Annals of Pure and Applied Mathematics Vol. 14, No. 3, 2017, 497-508 ISSN: 2279-087X (P), 2279-0888(online) Published on 13 November 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n3a17

Annals of **Pure and Applied Mathematics**

r-Relatively Prime Sets and *r*-Generalization of *Phi* Functions for Subsets of {1,2,...,n}

G. Kamala¹ and G. Lalitha²

¹Department of Mathematics, Osmania University, Hyderabad (TS), India ²Department of Mathematics, SRR & CVR Govt. Degree College Vijayawada (AP) India Email: <u>¹gkamala369@gmail.com</u>, <u>²lalitha.secpg@gmail.com</u> ¹Corresponding author.

Received 24 October 2017; accepted 9 November 2017

Abstract. A non-empty subset A of positive integers $\{1, 2, ..., n\}$ is said to be relatively prime if gcd(A) = 1. Let r be a positive integer ≥ 1 . A nonempty subset $A \subseteq \{1, 2, ..., n\}$ is *r*-relatively prime if greatest r^{th} power common divisor of elements of A is 1. In this case we write $gcd_r(A) = 1$. Note that gcd(A) = 1 implies $gcd_r(A) = 1$ but the converse need not be true. Let $f^{(r)}(n)$ denotes the number of rrelatively prime subsets of $\{1, 2, ..., n\}$ and $f_k^{(r)}(n)$ denotes the number of r-relatively prime subsets of $\{1, 2, ..., n\}$ of Cardinality k. $\Phi(n)$ denotes the number of non empty subsets A of $\{1, 2, ..., n\}$ such that gcd(A) is relatively prime to n. $\Phi_k(n)$ denotes the number of non-empty subsets A of Cardinality k of $\{1,2,\ldots,n\}$ such that gcd(A) is relatively prime to n. We define $\Phi^{(r)}(n)$ to be the number of non-empty subsets A of $\{1, 2, ..., n\}$ such that greatest r^{th} power common divisor of elements of A and n is 1. $\Phi_k^{(r)}(n)$ is defined as the number of subsets A of $\{1, 2, ..., n\}$ such that $\operatorname{Card}(A) = k$ and $gcd_r(A)$ is r-relatively to n. $\Phi^{(r)}(n)$ and $\Phi^{(r)}_{\mu}(n)$ are r-generalizations of $\Phi(n)$ and $\Phi_k(n)$ defined by Nathanson [2]. Exact formulas and asymptotic estimates are obtained for these functions. These results are extensions of results of Nathanson [2]. Some of our proofs use the r-Generalization of Mobius inversion formula.

Keywords: r-relatively prime sets, r-generalization of Euler Phi function.

AMS Mathematics Subject Classification (2010): 1BXX, 11B75

1. Introduction

For a nonempty subset A of $\{1,2,...,n\}$ let gcd(A) denote the gcd of the elements of A. Nathanson [2] defined a non empty subset A of $\{1,2,...,n\}$ is relatively prime if gcd(A)=1.Let f(n) denote the number of relatively prime subsets of $\{1,2,...,n\}$ and for $k \ge 1$, $f_k(n)$ denote the number of relatively prime subsets of $\{1,2,...,n\}$ of cardinality k. Let $\Phi(n)$ denote the number of non empty subsets A of $\{1,2,...,n\}$ such that gcd(A) is relatively prime to n and for integer $k \ge 1$, $\Phi_k(n)$ denote the number of non empty subsets A of $\{1,2,...,n\}$ such that gcd(A) is relatively prime to n and for integer $k \ge 1$, $\Phi_k(n)$ denote the number of non empty subsets A of $\{1,2,...,n\}$ such that gcd(A) is relatively prime to n and card (A)=k. Nathanson[2] obtained the exact formulas and Asymptotic estimates for these four fuctions. In this paper ,we define the functions $f^{(r)}(n)$, $f_k^{(r)}(n)$, $\Phi^{(r)}(n)$ and $\Phi_k^{(r)}(n)$ and obtain exact formulas and Asymptotic estimates for these four functions. We derive Mobius Inversion Formula r- Generalized Version to obtain Exact formulas.

Definition 1.

