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Abstract. In this paper, we define strength of a path, stifed connectedness between
any two vertices and strongest path joining any weices in an interval-valued fuzzy
graph (IVFG). Then we define interval-valued fulridges (IVF bridges) and interval—
valued fuzzy cutnodes (IVF cutnodes) Also, we obtaiecessary and sufficient
conditions for an arc to be an IVF bridge and deseto be an IVF cutnode.
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1. Introduction

Graph theory has so many applications in almosteall world problems. But since the
world is full of uncertainty, fuzzy graph has a aejie importance in many real life
applications. The first definition of fuzzy graptasvby Kaufmann [16] in 1973. But it
was Rosenfeld [35] who considered fuzzy relationsfuzzy sets and developed the
theory of fuzzy graphs as a generalization of Butgaph theory in 1975. The works of
Bhattacharya[9], Bhutani [10], Bhutani and Battdd]| Bhutani and Rosenfeld [12,13,
14], Mordeson [18], Mordeson and Nair [19,20], Mesdn and Peng [21], Sunitha and
Vijayakumar [43-46], Nagoor Gani and Ahmed [22],gdar Gani and Malarvizhi [23],
Nagoor Gani and Radha [24,25] form the foundatibralbresearches in fuzzy graph
theory. In [42], Sunitha and Sunil Mathew made ayvgood survey of the researches
done so far in fuzzy graph theory. Samanta andr®aduced fuzzy tolerance graphs
[36], fuzzy k-competion graphs and p-competitiozzfy graphs [37], fuzzy threshold
graphs [38] and bipolar fuzzy hypergraphs [39].

In 2009, Hongmei and Lianhua [15] gave the defimitiof IVFG which is a
generalization of fuzzy graph.. Since then, IVFG gmwing fast and has wide
applications in many fields. Akram and Dudek [%],their paper Interval valued fuzzy
graphs defined the operations of Cartesian prodt@position, union and join on

473



Ann Mary Philip

IVFGs and investigated some properties. They atdduced the notion of interval-
valued fuzzy complete graphs and presented sonpeiies of self complementary and
self weak complementary interval-valued fuzzy coetglgraphs. Akram also introduced
interval-valued fuzzy line graphs [2] and bipolarzdy graphs [1]. Talebi and H.
Rashmanlou [47] studied on isomorphism of IVFGsstRaanlou and Jun [29] defined
the three new operations, direct product, semingtrproduct and strong product of
IVFGs and discussed its properties on complete &/FBebnath [28] introduced
domination in IVFGs. Rashmanlou and Pal definedgatar IVFG [26], Balanced IVFG
[30] and Antipodal IVFG [31] and studied its profies. Also, they studied on the
properties of highly irregular IVFG [33] and defthésometry on IVFG [32]. Akram,
Alshehri and Dudek [4] introduced certain typesI®¥FG such as balanced IVFGs,
neighbourly irregular IVFGs, neighbourly total igidar IVFGs, highly irregular IVFGs,
highly total irregular IVFGs. Again Akram, Yousaha Dudek [7] studied on the
properties of self centered IVFGs. Pal, Samanta BRadhmanlou [27] defined the degree
and total degree of an edge in the Cartesian ptaha composition of two IVFG and
obtained some results. Mohideen [8] studied onngtrand regular IVFGs. Narayanan
and Maheswari [34] introduced strongly edge irragaind strongly edge totally irregular
IVFG and made a comparative study between the Tatebi, Rashmanlou and Ameri
[48] studied on product IVFGs. Total regularitytbg join of two IVFGs was discussed
in [40]. Again regular and edge regular IVFGs wstedied in [41].

Bridges and cutnodes is a very important concemjraph theory. Rosenfeld [35]
obtained fuzzy analogs of bridges and cutnodegh€uit was studied by Bhattacharya
[9]. Again Sunitha and Vijayakumar studied abowt groperties of fuzzy bridges and
fuzzy cutnodes [44]. It was also studied by Mordfeand Nair [20]. Strength of the paths
in IVFGs were discussed by Rashmanlou and Pal f8dain it was studied by Akram,
Yousaf and Dudek [7]. Akram and Alsheri defineduitionistic fuzzy bridges and
intuitionistic fuzzy cutnodes in [3]. Again Akramm@ Farooq defined bipolar fuzzy
bridges and bipolar fuzzy cutnodes in [6]. Bipofazzy bridges and bipolar fuzzy
cutnodes were also characterized by Mathew, SuaitbdaAnjali [17].

