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Abstract. The roots of the characteristic polynomial of tligaaency matrix A(G) of a
graph G are called eigenvalues. The eigenvaluesthteg with their multiplicities
constitute the spectrum of G. Graphs having zeraragigenvalue are called singular
graphs. Nullityn of G is the multiplicity of the eigenvalue zerdael null spread of the
edge e is defined ag(G) =n(G) —n(G—e). Null spread of the edges of singular graphs
depends on the null spread of its pendant vertitles. concatenation or edge gluing of
two graphs Gand G is the graph obtained by identifying two edges&ofnd G. In this
paper we study on the spectrum of the concatenatfotwo graphs. The effect of
concatenation on energy is also a part of the tigagfon.
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1. Introduction

Let G = (V(G), E(G)) be a finite, undirected simgleaph of order n with vertex set V(G)
and edge set E(G). The adjacency matrix A(G) ofgtaph G is a n x n matrix whose
entriesa;; are the number of edges from vertgxo the vertex;. The characteristic
polynomial of the adjacency matrix A(G) of the dnap is the characteristic polynomial
of G and is denoted b(G, x). The roots of the equati@fG, x) = 0 are called the
eigenvalues of the graph G. The collection of tligemvalues together with their
multiplicities constitute the spectrum of G denolbgdspec(G). Graphs having zero as an
eigenvalue are called singular graphs. The null{y) of the graph G is the multiplicity
of zero in the graph’s spectrum.

Definition 1.1. [3] LetG — u be the induced sub graph of the graph G obtaimed o
deleting the vertex u. The null spread of the veués 1, (G) =1 (G) —n (G — u).

Obviously the null spread satisfied < n,(G) < 1. If uis a core vertex, then, (G) = 1.
There are vertices with,ifG) = 0 and p(G) = -1. Such vertices are called noncore
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vertices of null spread zero and noncore vertidesull spread -1 respectively(See

Figure 1).
Uy

Hq vertex of null spread 1 (core vertex)
i vertex of null spread —1

oy vertex of null spread zero

Figure 1. Three types of vertices

£

& ] ® L ]
G G—e
Figure2: The graphs of Gand G —e.

Definition 1.2. [3] Let G — e be the induced subgraph of the graph G obtained on
deleting an edge e from G. The null spread of tigeee is defined ag(G) =n(G) —
n(G—e).

If G is any nonempty graph, then for eacbE£G), |[n(G) — n(G — e)| < 2.In Figure 2,

the graph G has nullity two and-@ has nullity zero. Thus(G) = 2. Deletion of edges
with positive null spread decreases the nullityhef graph

Definition 1.3. [9] Let G, and G be two graphs with disjoint vertex sets. If a ggrtie
G, is identified with a vertex e G,, then the graph & G, obtained of ordelG|| +
|G,| — 1, is said to be the coalescence oB@d G with respect to u and v.

The characteristic polynomial (G, x) of the graph G = o G; is given by the
following theorem.
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Theorem 1.1. [9] The characteristic polynomial of the coales@e@go G, of two rooted
graphs (G u) and (G,w) obtained by identifying the vertices u and wiisat the vertex v
=u =w become a cut vertex of &G, is given by

0(G10 Gp) =9(G1) 9(Go— W) +9(G1— U) 0(G2) — X 9(G1— U) ¢(G2— w)(1.1)

We have the following results about the coalescenggaphs:

Theorem 1.2. [6] The coalescence of two singular graphs withlityuh; and n;
coalesced at a core vertex yield a singular graphuldty n; + n,— 1.

Theorem 1.3. [7] Let G; be a nonsingular graph and e a singular graph with nullity
n2. If Gy and G are coalesced at a vertex u of &d a core vertex v of ,Gthen the
nullity of G1o0 Gy isn,—1.

Theorem 1.4. [7] Let G, and G be two singular graphs of order and n respectively.
IfG,0 Giis the coalescence oflcand G, at noncore vertices of null spread, themn(

Gi0G)=m+n+ 1.

Theorem 1.5. [7] Let G, and G be two singular graphs with nullityy, and n;
respectively. The nullity of the coalescence qfdad G at noncore vertices of null
spread zero ig; + 1.

Theorem 1.6. [7] Let G, and G be two singular graphs with nullity; and n;
respectively. The coalescence of@d G at a core vertex of {&and at a noncore vertex
(null spread 0 or -1) of £or vice versa yield a singular graph of nulligy# n,—1.

Theorem 1.7. [7] Let G, and G be two singular graphs with nullity; and n;
respectively. The coalescence of &d G at a noncore vertex of null spread zero of G
and at a noncore vertex of null spreatl of G, or vice versa yield a singular graph of
nullity ng+ 2.

Theorem 1.8. [7] Let G, be a non singular graph and & a singular graph with nullity
n2- Then the nullity of the coalescence of&d G with respect to any vertex of;@nd
a noncore vertex of zero null spread gfi&n,.

Theorem 1.9. [7] Let G, be a nonsingular graph and k& a singular graph of nullity,.
Then the nullity of the coalescence of &d G with respect to any vertex u of@nd a
noncore vertex w of &of null spread-1 is

1. o+ 1,if G —u is singular.

2. 12, if Gi—u is nonsingular.

Theorem 1.10. [8] Let G; and G be two nonsingular graphs and G be the colesoceince
G;and G with respect to a vertex uof,@nd w ofG. If G; —u and G- w are
singular, then G is singular.

Theorem 1.11. [8] A singular graph with noncore vertices alwagtisfies the following
conditions.
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1. If one ore more neighbours of a noncore vertextiie only neighbours of another
vertex V', then v' will be a noncore vertex.

2. the vertices having core or noncore vertex rimghs whose neighbours are
noncore vertices will be noncore vertices.

Theorem 1.12. [7] Let G, be a non-singular graph and k& a singular graph with nullity
n2. Let G be the coalescence of &d G with respect to any vertexdiG; and a core

vertex w of G. Then in G the coalesced vertex and its neighbou@ will be noncore

vertices of null spread zero el according as - u is non-singular or singular.

Theorem 1.13. [7] Let G, be a non-singular graph and k& a singular graph with nullity
n2- Let G be the coalescence of &1d G with respect to any vertex u of;@nd a
noncore vertex w of & If G; — u is non-singular, then in G the coalesced xeatal its
neighbours in @vill be noncore vertices of null spread zero-ar according as w is of
null spread zero o+1.

Theorem 1.14. [7] Let G, be a non-singular graph and k& a singular graph with nullity
n2. Let G be the coalescence of @1d G with respect to any vertex u of,@Gnd a
noncore vertex w of gf null spread—1. If G; — u is singular, then in G the coalesced
vertex is a noncore vertex of null spread and its neighbours in Gwill be core
vertices.

Theorem 1.15. [7] Let G, be a non-singular graph and k& a singular graph with nullity
n2. Let G be the coalescence of @1d G with respect to any vertex u of;@nd a
noncore vertex w of £&of null spread zero. If G- u is singular, then in G the coalesced
vertex is a noncore vertex of null spreatl and its neighbours corresponding toval

be noncore vertices of null spread zero.

Theorem 1.16. [7] Let G, and G be two singular graphs and G be the coalescence of

them with respect to any vertex u of &d w of G.