Mobius function r-analogue

$$\mu_r(n) = \begin{cases} 1 & \text{if } n = 1 \\ (-1)^s & \text{if } n = p_1^r p_2^r \dots p_s^r \text{ where } p_1, p_2, \dots, p_s \text{ are distinct primes} \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 1. For all positive integers $n \ge 2^r$,

$$f^{(r)}(n) \le 2^n - 2^{\left\lfloor \frac{n}{2^r} \right\rfloor}.$$
 (1)

For positive integers $n \ge 2^r$ and k,

$$f_k^{(r)}(n) \leq \binom{n}{k} - \left(\begin{bmatrix} \frac{n}{2^r} \\ k \end{bmatrix} \right).$$
(2)

Proof: The set $\{1, 2, 3, ..., 2^r, ..., n\}$ contains the set $\{2^r, 2 \times 2^r, ..., \left[\frac{n}{2^r}\right]2^r\}$ which has no subset that is *r*-relatively prime. Therefore among the $2^n - 1$ non-empty subsets of $\{1, 2, ..., n\}$ those which contain any one of the $2^{\lfloor n/2^r \rfloor} - 1$ non-empty subsets of $\{2^r, 2 \times 2^r, ..., \left[\frac{n}{2^r}\right]2^r\}$ are not *r*-relatively prime. Hence

$$f^{(r)}(n) \leq (2^n - 1) - \left(2^{\left\lfloor \frac{n}{2^r} \right\rfloor} - 1\right) = 2^n - 2^{\left\lfloor \frac{n}{2^r} \right\rfloor}$$
 which proves (1). Similarly,

$$f_k^{(r)}(n) \leq \binom{n}{k} - \binom{\left\lfloor \frac{n}{2^r} \right\rfloor}{k}$$
. We now find a lower bound for $f^{(r)}(n)$ and $f_k^{(r)}(n)$.

If
$$1 \in A$$
, $A \subseteq \{1, 2, ..., n\}$ then A is r -relatively prime. There are 2^{n-1} sets $A \subseteq \{1, 2, ..., n\}$ with $1 \in A$. Hence $f^{(r)}(n) \ge 2^{n-1}$. (3)

Let $n \ge 3^r$. If $1 \notin A$, $2^r \in A$, $3^r \in A$ then A is r-relatively prime and hence

$$f^{(r)}(n) \ge 2^{n-1} + 2^{n-3}.$$
 (4)

Let $n \ge 5^r$. If $1 \notin A$, $3^r \in A$, but $2^r \in A$, $5^r \in A$ then A is r-relatively prime and there are 2^{n-4} such subsets. Again $1 \notin A$, $2^r \in A$, but $3^r \in A$, $5^r \in A$ then A is r-relatively prime and there are 2^{n-4} such subsets. Hence

$$f^{(r)}(n) \ge 2^{n-1} + 2^{n-3} + 2 \times 2^{n-4} = 2^{n-1} + 2^{n-2}.$$
 (5)

Similarly

$$f_k^{(r)}(n) \leq {\binom{n-1}{k-1}} + {\binom{n-3}{k-2}} + 2{\binom{n-4}{k-2}}.$$
 (6)

Exact formulas and asymptotic estimates

Let $\begin{bmatrix} x \\ d \end{bmatrix} = \begin{bmatrix} \frac{x}{d} \end{bmatrix} = \begin{bmatrix} \frac{n}{d} \end{bmatrix}$ for all positive integers d.

2. Mobius inversion formula r- generalized version

Theorem 2. Let $F^{(r)}(x)$ be a function defined for $x \ge 1$ and define the function

$$G^{(r)}(x)$$
 for $x \ge 1$ as $G^{(r)}(x) = \sum_{1 \le d^r \le x} F^{(r)}\left(\frac{x}{d^r}\right)$ where the summation is over all

positive integers *d* where $d^r \leq x$

and
$$F^{(r)}(x) = 0 = G^{(r)}(x)$$
 if $x \in (0, 1)$. Then for all inters d where $d^r \le x$,
 $G^{(r)}(x) = \sum_{1 \le d^r \le x} F^{(r)}\left(\frac{x}{d^r}\right) \iff F^{(r)}(x) = \sum_{1 \le d^r \le x} \mu_r\left(d^r\right) G^{(r)}\left(\frac{x}{d^r}\right)$ (6a)

