, if G1 – u  is singular.  
2. η2 , if G1 – u  is nonsingular.  

 
Theorem 1.10. [8] Let G1 and G2 be two nonsingular graphs and G be the colescence of 

G1and  G2 with respect to a vertex uof G1 and w ofG2 . If G1 – u  and G2 – w are 
singular, then G is singular.   

 
Theorem 1.11. [8] A singular graph with noncore vertices always satisfies the following 
conditions.  
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1. If one ore more neighbours of a noncore vertex v is the only neighbours of another 
vertex v', then v' will be a noncore vertex.  

2. the vertices having core or noncore vertex neighbours whose neighbours are 
noncore vertices will be noncore vertices.  

 
Theorem 1.12. [7] Let G1 be a non-singular graph and G2 be a singular graph with nullity 
η2. Let G be the coalescence of G1 and G2 with respect to any vertex u ϵ G1 and a core 
vertex w of G2. Then in G the coalesced vertex and its neighbours in G1 will be  noncore 
vertices of null spread zero or −1 according as G1 – u is non-singular or singular. 
 
Theorem 1.13. [7] Let G1 be a non-singular graph and G2 be a singular graph with nullity 
η2. Let G be the coalescence of G1 and G2 with respect to any vertex u of G1 and a 
noncore vertex w of G2. If G1 – u is non-singular, then in G the coalesced vertex and its 
neighbours in G1will be noncore vertices of null spread zero or −1  according as w is of 
null spread zero or −1. 
 
Theorem 1.14. [7] Let G1 be a non-singular graph and G2 be a singular graph with nullity 
η2. Let G be the coalescence of G1 and G2 with respect to any vertex u of G1 and a 
noncore vertex w of G2of null spread  −1. If G1 – u is singular, then in G the coalesced 
vertex is a noncore vertex of null spread −1 and its neighbours in G1 will be core 
vertices. 
 
Theorem 1.15. [7] Let G1 be a non-singular graph and G2 be a singular graph with nullity 
η2. Let G be the coalescence of G1 and G2 with respect to any vertex u of G1 and a 
noncore vertex w of G2 of null spread  zero. If G1 – u is singular, then in G the coalesced 
vertex is a noncore vertex of null spread −1 and its neighbours corresponding to G1 will 
be noncore vertices of null spread zero. 
 
Theorem 1.16. [7] Let G1 and G2 be two singular graphs and G be the coalescence of 
them with respect to any vertex u of G1 and w of G2. 
(i) If G1 is a core graph and u,w are core vertices, then in G the coalesced vertex and its 

neighbours corresponding to G1 are core vertices. 
(ii)  If G1 is a core graph, u is a core vertex and w is a noncore vertex of null spread −1, 

then in G the coalesced vertex is a noncore vertex of null spread −1 and its 
neighbours corresponding to G1 are core vertices. 

(iii)  If G1 is a core graph, u is a core vertex and w is a noncore vertex of null spread zero, 
then in G the coalesced vertex is a noncore vertex of null spread zero and its 
neighbours corresponding to G1 are core vertices. 

 
Theorem 1.17. [7] Let G1 and G2 are two non-singular graphs and G be the coalescence 
of them with respect to any vertex u of G1 and w of G2. If G1−	u and G2−	w are singular, 
then in G the coalesced vertex will be a noncore vertex of null spread	−1.   
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Definition 1.4. [13] Let (K ,u) and (H ,w) are two rooted graphs. The graph obtained by 
joining u and w by an edge is denoted by KH + uw (See Figure 3). 

 

 
Figure 3: Joining (K ,u) and (H ,w) by an edge uw. 

 
The characteristic polynomial of KH + uw [11] is  
φ(KH + uw) = φ(K)φ(H) − φ(K − u)φ(H − w)                                                            (1.2) 
We have the following results: 
 
Theorem 1.18. [13] Let the components of the graph obtained by deleting the edge uw 
from KH + uw be (K ,u) and (H ,w). If one of the following conditions is satisfied, then 
KH + uw is singular.  

1. One component and its root-deleted subgraph are singular.  
2. One component and the root-deleted subgraph of the other component are singular.  

 
Theorem 1.19. [8] Let (K ,u) and (H ,w) be the components of the graph obtained by 
deleting an edge uw from KH + uw.  

1. Let K and H be singular graphs with nullity η1 and η2 respectively. If u and w are 
core vertices of K and H respectively, then nullity of KH + uw is η1 +  η2 - 2.  

2. Let K and H be singular graphs with nullity η1 and η2 respectively. If u and w are 
noncore vertices (of null spread 0 or −1) of K and H respectively, then the nullity 
of KH + uw is η1 +  η2 .  

3. Let K and H be singular graphs with nullity η1 and η2 respectively. If u is a core 
vertex of K and w is a noncore vertex of null spread −1 or vice versa, then the 
nullity of KH + uw is η1 +  η2 .  

4. Let K and H be singular graphs with nullity η1 and η2 respectively. If u is core 
vertex of K and w is a noncore vertex of H of null spread 0 or vice versa, then the 
nullity of KH + uw is η1 +  η2 - 1.  

5. Let K and H be singular graphs with nullity η1 and η2 respectively. If u is a 
noncore vertex of K of null spread 0 and w is a noncore vertex of H of null spread 
−1 or vice versa, then the nullity of KH + uw is η1 +  η2.  

6. Let K be singular with nullity η,η > 1 and H be nonsingular. If u is a core vertex 
and H − w is nonsingular, then nullity of KH + uw is �	 − 1.  

7. Let K be singular with nullity η, η > 1 and H be nonsingular. If u is a core vertex 
and H− w is singular, then nullity of KH + uw is η.  

8. Let K be singular with nullity η and H be nonsingular. If u is a noncore vertex (of 
null spread 0 or −1), then nullity of KH + uw is η.  

The spectrum of cn and pn are respectively given by  
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2cos (2πj/n), j	 = 	0,… , n − 1 and 2cos !�
"#�$ , j	 = 	1,… , n. 

The following theorem gives a useful basic property of characteristic polynomial of 
graphs. 
 
Theorem 1.20. [2] Let uv be an edge of G. Then  
 ∅(G) = ∅(� − �&)	− ∅(� − � − &) −2 ∑ ∅(� − ())*+(,-)  
where +(�&) is the set of cycles containing uv. In particular, if uv is a pendant edge with 
pendant vertex v, then ∅(G) = x∅(� − &) − ∅(� − � − &). 
Gutman in 1978 gave the following definition for energy of a graph 
 
Definition 1.5. [20] If G is a graph on n vertices and  λ1,λ2,...,λn are its eigenvalues, then 
the energy of G is 

E = E(G) =∑ λj/
01�  

A graph with energy, E(G) 		<n, is said to be hypoenergetic and graph for which E(G)  ≥  
n are called nonhypoenergetic. If 3(G) 	< 		4	 − 1	andG is connected, G is called 
strongly hypoenergetic [20]. 
We have the following basic theorems about energy of graphs. 
 
Theorem 1.21. [20] If the graph G is non-singular, then G is nonhypoenergetic. 
 
Theorem 1.22. [20] Let G and H be two graphs with disjoint vertex sets and G o H be the 
coalescence of G and H at u	ϵ H and v	ϵ G. Then E(G o H) ≤  E(G)  + E(H). Equality is 
attained if and only if either u is an isolated vertex of G or v is an isolated vertex of H or 
both.  
 
2. Null spread of edges of graphs 
In this section first we discuss the null spread of edges of 6/ and (/. First of all we have 
the obvious result. 
 