() 1If Gyis a core graph and u,w are core vertices, théhtime coalesced vertex and its
neighbours corresponding tq @e core vertices.

(i) If Gyis a core graph, u is a core vertex and w is @om@nvertex of null spread1,
then in G the coalesced vertex is a noncore veoferull spread—1 and its
neighbours corresponding tq @&e core vertices.

(iif) If Gy is a core graph, u is a core vertex and w is @omenvertex of null spread zero
then in G the coalesced vertex is a noncore vesterull spread zero and its
neighbours corresponding tq @e core vertices.

Theorem 1.17.[7] Let G, and G are two non-singular graphs and G be the coalescen

of them with respect to any vertex u of &d w of G. If G;— u and G— w are singular,
then in G the coalesced vertex will be a noncoréexeof null spread-1.
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Definition 1.4. [13] Let (K ,u) and (H ,w) are two rooted graphielgraph obtained by
joining u and w by an edge is denoted by KH + ueg(&igure 3).

I o
Figure 3: Joining (K ,u) and (H ,w) by an edge uw.

The characteristic polynomial of KH + uw [11] is
@(KH + uw) =9(K)o(H) — ¢(K — u)p(H - w) 1.2)
We have the following results:

Theorem 1.18. [13] Let the components of the graph obtained Hegtdey the edge uw
from KH + uw be (K ,u) and (H ,w). If one of thellfaving conditions is satisfied, then
KH + uw is singular.

1. One component and its root-deleted subgraphkiagalar.

2. One component and the root-deleted subgragieafther component are singular.

Theorem 1.19. [8] Let (K ,u) and (H ,w) be the components of tiraph obtained by
deleting an edge uw from KH + uw.

1. Let K and H be singular graphs with nullityandn, respectively. If u and w are
core vertices of K and H respectively, then nulbifyKH + uw isn; + 1, - 2.

2. Let K and H be singular graphs with nullifyandn, respectively. If u and w are
noncore vertices (of null spread 0 or —1) of K &hdespectively, then the nullity
of KH + uw isn; + n3.

3. Let K and H be singular graphs with nullify andn, respectively. If u is a core
vertex of K and w is a noncore vertex of null spred or vice versa, then the
nullity of KH + uw isn; + ms.

4. Let K and H be singular graphs with nullijy andn, respectively. If u is core
vertex of K and w is a noncore vertex of H of mgread 0 or vice versa, then the
nullity of KH + uw isny+ nz- 1.

5. Let K and H be singular graphs with nullity and n, respectively. If u is a
noncore vertex of K of null spread 0 and w is aacava vertex of H of null spread
-1 or vice versa, then the nullity of KH + uwrjst+ n..

6. Let K be singular with nullity,q > 1 and H be nonsingular. If u is a core vertex
and H- w is nonsingular, then nullity of KH + uwis — 1.

7. Let K be singular with nullity;, n > 1 and H be nonsingular. If u is a core vertex
and H- w is singular, then nullity of KH + uw1is

8. Let K be singular with nullityy and H be nonsingular. If u is a noncore vertex (of
null spread 0 or —1), then nullity of KH + uwiis

The spectrum of cand p are respectively given by
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2cos(2mj/n), j = 0,...,n—1 and Zcoén“—:l),j =1,..,n.
The following theorem gives a useful basic propestycharacteristic polynomial of
graphs.

Theorem 1.20. [2] Let uv be an edge of G. Then
B(G) =0(G —uv) = B(G —u—"v) =2 Ycecauw) (G = C)
whereC (uv) is the set of cycles containing uv. In particulbgy is a pendant edge with
pendant vertex v, thed(G) = x3(G —v) — (G — u — v).
Gutman in 1978 gave the following definition foreegy of a graph

Definition 1.5. [20] If G is a graph on n vertices ang,A,,... A, are its eigenvalues, then
the energy o5 is

E = E(G) =X} A
A graph with energyi=(G) <n, is said to be hypoenergetic and graph for wkig®B) >
n are called nonhypoenergetic. {G) < n —1andG is connected,G is called
strongly hypoenergetic [20].
We have the following basic theorems about enefgyaphs.

Theorem 1.21. [20] If the graph G is non-singular, then G is ngmbenergetic.

Theorem 1.22. [20] Let G and H be two graphs with disjoint verssts and G o H be the
coalescence of G and H atid and ve G. ThenE(G o H)< E(G) +E(H). Equality is
attained if and only if either u is an isolatedtegrof G or v is an isolated vertex of H or
both.

2. Null spread of edges of graphs
In this section first we discuss the null sprea@ddes of?, andC,,. First of all we have
the obvious result.

Theorem 2.23. A path Rof n vertices is singular if n is odd and non-silag if n is
even.

Theorem 2.24. Let B,be a path of n vertices and e be an edge.oftien
0] ne(Pn) =0, if nis odd.
(i) n«(Pn) = 1, if nis odd and e is a pendant edge.
(i) n«(Pn) =—1, if nis even and e is a pendant edge.
(iv) n«(Pn) = —2, if n is even and - e has two components having odd number
of vertices.
(v) ne(Pn) = 0, if nis even and,P-e has two components having even number of
vertices.
Proof: We prove part (ii). If n is odd, by theorem 2.28 have (P = 1.Since e is a
pendant edge, its removal result in the removaderfdant vertex. So,P- e is a path of
even number of vertices. ThygP,) = (RB) — (P,.) =1-0=1.
Similarly, using theorem 2.23 we can prove the offzets too.
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Theorem 2.25. A cycle G, of n vertices is non-singular if and only if nriet divisible by
4.

Theorem 2.26. Let G,be a cycle of n vertices and e be an edge,ofien

(i) ne«Cy) =—1,ifand only if n is odd.

(i) n«Cy) =0, if and only if n is even and not divisiblg 4.

(i) me(Cy) = 2, if and only if n is divisible by 4.
Proof: (i) If nis odd, G — e is a path of odd number of vertices anch&e, — e) =
1.Sincen(C,) = 0 for odd n, we havey(C,) = 0 — 1 =—1. Conversely, if ¢(C,) = —1,
we haven(C,.1) =n(C,) — (—1) = 1. This is true only if n is odd.
(ii) If n is even and not divisible by 4, then, & non-singular. Also & e is a path of
even number of vertices and is non-singularmm&06,) = 0 — 0 = 0.Conversely(C,) = 0
implies thatn(C,.1) =n(C,). But for a cycle this is true only if(C..1) =n(C,) = 0. So n
must be even and not divisible by four.
(iiIf n is even and is divisible by 4, the{C,) = 2. Also G — e is a path of even number
of vertices and is non-singular. ThagC,) = 2 — 0 = 2. Conversely(C,) = 2 implies
that n(C,) —n(C,.1) = 2.This is true only if n is even and is divisiby 4.
Next we will discuss the null spread of the pendstge of a singular graph.

Theorem 2.27. Let G be a singular graph of nullityand order n. Suppose that e = uv be
a pendant edge of G such that v is a pendant vertex

0] If vis a core vertex of G, thean(G) = 1.

(i) If v is a noncore vertex of null spread zero otlignn(G) = 0.

