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Abstract. In this paper, we consider modified Hermite intéation on the nodes, which
are obtained by projecting vertically the zeroghef (1 — x2?)PB,(x)P,(x) onto the unit

circle, whereP,(x) stands fom™ Legendre polynomial. We obtain the explicit fornmsia
establish a convergence theorem for that interpolgiolynomial.
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1.Introduction
In 1990, Tu [10] obtained the divergence and meanvergence of the Hermite
interpolation operator. Further, in 1991, Wang &rah [12] considered the zeros of
(1 —x?)P},_,(x), where,P,,_, (x) is the derivative ofn — 1)*"* Legendre polynomial
and obtained the estimates for the same. In 1992 [8llobtained the mean convergence
of the derivatives of Hermite interpolation operat, (f, x) based on the zeros of the
Chebyshev polynomial of the first kind. Also, Vesiteand Xu [11] considered the
Hermite interpolating polynomiaH,,,,(w, f) be defined at the zeros of the Jacobi
polynomialp,, (w, x) , which are orthogonal dr-1,1] with weight function,

w(x) =1 -x%*1-x),(a,f > -1).
Later on, Goodman et al. [6] considered the behmadidiermite interpolanton the roots
of unity. In 1998, authdwith Mathur) [1] proved the convergence of Quasiite
interpolation on the nodes obtained by projectiegigally the zeros of1 — x?) P,(x)
onto the unit circle, wherB, (x) stands for th@™ Legendre polynomial. In another paper
authot [3] considered the convergence of Hermite intergaiapolynomial on the unit
circle. Also, Berriochoa at al. [4] studied the eergence of the Hermite-Fejér and the
Hermite interpolation on polynomials, which are stoacted by taking equally spaced
nodes on the unit circle. In 2014, authand (with Shukla) [2] considered Hermite-
interpolation on the nodes, which are verticallyojected on the zeros ofl —
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x2)P%P) (%) the onto the unit circle, whe2®? (x) stands for Jacobi polynomial,
obtained the explicit forms and established a cayemce theorem for the interpolatory
polynomial. Further, Berriochoa at al. [5] studigéneralise Hermite interpolation
problems on the unit circle considering nodal poiqually spaced and using the values
for the first two derivatives.

These have motivated us to consider different tyjfddermite interpolation on
some set of nodes on the unit circle .In this paper consider the non- uniformly
distributed zeros on the unit circle, which areaifed by projecting vertically the zeros
of (1—x2)P,(x)P.(x) onto the unit circle, wher&,(x) stands for Hi Legendre
polynomial . We obtain the explicit forms of theédrpolatory polynomials and establish
a convergence theorem for the same. In sectione2giwe some preliminaries and in
section 3, we describe the problem and its existelicsection 4, we give the explicit
formulae of the interpolatory polynomials. In seo8 5 and 6, estimation and
convergence of interpolatory polynomials are gjuespectively.

2. Preliminaries

In this section, we shall give some well-known fsswhich we shall use.
The differential equation satisfied By(x)is :

(2.1) 1 —x?)P)(x) — 2xP(x) + n(n + 1)P,(x) = 0

(2.2) Rpn(2) = TIR21(2 — z) = Kn Py (122) z"

- N 1+22\ ., 2 -
(2.3) Ran2(2) = [T1232(z — z) = Ky (S ) P (o) 227
(2.4) Run(2) = (2> = DRyn—2(2)

We shall require the fundamental polynomial of laagge interpolation based on the
zeros oR,,(z) and R,,,(z) are respectively given as:

_ Ryn(2) — _
(2.5) Li(z) = R k=014n—-1
_ Ryn(2) —
(26) L@ = 2P, k=1(1)2n

We will also use the following results
For, k=1(1)n

! Kn —_ 12
Ryn(zy) = 2 (ZI% - 1)21? ZPn(xk)