Proof: Assume
$$G^{(r)}(x) = \sum_{1 \le d^r \le x} F^{(r)}\left(\frac{x}{d^r}\right)$$
.
Consider
 $G^{(r)}(x) = \sum_{1 \le d^r \le x} \mu_r \left(d^r\right) G^{(r)}\left(\frac{x}{d^r}\right) = \sum_{1 \le d^r \le x} \mu_r \left(d^r\right) \left[\sum_{1 \le t^r \le \frac{x}{d^r}} F^{(r)}\left(\frac{x}{t^r d^r}\right)\right]$
 $= \sum_{1 \le u^r \le x} F^{(r)}\left(\frac{x}{u^r}\right) \left[\sum_{d^r/u^r} \mu_r \left(d^r\right)\right] = F^{(r)}(x).$

Conversely, Assume $F^{(r)}(x) = \sum_{1 \le d^r \le x} \mu_r(d^r) G^{(r)}(\frac{x}{d^r}).$

Consider
$$\sum_{1 \le d^r \le x} F^{(r)}\left(\frac{x}{d^r}\right) = \sum_{1 \le d^r \le x} \mu_r\left(d^r\right) \left[\sum_{1 \le t^r \le \frac{x}{d^r}} \mu_r\left(d^r\right) G^{(r)}\left(\frac{x}{t^r d^r}\right)\right]$$
$$= \sum_{1 \le u^r \le x} G^{(r)}\left(\frac{x}{u^r}\right) \left[\sum_{t^r/u^r} \mu_r\left(t^r\right)\right]$$
$$= G^{(r)}(x).$$

Theorem 3. For all positive integers $n \ge 2^r$,

(i)
$$\sum_{1 \le d^r \le n} f^{\binom{r}{\binom{n}{d^r}}} = 2^n - 1$$
(7)

and (ii)
$$f^{(r)}(n) = \sum_{1 \le d^r \le n} \mu_r \left(d^r \right) \left(2^{\left\lfloor \frac{n}{d^r} \right\rfloor} - 1 \right).$$
(8)

For all positive integers $n \ge 2^r$, k and $r \ge 1$,

(i)
$$\sum_{1 \le d^r \le n} f_k^{(\mathbf{r})}\left(\left[\frac{x}{d^r}\right]\right) = \binom{n}{k}$$
 (9)

and (ii)
$$f_k^{(r)}(n) = \sum_{1 \le d^r \le n} \mu_r \left(d^r \right) \left(\begin{bmatrix} \frac{n}{d^r} \\ \frac{d^r}{d^r} \end{bmatrix} \right)$$
 (10)

r-Relatively Prime Sets and r-Generalization of Phi Functions for Subsets of {1,2,...,n} **Proof:** Let A be a non-empty subset of $\{1, 2, ..., n\}$ and greatest r^{th} power common divisor of A is d^r . Then $A^1 = \frac{1}{d^r} * A = \left\{ \frac{a}{d^r} \middle| a \in A \right\}$ is r-relatively prime subset of $\left\{1, 2, ..., \left\lceil \frac{n}{d^r} \right\rceil\right\}$. Conversely, if A^1 is *r*-relatively prime subset of $\left\{1, 2, ..., \left\lfloor \frac{n}{d^r} \right\rfloor\right\}$, then $A = d^r * A^1 = \left\{ d^r \cdot a \middle| a \in A^1 \right\}$ is a non-empty subset of $\{1, 2, ..., n\}$ with greatest r^{th} power common divisor of A equals to d^r . Therefore it follows that there are exactly $f^{(r)}\left(\left\lceil \frac{n}{d^r} \right\rceil\right)$ subsets of $\{1, 2, ..., n\}$ with greatest r^{th} power common divisor d^r and hence $\sum_{1 \le d^r \le n} f^{(r)}\left(\left\lfloor \frac{n}{d^r} \right\rfloor\right) = 2^n - 1$ which proves (7). We apply Theorem (2) to the function $F^{(r)}(x) = f^{(r)}([x])$ for all $x \ge 1$ we define $G^{(r)}(x) = \sum_{1 \le d^r \le x} F^{(r)}(\frac{x}{d^r})$ $= \sum_{1 \le d^r \le x} f^{(r)} \left(\left| \frac{x}{d^r} \right| \right) = 2^{[x]} - 1.$ By Theorem (2) $f^{(r)}([x]) = F^{(r)}(x) = \sum_{1 \le d^r \le x} \mu_r(d^r) G^{(r)}(\left[\frac{x}{d^r}\right])$ $= \sum_{1 \le d^r \le x} \mu_r \left(d^r \right) \left[2^{\left\lfloor \frac{x}{d^r} \right\rfloor} - 1 \right]$ $f^{(r)}(n) = n \sum_{1 \le d^r \le n} \mu_r(d^r) \left(2^{\left\lfloor \frac{n}{d^r} \right\rfloor} - 1 \right) \text{ which proves (8).}$

We now prove (9) and (10).