(i) If v is a noncore vertex of null spread -1 of Gerile(G) =—1.
Proof: Deletion of a pendant edge of a graph is samelatiech a pendant vertex.
(i) Since core vertex has null spread one, we hge—-e) =n(G —v) =n 1. Son(G) =
n-mh-1)=1
(i) Since v is a noncore vertex of zero null satewe have(G-e) =n(G-v) =n(G) =n.
Song(G) =n-n =0.
(i) Since v is a noncore vertex of null spreatl,we haven(G—e) =n(G—v) =n + 1.
Sone(G)=n-@n+1) =—1.
Our next theorem gives the null spread of thesdge of a graph G.

Theorem 2.28. Let G be a graph with a cut edge e = uw and K,E singular
components of G — e having nullify andr, respectively. Then
() me(G) = —2if and only if u and w are core vertices of K dthdespectively.
(i) ne(G) = —1ifand only if uis a core vertex of K and waisioncore vertex of H
with null spread zero or vice versa .
(iii) If u and w are noncore vertices (of null spd zero or -1) of K and H
respectively, thens(G) = 0.
(iv) Ifuis a core vertex of K and w is a none vertex of null spread -1 or vice
versa,them(G) = 0.
(v) Ifuis a noncore vertex of K of null satkzero and w is a noncore vertex of H
with null spread -1 or vice versa, thesG) = 0.
Proof: (i) By theorem 1.19(G) =n(HK + uw) =n; + n— 2.Since the nullity of H and
K are respectively; and n,,it follows that n(G — e) =n;+ M2.Thusne(G) =—2.
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Conversely suppose that.(G) =—2. This means that nullity increases by two when we
remove the edge e. It follows now from the congiouncof the graph HK + uw that u and
w are core vertices.

The proof of other parts follows similarlly.

Remark 2.29. The part (iii), (iv) and (v) of the above theorexhibit three situations in
whichngG) = 0. So whem. (G) = 0, it is impossible to find the type of engrtices of e

= uv in these cases uniquely.Thusn{G) = 0, then either the conditions in the
hypothesis of part (iii) or (iv) or (v) holds.

Theorem 2.30. Let G be a graph with a cut edge e = uw and Kelhe components of
G-e.
() Let K be singular with nullityy and H nonsingular. Thepe(G) = -1 if and only
if u is a core vertex and Hw is nonsingular.
(i) Let K be singular with nullityn and H is nonsingular. If u is a core vertex and H
— w is singular, then(G) = 0.
(iii) Let K be singular with nullitthand H be nonsingular. If u is a noncore vertex(of
null spread 0 or —-1), thep(G) = 0.
Proof: (i) Part 6 of theorem 1.19shows that if u is a coeetex and H — w is non-
singular, them . (G) = —-1. Conversely, when(G) = -1, the nullity of the graph
increases on deleting the edge e. It now followmfthe construction of the graph KH +
uw that u is a core vertex and H — w is non-singula
The proof of part (ii) and (iii) follows from parnt and 8 of theorem 1.19.

Remark 2.31. In part (ii) and (iii), there are two different s#tions which leads tq.(G)

= 0. Here also it is impossible to find the typeeofl vertices u and w of the edge e = uw
uniquely whem(G) = 0. So ifn(G) = 0, then either the conditions in the hypoithes
part (ii) or part (i) holds.

3. Concatenation of two graphs

Definition 3.6. Let G, and G be two graphs of orders and n respectively. Then the
graph having e(§+e(G) —1 edges andmn,—2 vertices obtained by identifying an
edge from G and another from s called the concatenation or edge gluing oa@&l
Gg.

Figure 4. Concatenation of Gand G.
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3.1. Concatenation of pathsand cycles
We have the following simple results about the edergation of paths:

Theorem 3.32. The concatenation of two paths of odd number dices concatenated at
pendant edges is non-singular.

Proof: The concatenation of two paths of odd number dices concatenated at pendant
edges is a path of even number of vertices. Asspaftieven number of vertices are non-
singular, the theorem follows.

Theorem 3.33. The concatenation of two paths of even numberedices concatenated
at pendant edges is non-singular.

Proof: The concatenation of two paths of even number ofices concatenated at
pendant edges is a path of even number of vertkepaths of even number of vertices
are non-singular, the theorem follows.

Theorem 3.34. The concatenation of a path of odd number oficestand a path of even
number of vertices concatenated at pendant edgawislar.

Proof: The concatenation of a path of odd number of eestand a path of even number
of vertices concatenated at pendant edges is aopatid number of vertices. As paths of
odd number of vertices are singular, the theordtovis.

Theorem 3.35. The concatenation of two paths of odd number dfaes concatenated at
nonpendant edges is either singular with nullitg tww non-singular.

Proof: The concatenation of two paths concatenated giematant edges can be regarded
as the graph obtained by joining two paths by ajeeat nonpendant vertices (see figure
5).Let G be the graph obtained by the concatenaifotwo paths of odd number of
vertices at nonpendant edges. Then G is of the Ryitg+ uw, where both n and m are
either even or odd. If both n and m are even, themquation (1.2) we see that G is
nonsingular. If n and m are odd, then bBthandp,, are singular graphs of nullity one.
There arise three cases. First of all if both u andre core vertices, then by part 1 of
theorem 1.19 we get G is non-singular. If both d anare noncore vertices of null
spread—1, then by part 2 of theorem 1.19 we get G is dargof nullity two. Finally if u

is a core vertex and w is a noncore vertex of spttad—1, then by part 3 of theorem
1.19 we see that G is singular with nullity two.

Theorem 3.36. The concatenation of two paths of even numberedices concatenated
at nonpendant edges is either singular with nuility or non-singular.
Proof is similar to the proof of theorem 3.35.

Theorem 3.37. The concatenation of two paths of even and oddbeunof vertices
concatenated at non pendant edges is singulamwility one.

Proof: As in the proof of theorem 3.35, the concatenatibtwo paths concatenated at
nonpendant edges can be regarded as the graphembtai joining two paths by an edge
at nonpendant vertices. Let G be the graph obtdigetie concatenation of two paths of
odd and even number of vertices at nonpendant edpes G is of the formP,P,,+ uw,
where either n is odd and m is even or n is evehnams odd. Let us fix m as odd and n
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as even. Ry, P, are paths of even and odd number of vertices cisply.SinceP, is
non-singular such that, —u is singular and,, issingular of nullity one, it follows by
part 7 and 8 of theorem 1.19 that G is singulah wiillity one.

Next we will discuss the concatenation of two cgcle

_. -

G
Figure5: Concatenation of two odd paths at nonpendant edges

Theorem 3.38. Let G be the concatenation of two cyclesa@d G, where k + [ = n +
2.Then the product of the eigenvalues of G isrgiwe

[1;= o 2cos (Zm) H % 2cos ( )]_[]l 22cos ( -2 [H % 2cos (—) +
l'[} 2cos ( ]
Proof: By theorem 1.20,the characteristic polynomial dé@iven by
B(G) =@(G—uv) —B(G—u—v)-2¥ceeuv)?(G—0)
=0 (&) -0 (P—2)0(P—2) — 20 (R—2)+ @ (R—2)]
Product of the eigenvalues of G
= The coefficient of &in @ (G)

=I5y 2cos (Zm) [T<F 2cos (%) [1j=% 2cos (_) 2 [H { 2cos (_) *
Iz chos( )]

Example 3.39. The product of eigenvalues of the graph in figuie 6

[17=0 2cos (27”) ]_[] 1 2cos (TU) [15-; 2cos (—) -2 []_[] 1 2cos (—) +[13-, 2cos (—)]
=2 cos (ORcos (—) 2cos (—) 2cos (—) 2cos (—) 2cos (—) 2cos (12—n) -

2cos (Z) 2cos (T) 2cos (T) 2cos (5)2 cos (?) —
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2[2cos (%) 2cos (%ﬂ) 2cos (‘%)+ 2cos (g)Zcos (2?”)]
=2-2=0.