(2.7)
Rion(Znsie) = "2 (22 — Vzmei B (a)
2.8) { Ron(zi) = Ky[(n—1)(2 — 1) — 1]z773 P (xp)
AR (Znai) = Kn[(n— D(21, — 1) — 1]z Pa(x)
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[ Rinta) =5 (02 ~ 1) Brry k=12

K *
Rin(ze) = —- (2 - 1)°P, ()P () 2273, k=2n+1,....,4n — 2

( k=1(1)2n
! KTL* 2 ! -
R4n(zk) = T(ZI% - 1) {Pn(xk)}zzl%n 3
k=2n+1,...coceec..dn—2

! Kn* 2 17} —_
Rin(z) = - (27 — 1) By Co) Py (i) 2"~

(2.9)

For, k = 1(1)2n
2.10) ! Rin(@) = Ky'(7% = 1)[@n -1 — 1) - 2lPiCuoy 22",
' | For, k=2n+1,.....4n—2
\Rin (i) = Kn' (22 — 1)[2n— 1)(2f — 1) = 2]R, () By (i) zg" %,

We will also use the following well known inequadi
(2.11) (1 — x2)|P. () |~n'z, —1<x<1

For, —-1<x,<1
(212) (1-x2) "~ (%)
(2.13) [P, (x|~ k72
(2.14) |P! G|~ k2 n?

(2.15) [Py (x|~ k /2 n
For more details one can see [9] .

-2

3. The problem and regularity
LetZ,, = {z;: k = 0(1)4n — 1 }satisfying

zo=1 2z4yp1=-1

3.1) Z, = {Zk = €050y + i sinby, Zpyk =2 k= 1(1)2n—1
where {x; = cosf; : k = 1(1)2n — 1} are the zeros d},(x)P,(x) whereP,(x) stands
for nt"Legendre polynomial. Here we are interested in rdétee the interpolatory
polynomialQ,,_1(z) of degree at mosin — 1 satisfying the following conditions:
(3.2) {Qﬁn—l(zk) = g k=0(1)4n -1,

[Qen-1D]z=z, = Br » k =1(1)2n,
wherea;, andp, are arbitrary complex constants .We establishrevemence theorem
for the same.

Theorem 3.1.Q¢,,—1(2) is regular orz,,.
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Proof: Let

Qen-1(2) = Ryn—2(2)q(2)

where,q(z) is polynomial of degree< 2n + 1.
Obviously, Q¢n-1(zx) = 0, for, k=1(1)4n — 2
By![Q6n—1(Z)]’Z=Zk =0, for k= 1(1)27’1

we get,

q(zx) =0,

therefore, we have

(3.3) q(2) = (a z + b)Ryn(2)

Nowforz=1& —1,weget a= b=0.
Hence the theorem follows.

4. Explicit representation of interpolatory polynomials
We shall writeQ,,(z) satisfying (3.2) as:

4n—1 2n
(1) Qona@ = ) @@ + ) FiBi(@)
k=0 k=1

whered, (z)andB, (z) are unigue polynomial , each of degree at mhast 1 satisfying
the conditions :

A(z) = 6 k=0(1)4n—1
“2 {[Ak(]z)]’m,. —, k=1(1)2n

Bi(z) = 0, k=010)4n-1
(“3) {[Bkm];:z,. = G, k=1

Theorem 4.1.Let A, (z) satisfying the condition defined by

_ (1+2) Ryn—2(2)Ron(2)
(4.4) 40(2) = == 4 DR

_ (1=2) Ryn—2(2)Ryn(2)
(4'5) A4n_1(Z)— 2 Ryn—2(-1)Rzp(-1)

tr (2 (2) Ly (2) , k=1(1)2n
(4.6) Ak(2) =
Ran
Lk(z)#((;c)) , k=2n+1, ... dn—2
where,

(4Nt (2) = [1 = (z — )k (z) + Ly (zi)3]
Proof: For,k = 1(1)2n, let
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Ar(2) = (@D (2) Ly (2),
where,t; (z) is a linear polynomial such that,
(4.8) ty(z2) = a, + b (z — zp)
Obviously,A,(z;) = 0, for j # k,
and forj = k, we must have
(4.9)tx(zi) = 1
Obviously,4j(z;) = 0, for j # k,
and forj = k, we get

(4.10)t (zx) = —{lx(zx) + Ly (2,0}
using (4.9) and (4.10) in (4.8), we get (4.7).