Note that $f_k^{(r)}(n) = \# \{ A \subseteq \{1, 2, ..., n\} : \text{Card } A = k, \text{gcd}_r(A) = 1 \}.$

Let $A \subseteq \{1, 2, ..., n\}$ with Card A = k and greatest r^{th} power common divisor of A is equals to d^r . Let $A^I = \frac{1}{d^r} * A = \left\{\frac{a}{d^r} \middle/ a \in A\right\}$. Then $A^1 \subseteq \left\{1, 2, ..., \left[\frac{n}{d^r}\right]\right\}$,

Card
$$A^1 = \operatorname{Card} A = k$$
 and $\operatorname{gcd}_r \left(A^1 \right) = 1$. Conversely , if $A^1 \subseteq \left\{ 1, 2, ..., \left[\frac{n}{d^r} \right] \right\}$ and
Card $A^1 = k, \operatorname{gcd}_r \left(A^1 \right) = 1$ then $A = d^r * A^1$ is such that Card $A = k$ and
 $\operatorname{gcd}_r (A) = d^r$.
There is $1-1$ correspondence between r -relatively prime subsets
 $A^1 \subseteq \left\{ 1, 2, ..., \left[\frac{n}{d^r} \right] \right\}$ of Cardinality k and the non-empty subsets A of $\{1, 2, ..., n\}$
with $\operatorname{gcd}_r (A) = d^r$ and $\operatorname{Card} A = k$. Hence $\sum_{1 \le d^r \le n} f_k^{(r)} \left(\left[\frac{n}{d^r} \right] \right) = \binom{n}{k}$ which
proves (9).
By Theorem (1) we have $f_k^{(r)}(n) = \sum_{1 \le d^r \le n} \mu_r \left(d^r \right) \left(\left[\frac{n}{d^r} \right] \\ k \right)$ which proves (10).

Theorem 4. For all positive integers $n \ge 2^r$, r we have

$$2^{n} - 2^{\left\lfloor \frac{n}{2^{r}} \right\rfloor} - n \cdot 2^{\left\lfloor \frac{n}{3^{r}} \right\rfloor} \le f^{\left(r\right)}\left(n\right) \le 2^{n} - 2^{\left\lfloor \frac{n}{2^{r}} \right\rfloor}.$$
(11)

Proof: For $n \ge 2^r$ we have by equation (7) $2^n - 1 = \sum_{1 \le d^r \le n} f^{\binom{r}{r}}\left(\left[\frac{n}{d^r}\right]\right)$ This implies $2^n = f^{\binom{r}{r}}\left(\left[n\right]\right) + f^{\binom{r}{r}}\left(\left[\frac{n}{2^r}\right]\right) + \sum_{3 \le d^r \le n} f^{\binom{r}{r}}\left(\left[\frac{n}{d^r}\right]\right) + 1$ $\leq f^{(r)}(n) + 2^{\left\lfloor \frac{n}{2^r} \right\rfloor} + n \cdot 2^{\left\lfloor \frac{n}{3^r} \right\rfloor}$ combining this with equality (1), $2^n - 2^{\left\lfloor \frac{n}{2^r} \right\rfloor} - n \cdot 2^{\left\lfloor \frac{n}{3^r} \right\rfloor} \leq f^{(r)}(n) \leq 2^n - 2^{\left\lfloor \frac{n}{2^r} \right\rfloor}.$

Theorem 5. For all positive integers $n \ge 2^r$, k and r

$$\binom{n}{k} - \left(\begin{bmatrix}\frac{n}{2^r}\\k\end{bmatrix}\right) - n \left(\begin{bmatrix}\frac{n}{3^r}\\k\end{bmatrix}\right) \le f_k^{(r)}(n) \le \binom{n}{k} - \left(\begin{bmatrix}\frac{n}{2^r}\\k\end{bmatrix}\right).$$
(12)