Theorem 2.23. A path Pn of  n vertices is singular if n is odd and non-singular if n is 
even. 
 
Theorem 2.24. Let Pn be a path of n vertices and e be an edge of Pn. Then 

(i) ηe(Pn) = 0, if n is odd. 
(ii)  ηe(Pn) = 1, if n is odd and e is a pendant edge. 
(iii)  ηe(Pn) = −1, if n is even and e is a pendant edge. 
(iv) ηe(Pn) = −2, if n is even and Pn – e has two components having odd number 

of vertices. 
(v) ηe(Pn) =  0, if n is even and Pn –e has two components having even number of 

vertices. 
Proof: We prove part (ii). If n is odd, by theorem 2.23, we have (Pn) = 1.Since e is a 
pendant edge, its removal result in the removal of pendant vertex. So Pn – e is a path of 
even number of vertices. Thus ηe(Pn) = (Pn) −	(Pn-1) =1−	0 = 1. 
Similarly, using theorem 2.23 we can prove the other parts too. 
 



On the Spectrum and Energy of Concatenated Singular Graphs 

561 

 

Theorem 2.25. A cycle Cn of n vertices is non-singular if and only if n is not divisible by 
4. 
 
Theorem 2.26. Let Cn be  a cycle of n vertices and e be an edge of Cn. Then 

(i) ηe(Cn) = −1, if and only if n is odd. 
(ii)  ηe(Cn) = 0, if and only if n is even and not divisible by 4. 
(iii)  ηe(Cn) = 2, if and only if n is divisible by 4. 

Proof: (i) If n is odd, Cn – e is a path of odd number of vertices and so η(Cn – e) = 
1.Since η(Cn) = 0 for  odd n, we have ηe(Cn) = 0 – 1 = −1. Conversely, if η e (Cn) = −1, 
we have η(Cn-1) = η(Cn) − (−1) = 1. This is true only if n is odd. 
(ii) If n is even and not divisible by 4, then Cn is non-singular. Also Cn– e is a path of 
even number of vertices and is non-singular. So ηe(Cn) = 0 – 0 = 0.Conversely ηe(Cn) = 0 
implies that η(Cn-1) = η(Cn). But for a cycle this is true only if η(Cn-1) = η(Cn) = 0. So n 
must be even and not divisible by four. 
(iii)If n is even and is divisible by 4, then η(Cn) = 2. Also Cn – e is a path of even number 
of vertices and is non-singular. Thus ηe(Cn) = 2 – 0 = 2. Conversely ηe(Cn) = 2 implies 
that  η(Cn) −η(Cn-1) = 2.This is true only if n is even and is divisible by 4. 
Next we will discuss the null spread of the pendant edge of a singular graph. 
 
Theorem 2.27. Let G be a singular graph of nullity η and order n. Suppose that e = uv be 
a pendant edge of G such that v is a pendant vertex. 

(i) If v is a core vertex of G, then ηe(G) = 1. 
(ii)  If v is a noncore vertex of null spread zero of G, then ηe(G) = 0. 
(iii)  If v is a noncore vertex of null spread -1 of G, then ηe(G) = −1. 

Proof: Deletion of a pendant edge of a graph is same as deletion a pendant vertex. 
(i) Since core vertex has null spread one, we have η(G	−e) = η(G	−	v) = η –1. So ηe(G) = 
η – (η – 1) = 1. 
(ii)  Since v is a noncore vertex of zero null spread, we have η(G-e) = η(G-v) = η(G) = �.  
So ηe(G) = η – η  = 0. 
(iii) Since v is a noncore vertex of null spread −1,we have η(G−e) = η(G−v) = η + 1.  
So ηe(G) = η – (η + 1)  = −	1. 
Our next theorem gives the null spread of  the cut edge of a graph G. 
 
Theorem 2.28. Let G be a graph with a cut edge e = uw and K,H are singular 
components of G – e  having nullity η1 and η2 respectively. Then 

(i) ηe(G) =  −2 if and only if u and w are core vertices of K and H respectively.  
(ii)  ηe(G) =  −1 if and only if  u is a core vertex of K and w is a noncore vertex of H 

with  null spread zero or vice versa . 
(iii)  If u and w are noncore vertices (of null spread zero or −1) of K and H 

respectively,  then ηe(G) = 0. 
(iv)     If u is a core vertex of K and w is a noncore vertex of null spread −1 or vice  

 versa,then  ηe(G) = 0. 
 (v)     If u is a noncore vertex of K of null spread zero and w is a noncore vertex of H 

with null spread −1 or vice versa, then ηe(G) =  0. 
Proof: (i) By theorem 1.19, η(G) = η(HK + uw) = η1 +  η2– 2.Since the nullity of H and 
K are respectively η1 and  η2 ,it follows that  η(G – e) = η1 +  η2.Thus �e (G) = −2. 
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Conversely suppose that  �e (G) = −2. This means that nullity increases by two when we 
remove the edge e. It follows now from the construction of the graph HK + uw that u and 
w are core vertices. 
The proof of other parts follows similarlly. 

 
Remark 2.29. The part (iii), (iv) and (v) of the above theorem exhibit three situations in 
which ηe(G) =  0. So whenηe (G) = 0, it is impossible to find the type of end vertices of e 
= uv in these cases uniquely.Thus if ηe(G) = 0, then either the conditions in the 
hypothesis of part (iii) or (iv) or (v) holds. 
 
Theorem 2.30. Let G be a graph with a cut edge e = uw and K, H be the components of 
G – e. 

(i) Let K be singular with nullity η and H nonsingular. Then η e (G) = −1 if and only 
if u is a core vertex and H − w is nonsingular.   

(ii)  Let K be singular with nullity  η and H is nonsingular. If u is a core vertex and H 
− w is singular, then ηe(G) = 0. 

(iii)  Let K be singular with nullity ηand H be nonsingular. If u is a noncore vertex(of 
null spread 0 or −1), then ηe(G) = 0. 

Proof: (i) Part 6 of theorem 1.19shows that if u is a core vertex and H – w is non-
singular, then η e (G) = −1. Conversely, when ηe(G) = −1, the nullity of the graph 
increases on deleting the edge e. It now follows from the construction of the graph KH + 
uw that u is a core vertex and H – w is non-singular. 
The proof of part (ii) and (iii) follows from part 7  and 8 of theorem 1.19. 
 
Remark 2.31. In part (ii) and (iii), there are two different situations which leads to ηe(G) 
= 0. Here also it is impossible to find the type of end vertices u and w of the edge e = uw 
uniquely when ηe(G) = 0. So if ηe(G) = 0, then either the conditions in the hypothesis of 
part (ii) or part (iii) holds. 
 
3. Concatenation of two graphs 
Definition 3.6. Let G1 and G2 be two graphs of orders n1 and n2 respectively. Then the 
graph having e(G1)+e(G2) −1 edges and n1+n2−2 vertices obtained by identifying an 
edge from G1 and another from G2 is called the concatenation or edge gluing of G1 and 
G2. 
 

 
Figure 4: Concatenation of G1 and G2. 
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3.1. Concatenation of paths and cycles 
We have the following simple results about the concatenation of paths: 
 
Theorem 3.32. The concatenation of two paths of odd number of vertices concatenated at 
pendant edges is non-singular. 
Proof: The concatenation of two paths of odd number of vertices concatenated at pendant 
edges is a path of even number of vertices. As paths of even number of vertices are non-
singular, the theorem follows. 
 