In this paper, we define IVF bridges and IVF cute®dand study its various
properties.

2.Basic concepts

Graph theoretic terms and results used in this \wmogkeither standard or are explained as
and when they first appear. We consider only singiaphs. That is, graphs with
multiple edges and loops are not considered.

Definition 2.1. [35] Let V be a non empty set. A fuzzy graph is a pair oftfioms
G: (o,1) whereo is a fuzzy subset of/ and u is a symmetric fuzzy relation an That
is, 0:V - [0,1] andu:V xV - [0,1] such thau(u,v) < o(u) A o(v) for all u,v in
V whereg(u) A o(v) denotes minimum aof (u) and o(v).

Definition 2.2.[5] An interval numbeD is an intervala™,a*t]with0 <a” < a* < 1.
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Remark 2.1. (i) The interval numbefa, a] is identified with the numbes € [0,1].
(ii) D[0,1] denotes the set of all interval numbers.

Definition 2.3. [5] For interval number®; = [a7, b ] andD, = [a3, b5 ]

e rmin(Dy,D,) = [min{a7, a3}, min{bf, b}

e rmax(Dy,D,) = [max{a7, a3}, max{bf,bF}]

e D+ D, = [a7 + a; — aj .a;, bf + b — by .b5]

e Di< D, © aj < a;andb] < bJ

e D,=D, © aj = a; and b{ = bS

e D;< D, © D, < D, andD; # D,

. kD = k[a7,bf] = [kai, kb{]where 0 < k < 1.
Then(D[0,1], <,V,A) is a complete lattice witf0,0] as the least element afig1] as the
greatest. Herg denotesnaximum andA denotesninimum.

Definition 2.4. [5] The interval-valued fuzzy setAin V is defined by
A= {(x, [z ), uf ()D:x € V} whereu; (x) anduf(x) are fuzzy subsets ¢f such
that u;(x) < pui(x)for all x e V. We shall sometimes denote the IVES by

[ (), iz (1.
For any two IVFSs1 = [u; (x), uh (x)] andB = [ug (x), uf (x)] in V, we define

e AUB-= {(x, max(,ug(x),uE(x)),max(,uZ(x),,ug(x))) ‘X € V}
e ANB= {(x, min(uz (x), ug (%)), min(,uj(x),,ug(x))) ‘X € V}

Definition 2.5.[5] If G* = (V,E) is a graph, then by an interval-valued fuzzy reteB
on the setE we mean an IVFS such thatz(xy) <min(uy(x),u;(y)) and

i (xy) < min(u} (), uf()) forallxy € E.

Definition 2.6 [5] By an interval — valued fuzzy graph of a graph= (V,E), we mean
a pairG = (4,B), whered = [u;,u}] is an IVFS oVandB = [ug,ut]is an IVFR
OnE.

Definition 2.7 [26] The negative degree of a vertaxe V is defined byd™(u) =
Y uver g (uv). Similarly, positive degree of a vertaxe V is defined byd*(u) =
Yuver Ui (wuv).Then the degree of the vertexu eV is defined as

dw) = [d~(w),d*W)].

Definition 2.8. [26] If d~(u) = k,,d"(u) = k, for all u€V and k,k, are real
numbers, then the grapls is called [k,,k,] - regular interval-valued fuzzy grajgin
regular interval — valued fuzzy graph of degileg k.
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Definition 2.9.[5] An IVFG G = (4, B) is said to be a complete interval-valued fuzzy

graph if u5(xy) = min(uz(0), ux()) and i (xy) = min(ui (o), ui()) for all
x,y €V.

Theorem 2.1[4] Let G = (A,B) be an IVFG on a grap&* = (V,E) such thatG* =
(V,E) is an odd cycle. Thefiis a RIVFG if and only if#2= [ug,uz] is a constant
function.

Theorem 2.2.[26] Let G = (4,B) be an IVFG on a grapf* = (V,E) such that
G* = (V,E) is an even cycle. Thehis a RIVFG if and only if eithe= [ug,uf] is a
constant function or alternate edges have same ership values.

3. Strongest path, IVF bridge, IVF cutnode
Definition 3.1. A pathP in an interval — valued fuzzy graghis a sequence of distinct
verticesv,, v,, 5 ... v, such that either one of the following conditioasatisfied.

1. wup(vv;) > 0 andug (v;v;) > 0 for somei, ).