Proof: By equation (9) $\sum_{1 \le d^r \le n} f_k^{(r)} \left\lfloor \left\lfloor \frac{n}{d^r} \right\rfloor \right\rfloor = {\binom{n}{k}}$

Therefore
$$\binom{n}{k} = f_k^{(r)}([n]) + f_k^{(r)}\left(\left[\frac{n}{2^r}\right]\right) + \sum_{\substack{3^r \le d^r \le n}} f_k^{(r)}\left(\left[\frac{n}{d^r}\right]\right)$$

 $\leq f_k^{(r)}(n) + \left(\left[\frac{n}{2^r}\right]_k\right) + n\left(\left[\frac{n}{3^r}\right]_k\right).$
Therefore $\binom{n}{k} - \left(\left[\frac{n}{2^r}\right]_k\right) - n\left(\left[\frac{n}{3^r}\right]_k\right) \leq f_k^{(r)}(n) \leq \binom{n}{k} - \left(\left[\frac{n}{2^r}\right]_k\right)$ by equation (2).

3. A Phi function for sets and its *r*-generalization

Nathanson [2] defined Phi function for sets, denoted by $\Phi(n)$ to be the number of nonempty subsets A of $\{1, 2, 3, ..., n\}$ such that gcd(A) is relatively prime to n. For example for distinct primes p and q we have

$$\Phi(p) = 2^p - 2, \quad \Phi(p^2) = 2^{p^2} - 2^p, \quad \Phi(pq) = 2^{pq} - 2^p - 2^q + 2.$$

Note that $\Phi_1(n) = \varphi(n)$ for all $n \ge 1$. We define, for a positive integer $r \ge 1$, $\Phi^{(r)}(n)$ to be the number of non-empty subsets *A* of $\{1, 2, ..., n\}$ such that greatest r^{th} power

common divisor of A and n is 1. For example for distinct primes p and q,

$$\Phi^{(r)}(p^{r}) = 2^{p^{r}} - 2$$

$$\Phi^{(r)}(p^{2r}) = 2^{p^{2r}} - 2^{p^{r}}$$

$$\Phi^{(r)}(p^{r}q^{r}) = 2^{p^{r}q^{r}} - 2^{q^{r}} - 2^{p^{r}} + 2^{p^{r}}$$

Corollary 6. If $F^{(r)}(n)$ and $G^{(r)}(n)$ are arithmetic functions, then

$$G^{(r)}(n) = \sum_{d^r/n} F^{(r)}\left(\frac{n}{d^r}\right) \iff F^{(r)}(n) = \sum_{d^r/n} \mu_r\left(d^r\right) G^{(r)}\left(\frac{n}{d^r}\right).$$

Proof: Assume $G^{(r)}(n) = \sum_{d^r/n} F^{(r)}\left(\frac{n}{d^r}\right)$.

Consider
$$\sum_{d^r/n} \mu_r\left(\frac{n}{d^r}\right) = \sum_{d^r/n} \mu_r\left(d^r\right) \left(\sum_{\substack{t^r/\frac{n}{d^r}}} F^{(r)}\left(\frac{n}{t^r d^r}\right)\right)$$

 $= \sum_{u^r/n} F^{(r)}\left(\frac{n}{u^r}\right) \sum_{d^r/u^r} \mu_r\left(d^r\right) = F^{(r)}(n).$ Conversely, assume $F^{(r)}(n) = \sum_{d^r/n} \mu_r\left(d^r\right) G^{(r)}\left(\frac{n}{d^r}\right).$ Consider $\sum_{d^r/n} F^{(r)}\left(\frac{n}{d^r}\right) = \sum_{d^r/n} \left(\sum_{t^r/\frac{n}{r}} \mu_r\left(t^r\right) G^{(r)}\left(\frac{n}{t^r d^r}\right)\right)$

$$= \sum_{u^r/n} G^{(r)}\left(\frac{n}{u^r}\right) \left(\sum_{t^r/u^r} \mu_r\left(t^r\right)\right) = G^{(r)}(n).$$

Theorem 7. For all positive integers $n, r \ge 1$,

$$\sum_{d^r/n} \Phi^{(r)}\left(\frac{n}{d^r}\right) = 2^n - 1.$$
(13)

Also
$$\Phi^{(r)}(1) = 1$$
 and for $n \ge 2^r$, $\Phi^{(r)}(n) = \sum_{d^r/n} \mu_r \left(d^r\right) \left(2^{\frac{n}{d^r}} - 1\right).$ (14)