Theorem 3.33. The concatenation of two paths of even number of vertices concatenated 
at pendant edges is non-singular. 
Proof: The concatenation of two paths of even number of vertices concatenated at 
pendant edges is a path of even number of vertices. As paths of even number of vertices 
are non-singular, the theorem follows. 
 
Theorem 3.34. The concatenation of a path of odd number of vertices and a path of even 
number of vertices concatenated at pendant edges is singular. 
Proof: The concatenation of a path of odd number of vertices and a path of even number 
of vertices concatenated at pendant edges is a path of odd number of vertices. As paths of 
odd number of vertices are singular, the theorem follows. 
 
Theorem 3.35. The concatenation of two paths of odd number of vertices concatenated at 
nonpendant edges is either singular with nullity two or non-singular. 
Proof: The concatenation of two paths concatenated at nonpendant edges can be regarded 
as the graph obtained by joining two paths by an edge at nonpendant vertices (see figure 
5).Let G be the graph obtained by the concatenation of two paths of odd number of 
vertices at nonpendant edges. Then G is of the form P"P8+ uw, where both n and m are 
either even or odd. If both n and m are even, then by equation (1.2) we see that G is 
nonsingular. If n and m are odd, then both 6/ and 69 are singular graphs of nullity one. 
There arise three cases. First of all if both u and w are core vertices, then by part 1 of 
theorem 1.19 we get G is non-singular. If both u and w are noncore vertices of null 
spread −1, then by part 2 of theorem 1.19 we get G is singular of nullity two. Finally if u 
is a core vertex and w is a noncore vertex of null spread −1, then by part 3 of theorem 
1.19 we see that G is singular with nullity two. 
 
Theorem 3.36. The concatenation of two paths of even number of vertices concatenated 
at nonpendant edges is either singular with nullity two or non-singular. 
Proof is similar to the proof of theorem 3.35. 
 
Theorem 3.37. The concatenation of two paths of even and odd number of vertices 
concatenated at non pendant edges is singular with nullity one. 
Proof: As in the proof of theorem 3.35, the concatenation of two paths concatenated at 
nonpendant edges can be regarded as the graph obtained by joining two paths by an edge 
at nonpendant vertices. Let G be the graph obtained by the concatenation of two paths of 
odd and even number of vertices at nonpendant edges. Then G is of the form  P"P8+ uw, 
where either n is odd and m is even or n is even and m is odd. Let us fix m as odd and n 
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as even. SoP", P8 are paths of even and odd number of vertices respectively.Since P" is 
non-singular such that P" −u is singular and P8	issingular of nullity one, it follows by 
part 7 and 8 of theorem 1.19 that G is singular with nullity one. 
Next we will discuss the concatenation of two cycles. 
 

 
Figure 5: Concatenation of two odd paths at nonpendant edges 

 
Theorem 3.38. Let G be the concatenation of two cycles Ck and Cl, where k + l = n + 
2.Then the product of the  eigenvalues of G is given by  

∏ 2cos	(�!�"
"?�
�1@ )	−∏ 2cos	( !�

A?�
A?�
�1� )∏ 2cos	( !�

B?�
B?�
�1� ) − 2 C∏ 2cos	( !�

A?�
A?�
�1� ) +

																																																																																																															∏ 2cos	( !�
B?�

B?�
�1� )E 

Proof: By theorem 1.20,the characteristic polynomial of G is given by 
∅(G) = ∅(G − uv) 	− ∅(G − u − v) -2 ∑ ∅(G − C)HI+(JK)  
         = ∅  (Cn ) - ∅ (Pk−2)∅(Pl−2) – 2[∅ (Pk−2)+ ∅  (Pl−2)] 
Product of the  eigenvalues of G  
= The coefficient of x0 in  ∅  (G) 

 = ∏ 2cos	(�!�"
"?�
�1@ )−∏ 2cos	( !�

A?�
A?�
�1� )∏ 2cos	( !�

B?�
B?�
�1� ) − 2 C∏ 2cos	( !�

A?�
A?�
�1� ) +

																																																																																																													∏ 2cos	( !�
B?�

B?�
�1� )E. 

 
Example 3.39. The product of eigenvalues of the graph in figure 6 is 

∏ 2cos	(�M0N
N?�
01@ ) –∏ 2cos	(M0O

P
01� )∏ 2cos	(M0P

�
01� ) − 2 C∏ 2cos	(M0O

P
01� ) + ∏ 2cos	(M0P

�
01� )E 

= 2 cos (0) 2cos	(�MN )	2cos	(OMN )	2cos	(QMN )	2cos	(RMN )	2cos	(�@MN )	2cos	(��MN ) – 

							2cos	(MO)	2cos	(�MO )	2cos	(PMO )	2cos	(MP)2 cos  �MP $ − 
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2[2cos	(MO)	2cos	(
�M
O )	2cos	(PMO )+	2cos	(MP)2cos	(�MP )]        

= 	2 − 2	 = 	0. 
 

 
Figure 6: Concatenation of C5 and C4 

 
Lemma 3.40. If n1 is odd and n2 is a multiple of 4,then 

∏ 2cos	( �M0
/S#/T	–	�		

/S#/T	–	P		
01@ ) = 2∏ 2cos	( M0

/T	?�
/T	?�
01� ) 

 
Theorem 3.41. Let C"Sand C"Tbe cycles withn� andn�	 vertices respectively. G be the 
concatenation of C"S and C"T with respect to an edge e�of C"Sand e� of C"Tand e be the 
concatenated edge. 

(i) If ηVS(C"S) = ηVT(C"T) = 2, then ηV(G) = 0. 
(ii)  If ηVS(C"S) = 0 and ηVT(C"T) = 2, then ηV(G) = −2. 
(iii)  If ηVS(C"S) = -1 and ηVT(C"T) = −1, then ηV (G) = 1 or 0 according as 

n�+n�	 − 2 is divisible by 4 or divisible by only 2. 
(iv) If ηVS(C"S) = -1 and ηVT(C"T) = 0(or vice versa), then ηV(G) = 0. 
(v) If ηVS(C"S) = -1 and ηVT(C"T) = 2(or vice versa), then ηV(G) = 1. 
(vi) If ηVS(C"S) = 0 and ηVT(C"T) = 0, then ηV (G) = 0. 

Proof: (i) If ηVS(C"S) = ηVT(C"T) = 2, then C"S and C"Tare singular graphs of nullity 2.So 
n� andn�	 are divisible by 4. The concatenated graph has n�+n�	– 2  vertices and G – e is 
a cycle of n�+n�	– 2   vertices. As n�+n�	– 2  is not divisible by 4, G-e is non-singular i.e. 
η(G – e) = 0.By theorem 1.17, the product of the eigenvalues of  

G = ∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ ) − 

∏ 2cos	( !�
"S?�

"S?�
�1� )∏ 2cos	( !�

"T	?�
"T	?�
�1� ) − 2 C∏ 2cos	( !�

"S?�
"S?�
�1� ) +

∏ 2cos	( !�
"T	?�

"T	?�
�1� )E ≠0, 

As n� + n�	– 2 is not a multiple of 4 and both n� −	1 andn�	– 1 are odd numbers. So η(G) 
= 0. Hence ηV = 0. 
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(ii)  If ηVS(C"S) = 0 and ηVT(C"T) = 2, then n� is divisible by 2 and	n�	is divisible by 4. 
So	n�+n�	– 2 is divisible by 4.Since G – e is a cycle of n�+n�	– 2 vertices, we have 
ηV(G − e) =	2. The product of the eigenvalues of  

G= ∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ )−	∏ 2cos	( !�

"S?�
"S?�
�1� )∏ 2cos	( !�

"T	?�
"T	?�
�1� ) −

2 C∏ 2cos	( !�
"S?�

"S?�
�1� ) + ∏ 2cos	( !�

"T	?�
"T	?�
�1� )E ≠ 0, 

as	n� − 1	andn�	–1 are odd numbers. So ηV = 0 – 2 =	−2. 
(iii) If ηVS(C"S) =	−1 and ηVT(C"T) =	−1, then n� and n�	 are odd numbers. So 
n�+n�	 − 2	is divisible by 2 or 4. If n� +n�	 − 2is divisible by 4, then G − e is singular 
with nullity 2.i.e. η(G – e) = 2. If n� +n�	 − 2 is divisible by 2, then G − e is non-singular 
and so η(G – e) = 0. If n� +n�	 − 2 is divisible by 4,then  product of the eigenvalue of  

G=∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ )	−	∏ 2cos	( !�

"S?�
"S?�
�1� )∏ 2cos	( !�

"T	?�
"T	?�
�1� ) −

2 C∏ 2cos	( !�
"S?�

"S?�
�1� ) + ∏ 2cos	( !�

"T	?�
"T	?�
�1� )E= 0,as n�+n�	 − 2 is divisible by 4 and n� −

	1, n�	 − 1 are divisible by 2. Also the coefficient of x in the characteristic polynomial of 
G is nonzero. On the other hand if n�+n�	 − 2	is divisible by 2 only, then  the product of 

the eigenvalues of G is nonzero as ∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ ) ≠ 0 and the other products 

vanishes. So η(G) =1, if n�+n�	 − 2 is divisible by 4 and η(G) =0,if n�+n�	 − 2 is 
divisible by 2 only. Hence ηV(G) = 1 – 0 =1, if n�+n�	 − 2 is divisible by 4 and   ηV(G)  = 
0 – 0 =1, if n�+n�	 − 2 is divisible by only 2. 
(iv) if ηVS(C"S) = −1 and ηVT(C"T) = 0, then n� is an odd number and	n�	 is an even 
number not divisible by 4.So n�+n�	 − 2	is an odd number. So η(G−e) = 0. The product 
of the eigenvalues of  

G = ∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ ) −∏ 2cos	( !�

"S?�
"S?�
�1� )∏ 2cos	( !�

"T	?�
"T	?�
�1� ) −

2 C∏ 2cos	( !�
"S?�

"S?�
�1� ) + ∏ 2cos	( !�

"T	?�
"T	?�
�1� )E ≠ 0,asn�+n�	 − 2 is odd and n�	 is an even 

number. So η(G) = 0.HenceηV(G)= 0−0 = 0. 
(v) If ηVS(C"S) = −1 and ηVT(C"T) = 2, then n� is an odd number andn�	 is an even 
number  divisible by 4.So n�+n�	 − 2	is an odd number. So η(G-e)= 0. The product of the 
eigenvalues of  

G=∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ )−	∏ 2cos	( !�

"S?�
"S?�
�1� )∏ 2cos	( !�

"T	?�
"T	?�
�1� ) −

2 C∏ 2cos	( !�
"S?�

"S?�
�1� ) + ∏ 2cos	( !�

"T	?�
"T	?�
�1� )E = 0, 

since ∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ ) = 2∏ 2cos	( !�

"T	?�
"T	?�
�1� ), by lemma 3.37. Also the 

coefficient of x in the characteristic polynomial of G is nonzero. So η(G) = 1.Thus ηV(G) 
= 1 – 0 = 1. 
(vi) If 	ηVS(C"S) = 0 and 	ηVT(C"T) = 0,then both n� andn�	are  even numbers not divisible  
by 4.So  n� +n�	is aneven number divisible by 4.Then  n� +n�	 −2 is an even number 
divisible by 2 only. Thus η(G-e) = 0. The product of the eigenvalues of G = 

∏ 2cos	( �!�
"S#"T	–	�		

"S#"T	–	P		
�1@ )	−	∏ 2cos	( !�

"S?�
"S?�
�1� )∏ 2cos	( !�

"T	?�
"T	?�
�1� ) −
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2 C∏ 2cos	( !�
"S?�

"S?�
�1� ) + ∏ 2cos	( !�

"T	?�
"T	?�
�1� )E ≠ 0,as n� + n�	– 	2 is divisible by 2 only 

and n� − 1	, n�	–	1 are odd numbers.So η(G) = 0.Thus ηV(G) = 0 – 0 = 0. 
 
3.2. Concatenation of two graphs at pendant edges 
Concatenation of two graphs with respect to pendant edges is same as joining two graphs 
by an edge. Figure 7 illustrate this. 

 
 

Figure 7: Concatenation of two graphs at pendant edges 
 
The following two theorems can be proved using theorem 1.19. 
 
Theorem 3.42. Let G1 and G2 be two singular graphs with nullity η1 and η2 respectively 
and G be the concatenation of G1 and G2 with respect to the pendant edgee�= uw of G1 

and e�= u’w’ of G2 ,where w and w’ are pendant vertices of G1 and G2 respectively. Then, 
(i) If u and u’ are core vertices of G1 and G2 respectively, then nullity of G is η1 +   

η2− 2 .  
(ii)  If u and �’ are noncore vertices (of null spread 0 or −1) of G1 and G2  respectively, 

then the nullity of G is η1 +  η2 .  
(iii)  If u is a core vertex of G1 and �’ is a noncore vertex of null spread −1 of G2  or 

vice versa, then the nullity of G is η1 +  η2 .  
(iv) If u is core vertex of G1 and �’ is a noncore vertex of G2 of null spread 0 or vice 

versa, then the nullity of G is η1 +  η2 −	1.  
(v) If u is a noncore vertex of G1 of null spread 0 and u’is a noncore vertex of G2 of 

null spread −1 or vice versa, then the nullity of G is η1 +  η2.  
Proof: Since G = G1G2 +u�’, the theorem follows from part 1 to 5 of theorem 1.19 

Corollary 3.43. Let G1, G2 and G be as in theorem 3.42 and e be the concatenated edge. 
Then 

(i) If u and u’ are core vertices of G1 and G2 respectively, then ηV(�) = −2. 
(ii)  If u and �’ are noncore vertices (of null spread 0 or −1) of G1 and G2  

respectively, then ηV(�) = 0. 
(iii)  If u is a core vertex of G1 and �’ is a noncore vertex of null spread −1 of G2  

or vice versa, then ηV(�) = 0. 
(iv) If u is core vertex of G1 and �’ is a noncore vertex of G2 of null spread 0 or 

vice versa, then ηV(�) = −1. 
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(v) If u is a noncore vertex of G1 of null spread 0 and u’is a noncore vertex of G2  
of null spread −1 or vice versa, thenηV(�) = 0. 

 
Theorem 3.44. Let G1 be a singular graph of nullity η, G2 be non-singular and G be 
the concatenation of G1 and G2 with respect to the pendant edge  e = uw of G1 and e’ = 
u’w’ of G2 ,where w and w’ are pendant vertices of G1 and G2 respectively. Then, 
(i) If u is a core vertex of G1and G2 – u’ is nonsingular, then nullity of G is η−1.  
(ii)  If u is a core vertex of G1and G2−u’ is singular, then nullity of G is η.  
(iii)  If u is a noncore vertex (of null spread 0 or −1) of G1, then nullity of G is η.  
Proof: Since G = G1G2 +uu’, the theorem follows from part 6 to 8 of theorem 1.19. 