2. wug(vv;) = 0 anduf (v;v;) > 0 for somei, j.
A pathP:v,,v,,v5 .7, in G is called a cycle if; = v,,; andn = 3. Whenn = 3, we
havev,v,v;v;.

Definition 3.2. An IVFG G is said to be connected if any two nodes are gbinea path.

Definition 3.3. Let P: vy, vy, v, ... v, be a path in an IVF@. Thep™ strength of the path
P is defined as,-(P) = AL, up- (v;—1,v;) and theu*strength of the path is defined
asS,+(P) = Ay up+ (vi—1,v;). Then the strengthu{p*strength) of the patl® is
defined as

Su-u+(P) = [S,-(P),S,+(P)] whereA stands for minimum.

Definition 3.4. Let u and v be any two vertices of an IVFG. Then the maximum of
the u~ strength of various paths connectiongund v is called theu™ strength of
connectedness betweemand v and is denoted by(ug-)®(u,v). Similarly, the
maximum of theut strength of various paths connectingind v is called thep*
strength of connectedrelsetween: and v and is denoted biug+)* (u, v).

Notation. Let G be an IVFG. The.~ strength of connectedness between any two vertices
uand v can also be denoted €ONN,(u, v) and theu™ strength of connectedness
betweeru and v can also be denoted BEONN; (u, v).

Definition 3.5. The strongest path joining any two vertieegnd v is that path which
hasu~ strength equal&z-)* (u, v) andu* strength equal&ug+)* (u, v).
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Remark 3.1.In crisp graph theory and fuzzy graph theory, siemt path joining any two
vertices always exist. But in interval- valued fuzgraph theory, the strongest path
joining any two verticest and v does not always exist. It exists if and only i€ g
strength of connectedness and strength of connectedness betweamnd v
corresponds to the same path.

Example 3.1. The following diagram presents an IVFG.

a[0.1,0.5]

[0.1,0.5] [0.2,0.4]

[0.2,0.3]

b[0.2,0.6] €[0.4,0.7]

G
Figure 3.1: An example to show that strongest path betweenaoyertices does not always
exist in the case of IVFGs.

The following table gives all possible— b paths inG and itsu~ strengths and™*

strengths.
Patt u~ strength ut strength
Pl: a, b 0.1 0.t
Py:a,c,b 0.z 0.2

Table 3.1: Table showing various — b paths inG and itsu~ strengths ang* strengths

Now, (ug-)®(a,b) = NCONN;(a,b) = 0.2 and (ug+)*(a,b) = PCONNg;(a, b) = 0.5
and this corresponds to two different paths. Sodbfinition there does not exist a
strongest path betweemand b.

Definition 3.6. An arc(u,v) of an IVFGG is called .~ bridge if the deletion ofu, v)
reduces th@™ strength of connectedness between some pair ife®ofG and is called
apt bridge if the deletion ofu, v) reduces the:™ strength of connectedness between
some pair of vertices @f.

An arc(u,v) of an IVFGG is called an interval valued fuzzy bridge (IVRdge) if it is
both au~ bridge and a* bridge.

Definition 3.7. A nodew of an IVFGG is called au™ cutnode if the deletion of
reduces th@~ strength of connectedness between some otheofpadrtices ofc and is
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called apt cutnode if the deletion ofy reduces theu®™ strength of connectedness
between some other pair of verticeszof

A nodew of an IVFGG is called an interval valued fuzzy cutnode (IMEnode) if it is
both au~ cutnode and a* cutnode.

Example 3.2.Consider the IVFG; given below.

0.1,0.2
a[0.4,0.5] b[0.5,0.6]
[0.5,0.6]
[0.4,0.5] [0.2,0.3]
[0.3,0.4]
d [0.5,0.6] €[0.3,0.41

G
Figure 3.2: Example to explain terms in definitions 3.1- 3.7

The following table gives all possible— b paths inG and itsu~ strengths angi*
strengths.

Patt u~ strength u't strength
Pi:a,b 0.1 0.z
Pyia,d,b 0.4 0.
Ps;:a,d,c,b 0.z 0.z

Table 3.2: Table showing various — b paths inG and itsu~ strengths ang* strengths

Now, (ug-)*(a,b) = NCONN¢;(a, b) = 0.4 and(ug+)*(a,b) = PCONN;(a, b) = 0.5.

Clearly, P,: a,d, b is the strongest — b path inG. Also, we can see that the removal of
the arc (a,d) reduces theu~ and u* strength of connectedness betweaeand b.