Proof: For every r^{th} power divisor d^r of n we define the function $\psi^{(r)}(n, d)$ to be the number of non-empty subsets A of $\{1, 2, ..., n\}$ such that greatest r^{th} power common divisor of A and n is d^r , i.e.

$$\psi^{(r)}(n, d) = \# \Big\{ A \subseteq \{1, 2, ..., n\} : A \neq \phi, \text{ and } \gcd_r \big(A \cup \{n\} \big) = d^r \Big\}.$$

Then $\psi^{(r)}(n, d) = \Phi^{(r)} \bigg(\frac{n}{d^r} \bigg)$ and hence $2^n - 1 = \sum_{d^r/n} \psi^{(r)}(n, d) = \sum_{d^r/n} \Phi^{(r)} \bigg(\frac{n}{d^r} \bigg).$

which proves (13). This implies $\Phi^{(r)}(n) = \sum_{d^r/n} \mu_r(d^r) \left(2^{\frac{n}{d^r}} - 1 \right)$ (by using corollary (6)) which proves (14).

Theorem 8. For positive integers $n \ge 2^r$, k and r $\sum_{\substack{d \\ n \\ n}} \Phi_k^{(r)} \left(\frac{n}{d^r}\right) = \binom{n}{k}$

(15)

and
$$\Phi_k^{(r)}(n) = \sum_{d^r/n} \mu_r \left(d^r \right) \left(\frac{n}{d^r} \right).$$
(16)

Proof: For every r^{th} power divisor d^r of n we define $\psi_k^{(r)}(n, d)$ to be number of subsets A of $\{1, 2, ..., n\}$ of Cardinality k such that greatest r^{th} power common divisor of A and n is d^r . That is

$$\psi_k^{(r)}(n, d) = \# \left\{ A \subseteq \{1, 2, ..., n\} : \# A = k \text{ and } \left(\gcd_r(A) \cup \{n\} \right)_r = d^r \right\}.$$
Note that $\psi_k^{(r)}(n, d) = \Phi_k^{(r)} \left(\frac{n}{d^r} \right)$

$$\sum_{d^r/n} \psi_k^{(r)}(n, d) = \binom{n}{k} = \sum_{d^r/n} \Phi_k^{(r)} \left(\frac{n}{d^r} \right) \text{ which proves (15).}$$

Using Corollary (6), we get $\Phi_k^{(r)}(n) = \sum_{d^r/n} \mu_r(d^r) \begin{pmatrix} \frac{n}{d^r} \\ k \end{pmatrix}$ which proves (16).

Theorem 9. Let $n \ge 2^r$. If n is odd then $\Phi^{(r)}(n) = 2^n + O\left(n \cdot 2^{\left\lfloor \frac{n}{3^r} \right\rfloor}\right)$. (17)

If
$$2^{r}|_{n}$$
, $\Phi^{(r)}(n) = 2^{n} - 2^{\frac{n}{2^{r}}} + O\left(n \cdot 2^{\left\lfloor \frac{n}{3^{r}} \right\rfloor}\right).$ (18)

Proof: We have $\Phi^{(r)}(n) = \sum_{\substack{d^r=1\\ \gcd_r(d^r, n)=1.}}^n \# \left\{ A \subseteq \{1, 2, ..., n\} / A \neq \phi, \gcd_r(A) = d^r \right\}$ where

the summation is over r^{th} power of integer *d* which satisfy the condition $1 \le d^r \le n$

$$= \sum_{\substack{d^r=1\\ \gcd_r(d^r, n)=1.}}^n f^{(r)}\left(\left[\frac{n}{d^r}\right]\right)$$