Corollary 3.45. Let G1, G2 and G be as in theorem 3.44 and e be the concatenated 
edge.Then 
(i) If u is a core vertex of G1 and G2 – u’ is nonsingular, then ηV(G)= −1. 
(ii)  If u is a core vertex of G1 and G2 − u’ is singular, then ηV(�) = 0. 
(iii)  If u is a noncore vertex (of null spread 0 or −1) of G1, then ηV(�) = 0. 
 
Example 3.46. In Figure 8,the graph G1 is a singular graph with nullity one and G2 is 
non-singular.The concatenated graph G is singular of nullity one.Note that u is a 
noncore vertex of null spread −1. 
 

 

Figure 8: Concatenation of a singular and non-singular graph at pendant edges. 

3.3. Concatenation of two graphs at cut edges 
Let G1 be a graph with cut edge e�=uv, so that G1 – e� has components H and K. 
Similarly, G2 has cut edgee� = u’w’ with H’	and K’ as the components of G2 – e�. The 
concatenation, G of G1 and G2 with respect to e� and e�is same as (HoH\)(KoK\) + 
vv’,where HoH\ and KoK\are the coalescence of H,H\ and K,K\respectively. 

 
Figure 9: Concatenation of G1 and G2 at cut edges. 
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Theorem 3.47. Let G1 and G2be singular graphs with nullity η� and η�respectively and G 
be the concatenation of them with respect to their cut edgese� = uw and e�= u’w’. 
Assume that the components of G1 – e� andG2 – e� are singular.Then 
(i) If ηVS(G1) = ηVT(G2) = −2, then G is singular with nullity η� +	η�. 
(ii)  If ηVS(G1) = −1 and ηVT(G2) = −2, then � is singular with nullity η� +	η�. 
(iii)  If ηVS(G1) = ηVT(G2) = −1, then G is singular of nullity η� +	η�. 
(iv) If ηVS(G1) = 0 and ηVT(G2) = −2, then G is singular with nullity η� +	η�. 
(v) If ηVS(G1)  = 0 and ηVT(G2) = −1, then G is singular with nullity η� +	η�,provided 

u,u\are core vertices,w is a noncore vertex of null spread zeroand w\ is  a noncore 
vertex of null spread −1. 

(vi) If ηVS(G1) = 0 and ηVT(G2) = −1, then G is singular with nullity η� +	η� − 1, 
provided u,w\are corevertices ,u\ is a noncore vertex of null spread zero and ] is  a 
noncore  vertex of null spread −1. 

Proof: (i) Since ηVS(G1) = ηVT(G2) = −2, by theorem 2.28 we have u,w, u\, w\ are core 
vertices. Let K, H are the components of G1 – e1and K’,H’ are the components of G2 – e2. 
Assume that η^,η_,η^`and	η_` are the nullities of  K, H, a’ and H’ respectively. By 
definition, G can be regarded as (KoK\) (HoH\)+vv’,where v = u = u’ and v’= w = w\are 
the coalesced vertices. Then by theorem 1.2, KoK\ is singular of nullity η^+η^` −1 and H 
o H\ is singular of nullity η_+η_`  – 1. Also & and v\ arecore vertices. So by part 1 of 
theorem 1.19, we have nullity of G is η^+η^` − 1+η_+η_`– 1 − 	2= η^ +	η_ 	− 	2 + 
η_`  + η^`– 2 = η� +	η�as η�= η^ +	η_ 	− 	2  and η�= η^` + η_` −2. 
(ii) Since ηVS(G1) = −1, by theorem 2.28,we have u is core vertex of K and w is a 
noncore vertex of H of null spread zero or vice versa. Let us fix u as core vertex of K and 
v as noncore vertex of H of null spread zero. Also by theorem 2.28, we have u\	and	w\ 
are core vertices of K’ and H’ respectively as ηVT(G2) = −2. By definition, G can be 
regarded as (KoK\) (HoH\) + vv’, where v = u = u’ and v’ = w = w\are the coalesced 
vertices. Then we get by theorem 1.2 and 1.6 that K o K\ is a singular graph of nullity 
η^+η^` −1 and H o H\ is a singular graph of nullity η_+η_` −1. Note that the vertex v is 
a core vertex and v\ is a noncore vertex of null spread zero. So by part 3 of theorem 1.19, 
we see that nullity of G is η^+η^` −1 + η_+η_` − 	1 − 1 = η� +	η�as η�= η^+	η_ −
1	and η�= η^` + η_` - 2. 
(iii) Since ηVS(G1) = -1 and ηVT(G2) = −1, we have by theorem 2.28 that u is a core vertex 
of K and w is a noncore vertex of H of null spread zero or vice versa. Also u\ is a core 
vertex of K\ and w\ is a noncore vertex of H\ of null spread zero or vice versa. Let us fix 
u, u\ are core vertices and w, w\ are noncore vertices of null spread zero. By definition, G 
can be regarded as (KoK\) (HoH\) + vv’, where v = u = u’ and v’ = w = w\are the 
coalesced vertices. Then we get by theorem 1.2 and 1.5 that K o K\ is a singular graph of 
nullity η^+η^` −1 and H o H\ is a singular graph of nullity η_+	η_`. Note that v is a core 
vertex and v\ is anoncore vertex of null spread zero.Then by part 2 of theorem 1.19, we 
get nullity of G as	η^ + η^` − 1 +	η_ + 	η_` − 1	= η� +	η� as η�= η^+	η_ − 	1	and 
η�= η^` + η_` −	1.If we take u,w\ as core vertices and u\,w as noncore vertices of null 
spread zero we see that nullity of G is again η� +	η�. 
Proof of part (iv) and (v) follows similarly. 
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Corollary 3.48.  In the above theorem  
(i) If ηVS(G1) = ηVT(G2) =−2, then the concatenated edge has null spread −2. 
(ii)  If ηVS(G1) = -1 and ηVT(G2)=−2, then the concatenated edge has null spread −1. 
(iii)  If ηVS(G1) = ηVT(G2)= −1,then the concatenated edge has null spread −1 or zero 

according as the pendant vertices of e1 and b� at each end are of same type or not. 
(iv) If ηVS(G1) = 0 and ηVT(G2)=−2, then the concatenated edge has null spread zero. 
(v) If ηVS(G1) = 0 and ηVT(G2)=−1, then the concatenated edge has null spread zero. 
 
The case in which ηVS(G1) =	ηVT(��) =0 is rather complicated. This is because ηV(G) = 
0 for any cut edge e = uw do not uniquely determine the type of vertices u and w. So this 
case is specially treated in the next theorem. 
 