~ (a,d) is an IVF bridge. Again the removal of the nadleeduces the.~ and u*
strength of connectedness betweernd b. .- d is an IVF cutnode.

Remark 3.2. An IVF bridge of an IVFGG need not be a bridge &™. In example
3.2,(a,d) is an IVF bridge, but it is not a bridge ®f since even after its removér is
still connected.

Definition 3.8. A maximum spanning tregf a connectetVFG G = (4, B) is an interval
valued fuzzy spanning subgragh= (4,C) such thatT* is a tree and for which
Yuzv he- (W, v) andY»p, U+ (u, v) are maximum.
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Theorem 3.1.Let G be an IVFG and ifug-, ug+] is a constant for every edge ®fthen
NCONN¢; (u, v) andPCONN (u, v) will be constants for any two verticesand v of G .

Proof: Let G be an IVFG and lefug-, ug+](e) = [c1, c,] for every edgee of G where
¢, and c, are constants. Letand v be any two vertices @f. Then for everyu — v path
P of G, S,-(P) = c¢; andS,+ (P) = c,. Then by the definition of the™ andu™ strength
of connectednes8lCONN (u, v) = ¢; , a constant anBCONN, (u, v) = ¢, , a constant.

Definition 3.9. An arc (u,v)of an IVFG G is called N — weakest if ug(u,v) <
ug (x,y) where (x,y) is any other arc of different from (u,v) and is called P —
weakest if uf(u,v) < ph(x,y) where(x, y)is any other arc of different from(u, v)
An arc(u,v) of an IVFGG is called the weakest arc &fif it is bothN — weakest and
P — weakest

Theorem 3.2.The following statements are equivalent

1) (u,v)is an IVF bridge

2) NCONNg_(y)(w,v) < pug(u,v) andPCONNg_ ) (u, v) < pg(u,v)

3) (u,v) is neither the N- weakest nor P-weakest arc ofcyuie.
Proof.

2)=(1
For that we show that(1) = ~(2). Supposdu, v) is not an IVF bridge. Then we have
3 cases.
Case 1. (w,v) is not au~bridge. ThenNCONNg;_(,,)(w, v) = NCONNg(u,v) =
ps(w,v)
Case 2. (u,v) is not au*bridge. ThenPCONNg_(, ) (u, v) = PCONNg (u,v) =
s (w,v)
Case3.(u, v) is neither au~bridge nor au*bridge.
Then NCONNg_1)(w, v) = NCONNg(u, v) = pp(u,v) and PCONNg_(y ) (u,v) =
PCONN; (u, v) = uf (u,v).
Cases (1), (2) and (3) together implie$2).
1= (3

For that we show that(3) = ~(1). Suppose~(3) holds.Then there arises 3 cases.
Case 1. (u,v) is a N — weakest arc of a cycle. Then any gathvolving the arq(u, v)
can be coverted into a pa# not involving the ardu, v) such thats,-(P") = S,-(P)
using the rest of the cycle as a path frerto v. Hence(u, v) cannot be a~bridge and
hence it cannot be an IVF bridge.
Case 2. (u,v) is a P — weakest arc of a cycle. Then any pathvolving the arq(u, v)
can be coverted into a paft not involving the arqu, v) such thatS,+(P') = S,+(P)
using the rest of the cycle as a path frorto v. Hence(u, v) cannot be a*bridge and
hence it cannot be an IVF bridge.
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Case 3. Arc (u,v) is both N — weakest and P - weakest.Then anypatkolving the arc
(u,v) can be coverted into a paki not involving the ardu,v) such thatS,-(P") =

Sy-(P) andS,+(P') = S,+(P) using the rest of the cycle as a path frorto v. Hence
(u, v) cannot be a~bridge and:*bridge and hence it cannot be an IVF bridge.
)= (2

We show that-(2) = ~(3). When we consider(2), 3 cases arise.

Case 1. SupposeNCONNg_(,1)(w,v) = ug(w,v). Then there is a —v path P not
involving (u, v) such thatS,-(P) = ug(u,v) . This pathP together with(u, v) forms a

cycle of which(u, v) is the N-weakest arc.

Case 2. SupposePCONNg_(y)(u, v) = ug(u,v). Then there is a —v pathP not
involving (u, v) such thatS,+(P) = ug (u, v). This pathP together with(u, v) forms a
cycle of which(u, v) is the P-weakest arc.

Case 3. SuppoSeNCONN_ () (W, v) = pg (u, v) andPCONNg_(y ) (u, v) = ug (u, v).