Figure 6: Concatenation of £and G

Lemma3.40. If n; is odd and sis a multiple of 4,then

MMizg™ " 2c0s (o) = AT,

Theorem 3.41. Let C, and C,,be cycles with; anch, vertices respectively. G be the
concatenation of,,, andC,, with respect to an edggof C, ande, of C,,and e be the
concatenated edge.

0 If ne, (Cn,) =Ne,(Cn,) = 2, theme(G) = 0.

(ii) If ne, (Cn,) = 0 andh, (Cy,) = 2, them(G) =-2.

(iii) If ne,(Cp,) = -1 andne,(C,,) = —1, thenn, (G) = 1 or O according as

n,+n, — 2 is divisible by 4 or divisible by only 2.

(iv) If ne,(Cp,) = -1 andn,(Cy,) = O(or vice versa), them.(G) = 0.

v) If ne,(Cy,) = -1 andng,(Cy,) = 2(or vice versa), them,(G) = 1

(V) 1 ne,(Ca,) =0 andhe, (Co,) = O, them, (G) = 0
Proof: (i) If ne,(Cq,) =7e,(Cn,) = 2, thenC,, andC,,are singular graphs of nullity 2.So
n, anch, are divisible by 4. The concatenated graphrhas, — 2 vertices and G — e is
a cycle ofn;+n, — 2 vertices. Aa;+n,— 2 is not divisible by 4, G-e is non-singular i.e
n(G — e) = 0.By theorem 1.17, the product of theriglues of

n;+n; -3
G= H o 2cos(r11+n _2)—
H"1 22cos( m )]_[nz 22cos( T ) 2[]_[nl 22cos( )+
an ~%2cos (—)] #0,

Asn; +n,— 2 is not a multiple of 4 and bothh — 1 anch, — 1 are odd numbers. $¢G)
= 0. Hencey, = 0.
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(i) If ne,(Cy,) = 0 andn,,(Cp,) = 2, thenn, is divisible by 2 and, is divisible by 4.
Son,+n,— 2 is divisible by 4.Since G — e is a cyclemftn, — 2 vertices, we have
Ne(G —e) = 2. The product of the eigenvalues of

G= Hn1+n2 3 2cos ( C) B ]'[nl 22cos( )an 2

n;+n,
2 [Hn1 ~%2cos (—) + an 2 2cos (h)] #* 0,
-
asn; — 1 anch, 1 are odd numbers. g = 0-2= —-2.
(iii) If me,(Cy,) = —1 andn,(C,,) = —1, thenn,; andn, are odd numbers. So
ny+n, — 2is divisible by 2 or 4. Ih; +n, — 2is divisible by 4, therG — e is singular
with nullity 2.i.e.n(G —e) = 2. Ifn; +n, — 2 is divisible by 2, thef — e is non-singular
and s;(G —e) = 0. Ifn, +n2 — 2 is divisible by 4,then product of the eigenvabiie
n;+n, -3 n;—2 n, —2 mj
GllZ, * 2cos(n+n _2)—]'[1 2cos( )]'[2 ZCOS(E)—
2 [nnl % 2c08s (=) + [172,% 2cos (h)]- 0,asn1+n2 — 2 is divisible by 4 and, —
-

1,n, —1are dIVISIb|e by 2. Also the coefficient of x inet characteristic polynomial of
G is nonzero. On the other handiftn, — 2 is divisible by 2 only, then the product of

the eigenvalues of G is nonzero]fa[a]yr 273 2cos ( ) # 0 and the other products
g —

vanishes. Sm(G) =1, if ny;+n, — 2 is divisible by 4 andn(G) =0,if nytn, — 2 is
divisible by 2 only. Hencg.(G) =1 — 0 =1, ifh;+n, — 2 is divisible by 4 andn.(G) =
0 -0 =1, ifn;+n, — 2 is divisible by only 2.

(iv) if me,(Cp,) = —1 andne,(Cp,) = 0, thenn, is an odd number ang is an even
number not divisible by 4.Se,+n, — 2is an odd number. SgG—e) = 0. The product
of the eigenvalues of

G = ]‘[]T‘lgnz"3 2cos (

) —Hn1_22cos( )an ~22cos (—=) —
n, -1

nq +n -2
2 []‘[r11 ?2cos (—) +I132, % 2cos (E)] # 0,a3,+n, — 2 is odd anch, is an even
number. So|(G) = 0.Hencg.(G)= 0-0 = 0.

(V) If e, (Cy,) = —1 andng,(Cy,) = 2, thenn, is an odd number ang is an even
number divisible by 4.Sn,+n, — 2 is an odd number. SgG-e)= 0. The product of the
eigenvalues of

G= ]'[nl+nz 3 2cos(
2[Hn1 22cos( )+]_[r12 -2 ]=O,

since [T72," 3 2cos (n ) = 21'[nz ~22cos (nle), by lemma 3.37. Also the
1 2=

coefficient of x in the characterlstlc polynomidl® is nonzero. Sq(G) = 1.Thu:(G)

=1-0=1.

(Vi) If me, (Cy,) = 0 andne,(Cy,) = O,then botm,; anch, are even numbers not divisible

by 4.So n; +n,is aneven number divisible by 4.Them, +n, —2 is an even number

divisible by 2 onIy Thusn(G-e) = 0. The product of the eigenvalues of G =

M=o 2cos ( )= TTj2; " 2cos (T T2,

) Hn1_22cos( L )an ~%2cos nzm_l

n,+n, —2
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2|12, % 2cos (%'1) +172,% 2cos (nz“—il)] # 0,asn, +n,- 2 is divisible by 2 only

andn; — 1,n,—1 are odd numbers.SgG) = 0.Thu:.(G) =0 -0 = 0.

3.2. Concatenation of two graphs at pendant edges
Concatenation of two graphs with respect to penddges is same as joining two graphs
by an edge. Figure 7 illustrate this.

oW dow

Figure7: Concatenation of two graphs at pendant edges
The following two theorems can be proved using t&enl.19.