Theorem 3.49. Let G1 and G2be singular graphs with nullity η� and η� respectively and 
G be the concatenation of them with respect to their cut edges b�= uw and b�= u’w’. 
Suppose that ηVS(G1) 	= ηVT(G2) =	0 and the components of G1 – e� and G2 – e� are 
singular. 
(i) If u, w, u’,w’ are noncore vertices of null spread zero,then G is singular with nullity 

η� +	η�. 
(ii)  If u, w, u’, w’ are noncore vertices of null spread −1, then G is singular with nullity 

η� +	η� + 2. 
(iii)  If u,w are noncore vertices with null spread zero and 	u’,w’ are noncore vertices 

having null spread −1 or vice versa, then nullity of G is η� +	η�. 
(iv) If u, u’ are core vertices and w,w’ are noncore vertices with null spread −1	or vice 

versa,then nullity of G is η� +	η�. 
(v) If u, w’ are core vertices and u’,w are noncore vertices of null spread −1 or vice 

versa,then nullity of G is η� +	η� − 2. 
(vi) If u, u’ are noncore vertices of null spread zero and w,w’ are noncore vertices of 

null spread −1	or vice versa,then nullity of G is η� +	η� − 1. 
(vii)  If u,w’ are noncore vertices of null spread zero and w,u’ are noncore vertices of null 

spread −1 or vice versa, then nullity of G is η� +	η�. 
Proof: We prove part (vii).The proofs of other parts follows similarly. Let K, H be the 
components of G1 – b�and K’,H’ are the components of G2 – b�. Assume that η^, 
η_,η^`and	η_` are the nullities of  K, H, a’ and H’ respectively. By definition, G can be 
regarded as (KoK\) (HoH\) + vv’, where v = u = u’ and v’ = w = w\ are the coalesced 
vertices. Since u,w’ are noncore vertices of null spread zero and w	, u’ are noncore 
vertices of null spread −1, we have K o K\ is singular with nullity η^+η^` and H o H\ is 
singular with nullity η_+η_` . Also w and  w\ are noncore vertices of null spread −1. So 
by part 5 of theorem 1.19, we have nullity of G is η^+	η^`+η_+η_` = η^ +	η_ + η^` + 
η_`  = η� +	η�asη�= η^ +	η_  and η�= η^`+ η_`  . 
 
Corollary 3.50. In the above theorem, the concatenated edge has null spread zero. 
 
Example 3.51. The graphs G1 and G2in figure 10 has nullity 3 and 4 respectively. The  
vertices u,w, u’,w’ are noncore vertices of null spread −1. Also ηVS(��) 	= 	ηVT(��) =
	0.The concatenated graph has nullity 9 and the concatenated edge has null spread zero. 
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Figure 10: Concatenation of graphs with respect to cut edges. 
 
Theorem 3.52. Let G1 and G2be singular graphs having cut edges with nullitiesη� 
andη�respectively and G be the concatenation of  them with respect to their  cut edges 
b�= uw and b� = u’w’. Suppose that one of the components K, H of G1 – e� and K’, H’ of 
G2 – e�is singular and the other is non-singular 
(i) If ηVS(G1) = ηVT(G2) = −1 and the singular components of both G1 – e� and G2 – 

e�are on same side of the concatenated edge of G,  then G is singular with 
nullityη� +	η�. 

(ii)  If ηVS(G1) = ηVT(G2) = −1 and the singular components of both G1 – e�and G2 – e�are 
on either side of the concatenated edge of G, then G is singular with nullity			η� +
	η�. 

(iii)   If ηVS(G1) = −1, ηVT(G2) = 0, the singular components K of G1– e�andK\of  G2 – 
e�are on same side of the concatenated edge of G, u’ is a core vertex and  H\ − 	w’ is 
singular for non-singular component H\of G–e�, then G is singular with  nullity  
	η� +	η�. 

(iv) If ηVS(G1) = −1, ηVT(G2) = 0, the singular components K of   G1 – e�and H\of  G2– 
e�are on either side of the concatenated edge of G, w’ is a core vertex and  K\ 	− u’ is  
singular  for non-singular component a\of G2 – e�, then G is  singular with  
nullityη� +	η� − 1. 

(v) If ηVS(G1) = −1, ηVT(G2) = 0, the singular components K of  G1– e�and K\ of  G2 – e� 
are on same side of the concatenated edge of G and u’ is a noncore vertex of null 
spread zero or −1, then G is  singular with  nullityη� +	η�. 

(vi) If ηVS(G1) = −1, ηVT(G2) = 0, the singular components K of  G1– e�and H\ of  G2 – 
e�are on either side of the concatenated edge of G and w’ is a noncore vertex of null 
spread  0 or	−1 then G is singular  with nullity η� +	η�. 

Proof: (i) Let K, H are the components of G1 – e�and K’, H’ are the components of G2 – 
e�. Suppose that K, K’ are singular and H, H’ are nonsingular. Since ηVS(G1) = ηVT(G2) = 
−1,by theorem2.30, we have u, u\are core vertices and H – w,H’ − w\are non-singular 
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graphs. Assume that η^, η^`	are the nullities of  K,a’ respectively. By definition, G can 
be regarded as (KoK\) (HoH\) + vv’,where v = u = u’ and v’ = w = w\are the coalesced 
vertices. Theorem 1.2 shows thatKo K\ is singular with nullity η^ 	+ 	η^` −1 and H o H\ 
is non-singular. Also &is a core vertex and H o H\ − v\ is non-singular. So by part 6 of 
theorem 1.19, we have nullity of G isη^ 	+ 	η^` − 2 = η^ − 1	+	η^` − 1 = η� +	η�asη�= 
η^ – 1 and  η� = η^` − 1 (Theorem 1.19). 
(ii) Let K, H are the components of G1 – e�andK’, H’ are the components of G2 – e�. 
Suppose that K, H’ are singular and H, K’ are nonsingular. Since ηV(G1) = ηV`(G2) = 
−1,by theorem 2.30, we have u,w\are core vertices and H – w, K’ − u\are non-singular 
graphs. Assume that η^, η_`are the nullities of  K, c’ respectively. By definition, G can 
be regarded as (KoK\) (HoH\) + vv’, where v = u = u’ and v’ = w = w\are the coalesced 
vertices. Theorem1.3 shows that Ko K\ is singular with nullity η^ 	−1 and H o H\ is 
singular with nullity η_` − 1. Note that	& and  v\  are noncore vertices of null spread 
zero. So by part 2 of theorem 1.19, we have nullity of G is η^ − 1	+	η_` − 1 = η� +	η�as 
η�= η^ – 1 and  η� = η^` − 1	(Theorem 1.19). 
Next we prove (vi). The proofs of other parts follow similarly. 
(vi) Let K, H are the components of G1 – e�andK’, H’ are the components of G2 – e�. 
Suppose thatK, H’ are singular and H, K’ are nonsingular. Since ηVS(G1) = −1 and the 
singular components of both G1 – e� and G2 – e� are on  either side of G, by theorem 2.30 
we haveu	is a core vertex and H −]is nonsingular. Assume that η^, η_` are the nullities 
of  K, c’ respectively. By definition, G can be regarded as (KoK\) (HoH\) + vv’, where v 
= u = u’ and v’ = w = w\are the coalesced vertices. Theorem 1.3,1.8 and 1.9 shows that 
Ko K\ is singular of nullity η^ − 1	 and H o H\ is singular of nullity η_`. Thenv’ is a 
noncore vertex of null spread zero or −1 according as w’ is a noncore vertex of null 
spread zero or −1 and v	is a noncore vertex of null spread zero. So part 2 of theorem 1.19 
shows that nullity of G is η^+	η_` − 1	= η� +	η� as 	ηd − 1 = η� and 	η_` = η�(theorem 
1.19). 
 
Corollary 3.53. In the above theorem,  
(i) If ηVS(G1) = ηVT(G2) = −1 and the singular components of both G1 – e� and G2 – e� 

are  on one side of the concatenated edge of G, then the concatenated edge has null 
spread −1. 

(ii)  If ηVS(G1) = ηVT(G2) = −1 and the singular components of both G1 – e� and G2 – e� 
are  on either side of the concatenated edge of G, then the concatenated edge has 
null spread zero. 

(iii)  If  ηVS(G1) = −1, ηVT(G2) = 0, then the concatenated edge has null spread zero. 
The case of ηVS(G1) = ηVT(G2) = 0 is separately treated in the next theorem. 
 