If *n* is odd, then
$$\Phi^{(r)}(n) = f^{(r)}(n) + f^{(r)}\left(\left[\frac{n}{2^r}\right]\right) + \sum_{\substack{3^r \le d^r \le n \\ \gcd(d^r, n) = 1}}^{n} f^{(r)}\left(\left[\frac{n}{d^r}\right]\right)$$

$$= 2^n - 2^{\left[\frac{n}{2^r}\right]} + O\left(n.2^{\left[\frac{n}{3^r}\right]}\right) + 2^{\left[\frac{n}{2^r}\right]} + O\left(2^{\left[\frac{n}{4^r}\right]}\right) + O\left(n.2^{\left[\frac{n}{3^r}\right]}\right)$$
$$= 2^n + O\left(n.2^{\left[\frac{n}{3^r}\right]}\right)$$
(Using equation (11)) which proves (17).
If $2^r \mid n$, then $\Phi^{(r)}(n) = f^{(r)}(n) + f^{(r)}\left(\frac{n}{2^r}\right) + \sum_{\substack{3^r \le d^r \le n \\ \gcd(d^r, n) = 1}}^{n} f^{(r)}\left(\left[\frac{n}{d^r}\right]\right)$
$$= 2^n - 2^{\frac{n}{2^r}} + O\left(n.2^{\left[\frac{n}{3^r}\right]}\right) + O\left(n.2^{\left[\frac{n}{3^r}\right]}\right)$$
$$= 2^n - 2^{\frac{n}{2^r}} + O\left(n.2^{\left[\frac{n}{3^r}\right]}\right)$$
which proves (18)

Theorem 10. If $2^r \nmid n$ and n is sufficiently large then

$$\Phi_{k}^{(r)}(n) = \binom{n}{k} + O\left(n \binom{\left\lfloor \frac{n}{3^{r}} \right\rfloor}{k}\right).$$
(19)

If
$$2^r | n$$
 then $\Phi_k^{(r)}(n) = {n \choose k} - {n \choose 2^r \choose k} + O\left(n \left[\frac{n}{3^r} \right]_k \right).$ (20)

Proof: We have

$$\Phi_k^{(r)}(n) = \sum_{\substack{1 \le d^r \le n \\ \gcd_r(d^r, n) = 1}} \# \left\{ A \subseteq \{1, 2, ..., n\} \colon \# A = k, \ \gcd_r(A) = d^r \right\}$$

$$= \sum_{\substack{1 \le d^r \le n \\ \gcd_r(d^r, n) = 1}} f_k^{(r)} \left(\left[\frac{n}{d^r} \right] \right).$$

By theorem (4), $f_k^{(r)}(n) = \binom{n}{k} - \left(\left[\frac{n}{2^r} \right] \right) + O\left(n \left(\left[\frac{n}{3^r} \right] \right) \right)$
Therefore $\Phi_k^{(r)}(n) = \binom{n}{k} - \left(\frac{n}{2^r} \right) + O\left(n \left(\left[\frac{n}{3^r} \right] \right) \right)$
 $+ \left(\frac{n}{2^r} \right) - \left(\left[\frac{n}{4^r} \right] \right) + O\left(n \left(\left[\frac{n}{6^r} \right] \right) \right) + O\left(n \left(\left[\frac{n}{3^r} \right] \right) \right)$
 $= \binom{n}{k} - \left(\frac{n}{2^r} \right) + O\left(n \left(\left[\frac{n}{3^r} \right] \right) \right)$ if $2^r | n$.
If $2^r \nmid n = \Phi_k^{(r)}(n) = \binom{n}{k} + O\left(n \left(\left[\frac{n}{3^r} \right] \right) \right).$

4. Conclusion

In conclusion we have obtained effective formulas to get the exact number of r-relatively prime subsets of $\{1,2,...,n\}$ and number of non empty subsets A of $\{1,2,...,n\}$ such that A is r-relatively prime to n by deriving Mobius inversion formula r-generalised version.

Acknowledgement. We are grateful to the referees for suggesting some corrections and valuable comments.

REFERENCES

- 1. M.B.Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, Vol. 195. Springer-Verlag, New York, (2000).
- 2. Melvyn B.Nathanson, Affine invariants, relatively prime sets, and a Phi function for subsets of {1,2,...,n}, *Integers*, 7(2007), A1, 7pp.
- 3. V.Kavitha and R.Govindarajan, A study on Ramsey numbers and its bounds, *Annals of Pure and Applied Mathematics*, 8(2) (2014) 227-236.
- 4. M.Ayad and O.Kihel, The number of relatively prime subsets of {1,2,...,n}, *Integers*, 9 (2009) 163-166.

- 5. M.El.Bachraoui, On relatively prime subsets, combinatorial identities, and diaphontine equations, *J. Integers Seq.*, 15 (2012) Article 12.3.6, 9 pp.
- 6. C.Jayasekaran and A.Jancy Vini, Results on relatively prime dominating sets in graphs, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 359-369.