Theorem 3.42. Let G, and G be two singular graphs with nullity, andn, respectively
and G be the concatenation of @&d G with respect to the pendant edge uw of G
ande,= uw’ of G,,where w andv’ are pendant vertices of,&nd G respectively. Then,
() If uandu’ are core vertices of &nd G respectively, then nullity of G ig; +
No— 2.
(i) If uandu’ are noncore vertices (of null spread 0 or —-1) ghi@ G respectively,
then the nullity of G is;; + n3.
(i) If uis a core vertex of Gandu’ is a noncore vertex of null spread of G, or
vice versa, then the nullity of Gig+ n5.
(iv) If uis core vertex of Gandu’ is a noncore vertex of &f null spread 0 or vice
versa, then the nullity of G ig + n,— 1.
(v) If uis a noncore vertex of ®f null spread 0 and’is a noncore vertex of f
null spread -1 or vice versa, then the nullity osG; + n..
Proof: Since G = @, +uu’, the theorem follows from part 1 to 5 of theorermol

Corollary 3.43. Let G, G,and G be as in theorem 3.42 and e be the conceteedge.
Then
0] If u andu’ are core vertices of and Grespectively, then.(G) = —2.
(i) If u andu’ are noncore vertices (of null spread 0-dr) of G; and G
respectively, then.(G) = 0.
(i) If uis a core vertex of ;andu’ is a noncore vertex of null spread -1 of G
or vice versa, then,(G) =0.
(iv) If uis core vertex of Gandu’ is a noncore vertex of &&f null spread 0 or
vice versa, then.(G) = —1.
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(v) If u is a noncore vertex of ®f null spread 0 and'is a noncore vertex of G
of null spread —1 or vice versa, thgiiG) = 0.

Theorem 3.44. Let G, be a singular graph of nullity, G, be non-singular and G be
the concatenation of @nd G with respect to the pendant edge e = uw gdiréle’ =
u'w’ of G,,where w andv’ are pendant vertices of,@d G respectively. Then,

(i) Ifuis a core vertex of @nd G —u’ is nonsingular, then nullity of G ig-1.

(ii) If uis a core vertex of @nd G—u’ is singular, then nullity of G is.

(iii) If u is a noncore vertex (of null spread 0 or -39, then nullity of G i).

Proof: Since G = @, +uu’, the theorem follows from part 6 to 8 of theorerhol

Corollary 3.45. Let G, G,and G be as in theorem 3.44 and e be the concatkenat
edge.Then

® If uis a core vertex of Gand G —u’ is nonsingular, then.(G)=—1.
(i) If uis a core vertex of Gand G- u’ is singular, them.(G) = 0.
(i) If uis a noncore vertex (of null spread 0 or -5, therm.(G) = 0.

Example 3.46. In Figure 8,the graph (s a singular graph with nullity one and 6
non-singular.The concatenated graph G is singularudity one.Note that u is a
noncore vertex of null spreall.

C ) + .—h = A—JL\
il W w o v
G

G, G
Figure8: Concatenation of a singular and non-singular geggiendant edges.

3.3. Concatenation of two graphsat cut edges

Let G, be a graph with cut edgg=uv, so that G — e; has components H and K.
Similarly, G; has cut edge = u'w’ with H' andK’ as the components of,& e,. The
concatenation, G of aand G with respect toe; ande,is same asHoH')(KoK') +
vv’,whereHoH’ andKoK'are the coalescenceléfi’ andK, K'respectively.

/ /
i * (U

H K
N N ' : 1
Cu W

o(u=1u)

=

=)

[

G1 GZ G

Figure9: Concatenation of and G at cut edges.
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Theorem 3.47. Let G,and Gbe singular graphs with nullity; andn,respectively and G
be the concatenation of them with respect to their edges; = uw ande,= u'w’.
Assume that the components of-G; andG— e, are singular.Then

(i) 1 ne,(Gy) =ne,(G2) =—2, then G is singular with nullity; + 7.

(ii) 1f ne,(Gy) =—1 andne,(Gz) = —2, thent is singular with nullityn; + n,.

(iii) If e, (Gy) =ne,(G2) =—1, then G is singular of nullity; + ns.

(iv) If ¢, (Gy) = 0 andh, (Gy) =—2, then G is singular with nullity; + n5.

(V) If me,(Gy) = 0 andn,,(Gy) = —1, then G is singular with nullity; + n,,provided
u,u’are core vertices,w is a noncore vertex of nuleagrzeroanav’ is a noncore
vertex of null spread-1.

(Vi) If M, (G1) = 0 andne,(Gy) = —1, then G is singular with nullity; + n, — 1,
provided uw'are coreverticesr, is a honcore vertex of null spread zero ans a
noncore vertex of null spreall.

Proof: (i) Sincene,(G1) =ne,(G) = —2, by theorem 2.28 we havew, u’,w’ are core

vertices. Let K, H are the components g-GgandK’,H’ are the components of, G e.

Assume thathgngngrand ny are the nulliies of K, HK” and H’ respectively. By

definition, G can be regarded daoK') (HoH')+vv’,where v = u =’ andv'= w =w'are

the coalesced vertices. Then by theoremHoK, is singular of nullityhx+ngs —1 and H

o H' is singular of nullityng+n, — 1. Alsov andv’ arecore vertices. So by part 1 of

theorem 1.19, we have nullity of G ig+ng — 1+g+y—1— 2=ng+ g — 2 +

Ny tNg—2 =N + Masni=ng + Mg — 2 andn=ng +ny —2.

(ii) Sincene,(G1) = —1, by theorem 2.28,we have u is core vertex of K ané a

noncore vertex of H of null spread zero or vicesaelet us fix u as core vertex of K and

v as noncore vertex of H of null spread zero. Algatheorem 2.28, we have and w'

are core vertices of’ andH’ respectively asye,(G;) = —2. By definition, G can be

regarded asKpEK') (HoH') + vv’, where v = u =’ andv’ = w = w'are the coalesced
vertices. Then we get by theorem 1.2 and 1.6 thatK is a singular graph of nullity
nktg —1 and H oH’ is a singular graph of nullityy+ny —1. Note that the vertex v is

a core vertex and' is a noncore vertex of null spread zero. So by af theorem 1.19,

we see that nullity of G iggtng =1 + g+ — 1 —1 =1y + na8sM;= Mg+t Ny —

1andn,=ngr +ny - 2.

(iii) Sincene, (Gy) = -1 andn,,(Gy) = —1, we have by theorem 2.28 that u is a core vertex

of K and w is a noncore vertex of H of null spread zmreice versa. Alsa’ is a core

vertex ofK’ andw’ is a noncore vertex déf’ of null spread zero or vice versa. Let us fix

u,u’ are core vertices and w, are noncore vertices of null spread zero. By dadim G

can be regarded a¥dK') (HoH') + vv’, where v = u =u’ andv’ = w = w'are the

coalesced vertices. Then we get by theorem 1.2L&nthat K oK’ is a singular graph of
nullity ng+ng —1 and H o’ is a singular graph of nullityy;+ . Note that v is a core
vertex andv’ is anoncore vertex of null spread zero.Then by paf theorem 1.19, we
get nullity of Gasng+ng —1+ g+ Ny —1=n;+ n, asny= ng+nyg — 1land

n2= Ny’ *+ Ny — 1.If we take uy’ as core vertices and,w as noncore vertices of null

spread zero we see that nullity of G is aggif- 1.

Proof of part (iv) and (v) follows similarly.
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Corollary 3.48. In the above theorem

(i) 1f ne,(G1) =ne,(G2) =—2, then the concatenated edge has null spr@ad

(i) 1f ne,(Gy) = -1 andn,, (G2)=—2, then the concatenated edge has null sprdad

(iii) If ne,(Gy) = ne,(Gz)= —1,then the concatenated edge has null spretadr zero
according as the pendant vertices ohmrde, at each end are of same type or not.