For, k=2n+1,...,4n — 2,let
RZn(Z)
Ax(z) = Li(2) )
k k Ran(2x)
Then obviously, 4 (z;) = 8y,
Similarly,one can find (4.4) and (4.5).
Hence the theorem follows.

Theorem 4.2:For k = 1(1)2n , we have

(4.11) Bi(2) = (z — zi) k (2) Ly (2)
Proof: One can obtaine®, (z), owing to conditions (4.3).

5. Estimation of fundamental polynomials
Lemma 5.1.Letl;(2) be given by (2.4). Then
(5.1) maxjy 1 TF1L(2)| < cn'/2logn
where,c is a constant and independenuand z.
Proof: Letz = x + iyand|z| = 1,

2n 2n
RZn(Z)
l <
kle K@l = kzl 7= 2R

2n 1
< 1B - )
" & 2v21B () (x — )
using (2.12) and (2.14) we get the result.

Lemma 5.2. Forz = e'? , (0 <6 < 2m), we have

(52) T4 < cnfalogn,

where, 4, (z) is given in theorem 4.1 ands a constant independentiofindz.
Proof: Using the conditions from (2.11) to (2.15), we thet result.
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Lemma 5.3.Let B, (z) be defined in theorem 4.2. Then, we have

(5.3)32,|Bk(2)| < cn'/zlogn , |z] < 1
wherec is a constant independentrofindz.
Proof: Using (5.1) and (2.11) — (2.15) in theorem 4.8,gegt the result.

6. Convergence

In this section, we prove the following:

Theorem 6.1.Let f(z) be continuous foz| <1 and analytic for|z| < 1. Let the
arbitraryp), 's be such that

(6.1) 18l = 0 (02w, (f,n )
Then{Q¢,-1(2)} defined by

4an-1 2n

(62) Qonr(@) = ). fAE) + ) FiBi(2)
satisfies the relaltio];l_,0 =

(6.3)] Qen-1(2) = F(2)] = 0 (200, (f,n"?) logn),

where w,(f,n1) be the second modulus of continuityf@#).

Remark 6.1. Let f(z) be continuous fofz| < 1 and analytic forjz| < 1, andf' €
Lipa,a > % + ¢, then the sequend@,,_1(2)} converges uniformly tg(z) in |z| <1,
which follows from (6.3) as

3
6.4)w,(f,n" ) =0 (n_Te), € > 0.
To prove the theorem (6.1), we shall need thefadligs:
Let f(z) be continuous foriz| <1 and analytic for|z| < 1. Then there exist a
polynomialF, (z) of degree< 6n — 1, satisfying,Jackson’s inequality.
(6.5) 1f(2) = Fa(2)| < cwp(f,n™D), z=€%(0 < 6 < 21m)
And also an inequality due to [7].
(6.6)|Fn(m)(z)| < cn™w,(f,n"1), mel®.
Proof: Since Qq4,-1(z) be is uniquely determined polynomial of degreén — 1 and
the polynomialf, (z) satisfying (6.5) and (6.6) can be expressed as :

4n-1 2n
For( = ) Fa(z0A@+ ) Fiz0B(@)
k=0 k=1

Then,
[Qen-1(2) — f(2)| = |Qsn-1(2) — Fy(2)| + [Fon-1(2) — f(2)]
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4in-1

< Y I - BG4I +
k=0
+1E(2) — ()]

2n
> 1Bl + 11 1B ()
1

k=

using (6.1),(6.2), (6.4), (6.5), Lemma 5.2 and LexB, we get (6.3).

7. Conclusion

In this paper, we have defined the modified-Herniterpolationon some set of nodes
on the unit circle and established the convergethem®rem for that interpolatory
polynomial.
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