Theorem 3.54. Let G1 and G2 be singular graphs with nullities η� and η� respectively and 
G be  the concatenation of  them with respect to their  cut edges b� = uw and b� = u’w’. 
Suppose that one of the components K, H of G1 – e�and K’, H’ of G2 – e� is singular and 
the other  is non-singular. 
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(i)  If ηVS(G1) = ηVT(G2) = 0, the singular components of both G1 – e�and G2 – e� are on 
same side of the concatenated edge of G and both e�, e� are cut edges which satisfies the 
hypothesis in part 2 of theorem 2.30, then G is singular with nullity η� +	η�. 
(ii) If ηVS(G1) = ηVT(G2) = 0, the singular components of both G1 – e�and G2 – e�are on 
either side of the concatenated edge of G and both e�, e� are cut edges which satisfies the 
hypothesis in part 2 of theorem 2.30, then G is singular with nullity η� +	η� − 2. 
(iii) If ηVS(G1) = ηVT(G2) = 0, the singular components of both G1 – e�and G2 –e�are on 
same side of the concatenated edge of G and both e�, e� are cut edges which satisfies the 
hypothesis in part 3 of theorem 2.30, then G is singular with nullity η� +	η� + 1. 
(iv) If ηVS(G1) = ηVT(G2) = 0, the singular components of both G1 – e�and G2 – e�are on 
either side of the concatenated edge of G and both e�, e� are cut edges which satisfies the 
hypothesis in part 3 of theorem 2.30, then G is singular with nullity η� +	η�. 
Proof: (i) Since the singular components of both G1 – e�and G2 – e� are  on one side of 
the concatenated edge of G and both e�, e�are cut edges which satisfies the hypothesis in 
part 2 of theorem 2.30, assume that K, K’ are singular and H, H’ are nonsingular. Then u, 
u’ are core vertices and H – w, c\-	w’ are singular. Let η^, η^` be the nullities of  K, a’ 
respectively. By definition, G can be regarded as (KoK\) (HoH\) + vv’, where v = u = �’ 
and v’ = w = w\are the coalesced vertices.Theorem 1.3 and 1.10 shows that Ko K\ is 
singular of nullity η^ +	η^` − 1 and H o H\ is singular of nullity one. The coalesced 
vertex w is a core vertex and w\is a noncore vertex of null spread −1. So  part 3 of 
theorem 1.19 shows that nullity of G is η^+	η^` − 1 + 1	= η� +	η� as η^ = η�	and	η^` = 
η�. 
Next we prove (iv). The proof of other parts follow similarly. 
(iv) Since the singular components of both G1 – b� and G2 – b� are  on either side of the 
concatenated edge of G and both e�, e�	are cut edges which satisfies the hypothesis in 
part 3 of theorem 2.30, assume that K, H’ are singular and H, K’ are non-singular. Then 
u,w’ are noncore vertices of null spread −1 or zero and H – w, a\ − 	u’ are nonsingular. 
Let η^, η_` be the nullities of  K, H’ respectively. By definition, G can be regarded as 
(KoK\) (HoH\) + &&’, where v = u = u’ and v’ = u = u\are the coalesced vertices. Theorem 
1.8 and 1.9 shows that Ko K\ is singular with nullity η^ and H o H\ is singular with 
nullity  ηe’. Note that the coalesced vertices v and v\are noncore vertices of null spread 
zero or −1 according as u and w’ are noncore vertices of null spread zero or −1. So part 
3 of theorem 1.19 shows that nullity of G isη^+	η_`= η� +	η�as η^ = η�and	η_` = η�. 
 
Corollary 3.55. In the above theorem, if ηV(G1) = ηV`(G2) = 0, then the concatenated 
edge has null spread zero. 
 
Example 3.56. The graph G in figure 11 is the concatenation of G1 and G2  with respect 
to their cut edges e�and e� respectively. Here ηVS(G1) = −1 and ηVT(G2) = 0. The nullities 
of G1 and G2  are two. We have concatenated G1 and G2with respect to their cut edges 
e�and e�in such a way that the singular components of both G1 and G2 are either sides of 
the concatenated edge of G. Here u and u’core vertices. H−w is non-singular and H’ − w’ 
is singular. Note that the nullity of G is 2 + 2 − 1 = 3. This is what we have said in part 
(iv) of theorem 3.49. 
 



T. K. Mathew Varkey and John K. Rajan 

574 

 

 
Figure 11: Concatenation of graphs with respect to cut edges. 

 
3.4. Concatenation of a cycle and a graph having cut edge 
Theorem 3.57. Let G� be a cycle with ηVS(G�
= �1,G� be a singular graph with nullity η 
having a cut edge e� = u\w\and the components of G� � e� are singular. Let G be the 
concatenation of G� and G� with respect to e�and e�. 

(i) If ηVT(G�
 = �2,then G is singular with nullity η D 1. 
(ii)  If ηVT(G�
 = �1,then G is singular with nullity η. 
(iii)  If ηVT(G�
 = 0 and u\,  w\ are noncore vertices of null spread zero, then G is 

singular with nullity η. 
(iv) If ηVT(G�
 = 0 and u\, w\ are noncore vertices of null spread �1, then G is 

singular with nullity η D 1. 
(v) If ηVT(G�
 = 0,u\is a core vertex and w\ is a noncore vertex of null spread 

�1,then G is singular with nullity η � 1. 
(vi) If ηVT(G�
 = 0, u\is a noncore vertex of null spread zero and w\ is a noncore 

vertex of null spread �1,then G is singular with nullity η. 
Proof: We prove part (v). The proof of other parts follow similarly. Since G� is a cycle 
with ηVS(G�
 = �1, we see that G� is a cycle of odd number of vertices. So G�is 
nonsingular. Let K and H be singular components of G� � e� having nullities η^	and	η_ 
respectively. Given that u\ is a core vertex and w\ is a noncore vertex of null spread �1. 
Let e� = uw.  The concatenation of G� and G� with respect to e� � uw and e� � u\w\ is 
same as taking coalescence of G� with K and H with respect to the end vertices of e�	and 
e�(as in figure 12 ). Suppose that u\is the root of K and w\ is the root of H. First coalesce 
G� and K with respect to u and u\. Since u\ is a core vertex, G�o	K is a singular graph 
with nullity η^ �1,by theorem 1.3.After coalescence the vertex w of G� becomes a 
noncore vertex of null spread zero(theorem 1.12). Next take coalescence of G�o	K and H 
with respect to w and w\. As w is a noncore vertex of null spread zero and w\ is a 
noncore vertex of null spread �1, we see by theorem 1.7 that (G�o	K
	o	H is a singular 
graph with nullity η^ �1+ η_ = η � 1 ,where η^+ η_= �. 
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Corollary 3.58. In the above theorem the concatenated edge has null spread zero. 
 
Theorem 3.59. Let �� be a cycle with �iS(��
 = �1 and�� be a singulargraph with 
nullity � with a cut edge b�= �\]\. Assume that one component K of �� − b� is singular 
with nullity η and other component H is non-singular.  

(i) If �iT(��) = −1, then  G is singular with nullity � − 1. 
(ii)  If  �iT(��) = 0,�\ is a core vertex and  H − ]\ is singular, then G is  singular with 

nullity � − 1. 
(iii)   If  �iT(��) = 0 and �\ is a noncore vertex (of null spread 0 or −1), then G is 

singular with nullity �. 
Proof: Similar to theorem 3.57. 
 
Corollary 3.60. In the above theorm the concatenated edge has null spread zero. 
 
Example 3.61. The graph G in figure 12 is the concatenation of G1and G2 concatenated 
with respect to the edges e�of G1 and e� of G2.The nullity of the graph G2 is two. Also 
ηVS(G�) = −1 and ηVT(G�) = 0 with u\ is a noncore vertex of null spread zero and w\ is a 
noncore vertex of null spread−1. The nullity of the concatenated graph G is two.  
 