(iv) If ne, (Gy) = 0 andne,(Gz)=—2, then the concatenated edge has null spread zero.

(v) If ne, (Gy) = 0 andne,(Gz)=—1, then the concatenated edge has null spread zero.

The case in which,, (G1) = ne,(G,) =0 is rather complicated. This is becays€G) =
0 for any cut edge e = uw do not uniquely deterntieetype of vertices u and w. So this
case is specially treated in the next theorem.

Theorem 3.49. Let G and Gbe singular graphs with nullity; andr, respectively and

G be the concatenation of them with respect tor tbei edgese;= uw ande,= u'w’.

Suppose thate, (G1) =ne,(G2) =0 and the components of;G e; and G —e, are

singular.

() If u, w,u’,w’ are noncore vertices of null spread zero,then gkigular with nullity
N1+ M.

(i) If u, w,u’,w’ are noncore vertices of null spread, then G is singular with nullity
N+ ng + 2.

(i) If u,w are noncore vertices with null spread zend a’’,w’ are noncore vertices
having null spread-1 or vice versa, then nullity of G ig + 1.

(iv) If u, u” are core vertices angl, w’ are noncore vertices with null spread or vice
versa,then nullity of G ig; + 1.

(v) If u, w are core vertices and, w are noncore vertices of null spread or vice
versa,then nullity of G ig; + 1, — 2.

(vi) If u, u’" are noncore vertices of null spread zero end’ are noncore vertices of
null spread-1 or vice versa,then nullity of G ig, + 1, — 1.

(vii) If u,w’ are noncore vertices of null spread zeroana' are noncore vertices of null
spread-1 or vice versa, then nullity of G ig + 1.

Proof: We prove part (vii).The proofs of other parts dab similarly. Let K, H be the

components of G— e;and K ,H' are the components of,G e,. Assume thatng,

Ny Ngrand ny are the nullities of K, HK" andH’ respectively. By definition, G can be

regarded asKoK') (HoH') + vv’, where v = u =u’ andv’ = w =w' are the coalesced

vertices. Since w’ are noncore vertices of null spread zero andi’ are noncore

vertices of null spread1, we have K &K' is singular with nullityng+ngs and H oH’ is

singular with nullityng+my’. Alsow and w’ are noncore vertices of null spread. So

by part 5 of theorem 1.19, we have nullity of Gyjgt ng+nuty =g+ Nu + N’ +

Ny =M1+ N2@3=Ng + Ny andn,=ng/+ny -
Corollary 3.50. In the above theorem, the concatenated edge lasgpread zero.

Example 3.51. The graphs @and Gin figure 10 has nullity 3 and 4 respectively. The
vertices u,wu’,w’ are noncore vertices of null spread. Alsone (G;) = ne,(G;) =
0.The concatenated graph has nullity 9 and the ¢enated edge has null spread zero.
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Lo
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1 o} 7 F

Figure 10: Concatenation of graphs with respect to cut edges.

Theorem 3.52. Let G and Gbe singular graphs having cut edges with nullitjes
and,respectively and G be the concatenation of theth waspect to their cut edges
e;= uw ande, = u'w’. Suppose that one of the components K, H pf&, andK’,H’ of
G,—e,is singular and the other is non-singular

(i) 1f ne,(G1) =Me,(Gy) = —1 and the singular components of both-Ge; and G -
e,are on same side of the concatenated edge of &n @& is singular with
nullityn; + ns.

(ii) 1f ne,(Gy) =me,(G2) =—1 and the singular components of both-®,and G- e,are
on either side of the concatenated edge of G, hes singular with nullityn, +
N2-

(iii) If e, (G1) = —1, 1, (G2) = 0, the singular components K of-Ge;andK’of G, -
e,are on same side of the concatenated edge wfi€a core vertex andl’ — w’ is
singular for non-singular componeHltof G-e,, then G is singular with nullity
N1+ M.

(iv) If m¢,(G1) = —1,1¢,(G2) = 0, the singular components K of ; Ge;andH'of G-
e,are on either side of the concatenated edge of @& a core vertex an&’ — u’ is
singular for non-singular componeit'of G, — e,, then G is singular with
nullityn; + n, — 1.

(V) If ne,(G1) = —1,7,(G) = 0, the singular components K ofi-G;andK’ of G,—e,
are on same side of the concatenated edge of Gi'asda noncore vertex of null
spread zero o+1, then G is singular with nullity + ..

(Vi) If m¢,(G1) = —1,1¢,(G2) = 0, the singular components K of -Ge;andH’ of G, -
e,are on either side of the concatenated edge ofdGvais a noncore vertex of null
spread 0 or1 then G is singular with nullity; + 1.

Proof: (i) Let K, H are the components of Ge;andK’, H’ are the components of,&

e,. Suppose that KK’ are singular and HI’ are nonsingular. Sinag,, (G1) =1e,(G2) =

—1,by theorem2.30, we haweu’are core vertices and H —HR,— w'are non-singular
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graphs. Assume thaj, ng’ are the nullities of K¢’ respectively. By definition, G can
be regarded ak¢K') (HoH’) + vv’,where v = u =u’ andv’ = w =w'are the coalesced
vertices. Theorem 1.2 shows tKatK’ is singular with nullityng + ng’ —1 and H oH’

is non-singular. Alswis a core vertex and HId' — v’ is non-singular. So by part 6 of
theorem 1.19, we have nullity of Giis + ng —2 =ng—1+ng —1 =11 + na9;,=
Nk — 1 andn, =ng — 1 (Theorem 1.19).

(i) Let K, H are the components of;& e;andK’, H” are the components of,& e,.
Suppose that KH’ are singular and HK' are nonsingular. Sincg.(Gi1) = 1./(Gz) =
—1,by theorem 2.30, we havew'are core vertices and H — &, — u’are non-singular
graphs. Assume thak, nyare the nullities of KH’ respectively. By definition, G can
be regarded aK¢K') (HoH') + vv’, where v = u =’ andv’ = w =w’are the coalesced
vertices. Theorem1.3 shows tH&b K’ is singular with nullityngy —1 and H oH' is
singular with nullityny — 1. Note thatr and v’ are noncore vertices of null spread
zero. So by part 2 of theorem 1.19, we have nuilit® isng — 1 +ny — 1 =1n; + nyas
N1=7k — 1 andn, = ng — 1 (Theorem 1.19).

Next we prove (vi). The proofs of other parts fallsimilarly.

(vi) Let K, H are the components of; G e;anK’, H' are the components of,& e,.
Suppose thatKH’ are singular and H" are nonsingular. Sinog, (G;) = —1 and the
singular components of bothy Ge; and G—e, are on either side of G, by theorem 2.30
we have is a core vertex anH — wis nonsingular. Assume thag, ny are the nullities
of K, H’ respectively. By definition, G can be regardedqksK’) (HoH') + vv’, where v
= u=u andv’ = w =w'are the coalesced vertices. Theorem 1.3,1.8 andhb@®s that
Ko K’ is singular of nullityny —1 and H oH’ is singular of nullitynys. Ther is a
noncore vertex of null spread zero el according asw’ is a noncore vertex of null
spread zero o1 andv is a noncore vertex of null spread zero. So pafttieorem 1.19
shows that nullity of G igg+ Ny —1=n1 + N, asng — 1 =1, and ny =n,(theorem
1.19).