 
Figure 12: Concatenation of an odd cycle and a graph with a cut edge. 

 
Theorem 3.62. Let G� be a cycle with ηVS(G�) = 0,G� be a singular graph with nullity 
ηhavinga cut edgee� = u\w\and the components of G� − e�are singular. Let G be the 
concatenation of G� and G� with respect to e�and e�. 

(i) If ηVT(G�) = −2,then G is singular with nullity η. 
(ii)  If ηVT(G�) = −1,then G is singular with nullity η. 
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(iii)  If ηVT(G�) = 0 and u\,  w\ are noncore vertices of null spread zero, then G is 
singular with nullity η. 

(iv) If ηVT(G�) = 0 and u\, w\ are noncore vertices of null spread −1, then G is 
singular with nullity η. 

(v) If ηVT(G�) = 0, u\ is a core vertex and w\ is a noncore vertex of null spread 
−1,then G is singular with nullity η. 

(vi) If ηVT(G�) = 	0, u\ is a noncore vertex of null spread zero and w\ is a 
noncore vertex of null spread −1, then G is singular with nullity η. 

Proof: We prove only part (vi). The proof of other parts follow similarly. Since G� is a 
cycle with ηVS(G�)= 0, we see that |G�| = n, where n is an even number not  divisible by 
four. So G�is nonsingular. Let K and H be singular components of G� − e� having 
nullities η^	and	η_ respectively. Given that u\ is a noncore vertex of null spread zero and 
w\ is a noncore vertex of null spread −1. Let e�= uw. The concatenation of G� and G� 
with respect to e� = uw and e� = u\w\ is same as taking coalescence of G� with K and H 
with respect to the end vertices of e�	and e�(as in figure 12). Suppose that u\is the root of 
K and w\ is the root of H. First coalesce G� and K with respect to u and u\. Since u\ is a 
noncore vertex of null spread zero, G�o	K is a singular graph with nullity η^, by theorem 
1.8.After coalescence the vertex w of G� becomes a noncore vertex of null spread zero 
(theorem 1.15). Next take coalescence of G�o	K and H with respect to w and w\. As w is 
a noncore vertex of null spread zero and w\ is a noncore vertex of null spread −1, we see 
by theorem 1.7 that (G�o	K)	o	H is a singular graph with nullity η^+ η_ = η. 
 
Corollary 3.63. In the above theorm the concatenated edge has null spread zero. 
 
Theorem 3.64. Let G� be a cycle with ηVS(G�) = 0 and G� be a singular graph with 
nullity η having a cut edge e�= u\w\. Assume that one component K of G� − e� is 
singular with nullity η, η	 > 	1 and other component H is non-singular.  

(i) If ηVT(G�) = −1, then  G is singular with nullity η − 1. 
(ii)  If  ηVT(G�) = 0,u\ is a core vertex and  H − w\ is singular, then G is  singular with 

nullity η − 1. 
(iii)  If ηVT(G�) = 0 and u\ is a noncore vertex (of null spread 0 or−1), then G is 

singular with nullity �. 
Proof: Similar to the proof of theorem 3.57. 
 
Corollary 3.65. In the above theorm the concatenated edge has null spread zero. 
 
Theorem 3.66. Let �� be a cycle with �iS(��) =	2, �� be a singular graph with nullity � 
having a cut edge b� =	�\]\ and the components of �� − b� are singular. Let G be the 
concatenation of �� and �� with respect to b�and b�. 
(i) If ηVT(G�) = −2, then G is singular with nullity η + 2. 
(ii)  If �iT(��) = −1, then G is singular with nullity � + 1. 
(iii)  If �iT(��) = 0 and �\,  ]\ are noncore vertices of null spread zero, then G is singular 

with nullity �. 
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(iv) If �iT(��
 �	0 and �\, ]\ are noncore vertices of null spread �1, then G is singular 
with nullity �. 

(v) If �iT(��) 	= 0, �\ is a core vertex and ]\ is a noncore vertex of null spread −1,then 
G is singular with nullity �. 

(vi) If �iT(��) = 0, �\ is a noncore vertex of null spread zero and ]\ is a noncore vertex 
of null spread −1, then G is singular with nullity �. 

 
Corollary 3.67. In the above theorm, if �iT(��) = −1, then the concatenated edge has 
null spread one and in all other cases the concatenated edge has null spread zero. 
 
Theorem 3.68. Let G� be a cycle with ηVS(G�) = 2 and G� be a singular graph with 
nullity η with a cut edge e�= u\w\. Assume that one component K of G� − e� is singular 
with nullity η and the other component H is non-singular.  

(i) If ηVT(G�) = −1, then  G is singular with nullity η. 
(ii)  If ηVT(G�) = 0,u\ is a core vertex and  H − w\ is singular, then G is  singular with 

nullity η. 
(iii)   If ηVT(G�) = 0 and u\ is a noncore vertex (of null spread 0 or −1), then G is 

singular with nullity �. 
Proof: Similar to the proof of theorem 3.57. 
 
Corollary 3.69. In the above theorm, if �iT(��) = −1, then the concatenated edge has 
null spread one and in all other casesthe concatenated edge has null spread zero. 
 
We conclude this section with the following two results about the energy of graphs. 
 
Theorem 3.70. Let �� be a singular graph having a cycle and�� be a singular graph with 
a cut edge b� = �\]\and the components of �� − b� are singular. Let G be the 
concatenation of �� and �� with respect to an edge b�of the cycle of ��and b� of ��. If 
�� is hypoenergetic and the components of �� − b� are strongly hypoenergetic, then G is 
hypoenergetic. 
Proof: Let |G�| = n� and |G�|= n�. Let K, H are the components of G1 – e�.The 
concatenation of G� and G� with respect to e�and e� is same as taking coalescence of G� 
with K and H with respect to the end vertices of e�	and e�. So by theorem 1.22, we have 
E(G) ≤ E (��) + E(K) + E(H) < |G�|+ |K| − 1 + |H| − 1	= n� + n� – 2. 
 
Theorem 3.71. Let G1 and G2  be singular graphs with nullity η� and η� respectively and 
G be  the concatenation of  them with respect to their  cut edges e� = uw and e� = u’w’. If 
the components of G1 – e� and G2 – e� are strongly hypoenergetic, then G is 
hypoenergetic. 
Proof: Let |G�| = n� and |G�|= n�. Let K, H be the components of G1 – e� and K’, H’ be 
the components of G2 – e�. The concatenation, G of G1 and G2 with respect to e� and e� 
is same as (HoH\)(KoK\) + vv’, where v, v’ are the coalesced vertices and HoH\,	KoK\ are 
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the coalescence of H,H\ and K,K\respectively. So by theorem 1.22,E(G) ≤	E(K) + E(H) 
+ E(K’) +E(H’) + 	3(K�) < |K| − 1 + |H| − 1 + |K’| − 1 + |H’| − 1 + 2 =	n� + n� − 2. 
 
 
4.Conclusion 
Theory of large graphs are widely applicable not only in mathematics but also in 
computer science, statistical physics, biology, engineering, and many other fields. 
Concatenation or edge gluing is a technique used in the construction of larger graphs. In 
this paper we made a humble attempt to construct a theoretical basis for the study of 
concatenation of graphs. Some of the basic results are stated and proved using the 
techniques we have developed in our earlier research. There remains several areas to be 
explored in the study of spectral properties of concatenated graphs both theoretical and 
applied. 
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