Corollary 3.53. In the above theorem,

() If ne, (G1) =ne,(G2) = —1 and the singular components of both-@, and G-e,
are on one side of the concatenated edge of @ ttigeconcatenated edge has null
spread-1.

(i) 1f ne,(G1) =me,(G2) = —1 and the singular components of both-@, and G-e,
are on either side of the concatenated edge tfig€h, the concatenated edge has
null spread zero.

(i) If M, (Gy) =—1,7¢,(G2) = 0, then the concatenated edge has null spezad z

The case ofi¢, (G1) =1e,(G2) = 0 is separately treated in the next theorem.

Theorem 3.54. Let G,and G be singular graphs with nullitieg andn, respectively and
G be the concatenation of them with respect ¢ir tlkut edgeg; = uw ande, = u'w’.
Suppose that one of the components K, H pf & andK’, H’ of G,— e, is singular and
the other is non-singular.
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(i) f ne,(G1) =1e,(G2) = 0, the singular components of both-Ge;and G —e, are on
same side of the concatenated edge of G andehpth are cut edges which satisfies the
hypothesis in part 2 of theorem 2.30, then G igdar with nullityn; + n..

(i) If ne,(G1) =ne,(G2) = 0, the singular components of both-Ge;and G — e are on
either side of the concatenated edge of G anddyothy, are cut edges which satisfies the
hypothesis in part 2 of theorem 2.30, then G iguder with nullityn; + n, — 2.

(iii) If Me, (G1) = Me,(G2) = 0, the singular components of both-Ge;and G —e,are on
same side of the concatenated edge of G andeppth are cut edges which satisfies the
hypothesis in part 3 of theorem 2.30, then G iguder with nullityn; + n, + 1.

(iv) If e, (G1) =ne,(G2) = 0, the singular components of both-z,and G- e,are on
either side of the concatenated edge of G anddyothy, are cut edges which satisfies the
hypothesis in part 3 of theorem 2.30, then G igudar with nullityn; + n,.

Proof: (i) Since the singular components of both-&;and G —e, are on one side of
the concatenated edge of G and bgthe,are cut edges which satisfies the hypothesis in
part 2 of theorem 2.30, assume thakKare singular and H}’ are nonsingular. Then u,
u’ are core vertices and H — W,- w’ are singular. Letig, ng’ be the nullities of KK’
respectively. By definition, G can be regardedksk() (HoH') + vv’, wherev = u = v’
andv’ = w =w'are the coalesced vertices.Theorem 1.3 and 1.1@sstt@tKo K’ is
singular of nullityng + ngr —1 and H oH’ is singular of nullity one. The coalesced
vertex w is a core vertex and’is a noncore vertex of null spreadl. So part 3 of
theorem 1.19 shows that nullity of Gng+ng —1+1=n; + N asng =ny andng’ =

N2:

Next we prove (iv). The proof of other parts follewilarly.

(iv) Since the singular components of both-&; and G- e, are on either side of the
concatenated edge of G and beih e, are cut edges which satisfies the hypothesis in
part 3 of theorem 2.30, assume thatKare singular and H’ are non-singular. Then
u,w’ are noncore vertices of null spread or zero and H — wi’ — u’ are nonsingular.
Let nk, ny be the nullities of KH’ respectively. By definition, G can be regarded as
(KoK') (HoH') + vv', where v = u =’ andv’ = u =u’are the coalesced vertices. Theorem
1.8 and 1.9 shows th&o K’ is singular with nullityng and H oH’ is singular with
nullity ng. Note that the coalesced vertices v &fate noncore vertices of null spread
zero or—1 according as u angt’ are noncore vertices of null spreadto or —1. So part

3 of theorem 1.19 shows that nullity of Ggs ny'=n, + nzasng = niand Ny’ =1,.

Corollary 3.55. In the above theorem, 1{.(G1) = n./(Gz) = 0O, then the concatenated
edge has null spread zero.

Example 3.56. The graph G in figure 11 is the concatenation oi@& G with respect
to their cut edges; ande, respectively. Herg,, (G;) = —1 andn,,(G) = 0. The nullities
of Giand G are two. We have concatenatedaBd Gwith respect to their cut edges
e;ande,in such a way that the singular components of kthnd G are either sides of
the concatenated edge of G. Here uwalndre vertices. Hw is non-singular anfl’ — w’

is singular. Note that the nullity of G 2+ 2 — 1 = 3. This is what we have said in part
(iv) of theorem 3.49.
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K.f

Figure 11: Concatenation of graphs with respect to cut edges.

3.4. Concatenation of a cycleand a graph having cut edge
Theorem 3.57. Let G, be a cycle with, (G,)= —1,G, be a singular graph with nullity
having a cut edge, = u’w’and the components 6f, — e, are singular. Let G be the
concatenation ofi; andG, with respect te;ande,.
0] If ne,(G2) =—2,then G is singular with nullity + 1.
(i) If ne,(G2) =—1,then G is singular with nullity.
(i) If ne,(G2) = 0 andu’, w’ are noncore vertices of null spread zero, thea G i
singular with nullityn.
(iv) If ne,(G2) = 0 andu’, w'" are noncore vertices of null spread, then G is
singular with nullityn + 1.
()] If n¢,(G2) = Ou’is a core vertex and’ is a noncore vertex of null spread
—1,then G is singular with nullity — 1.
(vi) If ne,(G2) = 0,u’is @ noncore vertex of null spread zero arids a noncore
vertex of null spread-1,then G is singular with nullity.
Proof: We prove part (v). The proof of other parts follsimilarly. SinceG; is a cycle
with ne, (G1) = —1, we see thaG, is a cycle of odd number of vertices. &gis
nonsingular. Let K and H be singular component&.0f e, having nullitiesng and ny
respectively. Given that’ is a core vertex and’ is a honcore vertex of null spread.
Lete, = uw. The concatenation 6f andG, with respect t&, = uw ande, = u'w’ is
same as taking coalescencezgfwith K and H with respect to the end verticeepénd
e,(as in figure 12 ). Suppose thdts the root of K andav’ is the root of H. First coalesce
G, and K with respect to u and. Sinceu’ is a core vertex;0 K is a singular graph
with nullity ng —1,by theorem 1.3.After coalescence the vertex wGpfbecomes a
noncore vertex of null spread zero(theorem 1.12ktNake coalescence 6fo K and H
with respect to w anav’. As w is a noncore vertex of null spread zero aridis a
noncore vertex of null spreadl, we see by theorem 1.7 th&; 6 K) o H is a singular
graph with nullityng —1+ng =n — 1 ,whereng+ ng=1.
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Corollary 3.58. In the above theorem the concatenated edge hiaspnehd zero.

Theorem 3.59. Let G, be a cycle withp,, (G;) = —1 andz, be a singulargraph with
nullity n with a cut edge,= u'w’. Assume that one component K@&f — e, is singular
with nullity n and other component H is non-singular.
(i) 1f ne,(Gz) =—1, then G is singular with nullity — 1.
(i) If 7n,,(G2) = 0u' is a core vertex and Hw' is singular, then G is singular with
nullity n — 1.
(iiiy If 7,,(G;) = 0 andu’ is a noncore vertex (of null spread 0-dk), thenG is

singular with nullityn.
Proof: Similar to theorem 3.57.

Corollary 3.60. In the above theorm the concatenated edge hasprekd zero.

Example 3.61. The graph G in figure 12 is the concatenation gfnd G concatenated
with respect to the edgesof G; ande, of G,.The nullity of the graph &s two. Also
Ne,(G1) =—1 andne, (G,) = 0 withu' is a noncore vertex of null spread zero arids a
noncore vertex of null spread. The nullity of the concatenated graph G is two.

b0

\ Z-fﬁ\.

M‘“‘H

G
! & 2

Figure 12: Concatenation of an odd cycle and a graph witlit 2dge.

Theorem 3.62. Let G, be a cycle witm, (G;) = 0G, be a singular graph with nullity
nhavinga cut edge = u'w’and the components @, — e,are singular. Let G be the
concatenation di; andG, with respect t@,ande,.

0] If ne,(G2) =—2,then G is singular with nullity.

(i) If ne,(G2) = —1,then G is singular with nullity.
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(iii) If ne,(G2) = 0 andu’, w’ are noncore vertices of null spread zero, thea G i
singular with nullityn.
(iv) If ne,(G2) = 0 andu’, w" are noncore vertices of null spread, then G is
singular with nullityn.
v) If ne,(G2) = 0,u’ is a core vertex and’ is a noncore vertex of null spread
—1,then G is singular with nullity.
(vi) If ne,(Gz) = 0, u’ is a noncore vertex of null spread zero andis a
noncore vertex of null sprea€l, then G is singular with nullity.
Proof: We prove only part (vi). The proof of other paidfow similarly. SinceG; is a
cycle withn, (G1)= 0, we see thallG,| = n, where n is an even number not divisible by
four. So G,is nonsingular. Let K and H be singular componesftGG, — e, having
nullitiesng and ny respectively. Given that' is a noncore vertex of null spread zero and
w' is a noncore vertex of null spread. Lete;= uw. The concatenation 6f, andG,
with respect t@; = uw ande, = u'w’ is same as taking coalescenc&pfvith K and H
with respect to the end verticesegfande,(as in figure 12). Suppose théts the root of
K andw’ is the root of H. First coales€g and K with respect to u and. Sinceu’ is a
noncore vertex of null spread zef,0 K is a singular graph with nullityy, by theorem
1.8.After coalescence the vertex w@f becomes a noncore vertex of null spread zero
(theorem 1.15). Next take coalescencé&af K and H with respect to w and’. As w is
a noncore vertex of null spread zero arids a noncore vertex of null spread, we see
by theorem 1.7 that{o K) o H is a singular graph with nullityg+ ng =1.

Corollary 3.63. In the above theorm the concatenated edge hasprekd zero.

Theorem 3.64. Let G; be a cycle witme (G;) = 0 andG, be a singular graph with
nullity n having a cut edge,= u'w’. Assume that one component K & — e, is
singular with nullityn, n > 1 and other component H is non-singular.
() 1fne,(Gz) =—1, then G is singular with nullity — 1.
(i) If me,(G) =0’ is a core vertex and Hw' is singular, then G is singular with
nullity n — 1.
(iii) If n¢,(Gz) = 0 andu’ is a noncore vertex (of null spread O or-1), tii@ns

singular with nullityn.
Proof: Similar to the proof of theorem 3.57.

Corollary 3.65. In the above theorm the concatenated edge hasprekd zero.

Theorem 3.66. Let G, be a cycle withy, (G,) = 2, G, be a singular graph with nullity

having a cut edge, =u'w’ and the components &%, — e, are singular. Let G be the

concatenation of; andG, with respect t@,ande,.

(i) 1f ne,(Gy) = =2, then G is singular with nullity + 2.

(ii) If ne,(G2) = —1, then G is singular with nullity + 1.

(iii) If n,,(G,) = 0 andu’, w' are noncore vertices of null spread zero, thes Snigular
with nullity n.
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(iv) If n¢,(G;) =0 andu’, w' are noncore vertices of null spread, then G is singular
with nullity .

(v) If n.,(G;) =0,u’ is acore vertex anat’ is a noncore vertex of null spread,then
G is singular with nullityy.

(vi) If n,,(G;) = 0,u’ is a noncore vertex of null spread zero arids a noncore vertex
of null spread-1, then G is singular with nullity.

Corollary 3.67. In the above theorm, if,(G;) = —1, then the concatenated edge has
null spread one and in all other cases the conatgdredge has null spread zero.

Theorem 3.68. Let G; be a cycle witme (G;) = 2 andG, be a singular graph with
nullity n with a cut edge,= u'w’. Assume that one component K&f — e, is singular
with nullity n and the other component H is non-singular.
(i) 1fne,(Gy) =—1, then G is singular with nullity.
(i) If ne,(G,) = Ou' is a core vertex and Hw' is singular, then G is singular with
nullity n.
(iii) If ne,(Gz) = 0 andu’ is a noncore vertex (of null spread 0 or -1), tigers
singular with nullityn.
Proof: Similar to the proof of theorem 3.57.

Corollary 3.69. In the above theorm, if,,(G,) = —1, then the concatenated edge has
null spread one and in all other casesthe condatedealge has null spread zero.

We conclude this section with the following twouks about the energy of graphs.

Theorem 3.70. Let G, be a singular graph having a cycle @pntbe a singular graph with
a cut edgee, = u'w’'and the components df, —e, are singular. Let G be the
concatenation of; andG, with respect to an edggof the cycle ofG,ande, of G,. If

G is hypoenergetic and the component&.pf e, are strongly hypoenergetic, then G is
hypoenergetic.

Proof: Let |G;] = n; and|G,|= n,. Let K, H are the components of, & e,.The
concatenation ofi; andG, with respect t@,ande, is same as taking coalescence:pf
with K and H with respect to the end verticeepande,. So by theorem 1.22, we have
E(G)<E (G;) +E(K)+E(H) < |G4|+|K|—1+|H|—1=n; +n, — 2.

Theorem 3.71. Let Giand G be singular graphs with nullity; andn, respectively and
G be the concatenation of them with respectéo tbut edges; = uw ande, =u'w’. If
the components of G- e; and G — e, are strongly hypoenergetic, then G is
hypoenergetic.

Proof: Let |G,| =n; and|G,|=n,. Let K, H be the components of Ge,; andK’, H’ be
the components of £ e,. The concatenation, G of;@nd G with respect t@,; ande,

is same asHoH')(KoK') + vv’, wherev, v’ are the coalesced vertices dfmH’, KoK’ are
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the coalescence ofH' andK, K'respectively. So by theorem 1.B2G) < E(K) + E(H)
+E(K) +EH) + E(K) < |K|—1+4+ |H| -1+ |K|—1+4|H|-1+2= n; +n, — 2.

4.Conclusion

Theory of large graphs are widely applicable notyadn mathematics but also in
computer science, statistical physics, biology, imegring, and many other fields.
Concatenation or edge gluing is a technique usekeirconstruction of larger graphs. In
this paper we made a humble attempt to construbearetical basis for the study of
concatenation of graphs. Some of the basic resubtsstated and proved using the
techniques we have developed in our earlier reBeditrere remains several areas to be
explored in the study of spectral properties ofcatenated graphs both theoretical and
applied.
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