Then there is ao —v path P not involving (u,v) such thatS,-(P) = ug(u,v) and

S,+(P) = u (u, v). This pathP together with(u, v) forms a cycle of whiclfu, v) is the

weakest arc.

Cases (1), (2) and (3) together implie$3).

Remark 3.3.From theorem 3.2, we can conclude that N — weakas$tP — weakest arcs
of cycles cannot be IVF bridges and thus we hagddtowing corollary.

Corollary 3.1. Let G = (4,B) be an IVFG such that* is a cycle and let; =
Aug(u,v) andt, = Auf(u,v) , then all the arcgu,v) such thatug(u,v) > t,and
ug (u,v) > t, are IVF bridges.

Example 3.3.Consider the IVFG given belowsuch thatz* is a cycle

a[0.2,0.8] b[0.3,0.9]
[0.2,0.4
[0.1,0.5] [0.3,0.5]
[0.1,0.4]
di0.4,0.91 €[0.3,0.7]
G

Figure 3.3: Example to illustrate Corollary 3.1

Heret; = 0.1 andt, = 0.4. Clearly(a, b) and(b, c¢) are IVF bridges.

Theorem 3.3.Let G = (4,B) be an IVFG and le{u,v) be an IVF bridge. Then
NCONNg (u, v) = ug (u, v) andPCONNg (u, v) = ug (u, v).
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Proof: For any arc(u,v), we haveNCONN; (u, v) = uz(u, v) and PCONN;(u,v) =
ug (u,v). Suppose thafu,v) is an IVF bridge. Also suppose thMCONN(u,v) >
ug (u, v) andPCONN (u, v) > pf (u, v). Then there exists a strongest v pathP with
Sy=(P) > pg(u,v) andS,+(P) > ui (u,v) and all the arc$x, y) of this strongest path
haveug (x,y) > ug(u,v) andug (x,y) > uf(u,v). Now this pathP together with the
arc (u, v) forms a cycle in whiclfu, v) is the weakest arc contradicting tlfatv) is an
IVF bridge. Hence, our assumption is wrong and tmy possibility is that
NCONNg; (u, v) = ug (u, v) andPCONN; (v, v) = uf (u, v)

The following example shows that the converse efahove theorem is not true

Example 3.4.In the following IVFG (u,v) and (x,w) are the only IVF bridges and
NCONN;(v,w) = ug(v,w) , PCONNg;(v,w) = uf(v,w) and NCONN;(u,x) =
ug (u, x) , PCONNg (u, x) = uj (u,x) , but(v,w) and (u, x) are not IVF bridges.

u[0.3,0.5] v[0.4,0.6]
[0.3,0.4]
[0.1,0.2] [0.1,0.2]
[0.3,0.4]
X [0.4,0.5] w[0.5,0.6]
G

Figure 3.4:Example to show that converse of theorem 3.3 fisrne

Remark 3.4. It follows from theorem 3.2 and theorem 3.3 thataac (u, v) is an IVF
bridge if and only if it is the unique strongest v path.

Theorem 3.4.Let G = (4,B) be an IVFG and le{u,v) be an IVF bridge. Then
NCONNg_ () (4, v) < NCONNg (w, v) andPCONNg_,, 1) (u, v) < PCONNg (u, v).
Proof: Clearly follows from Theorem 3.2 and Theorem 3.3.

In the next theorem, we give the conditions toditesBed by an IVFG to have atleast one
IVF bridge.

Theorem 3.5.Let G = (4,B) be an IVFG and any two edges ande, of G are such
that their membership degrees satisfies the foligvtivo conditions:
1. pp-(ey) # pp-(ez) and pg+(e1) # pp+(ez)
2. If up-(e1) < up-(ez), thenug+(e;) < pp+(ez) and if ug-(e1) > up-(ez), then
ug+(e1) > ug+(ez).
Then G has atleast one IVF bridge.
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Proof: Let G be an IVFG satisfying the conditions of the abtiveorem. Choose any
edge(uy, vy) such thaug (ug, vg) = max{ug (u,v); (u,v) is an edge of G}.

Clearly, uf (ug, vo) = max{ug (u, v); (u,v) is an edge of G} since we are considering
only those IVFGs satisfying the above two condgioNow there exists atleast one edge
(u, v) distinct from(ug, vy) such thapz (u, v) < ug (ug, vo) andug (w, v) < ug (ug, vo)-

We claim that(ugy, vy) is an IVF bridge ofG. For, the deletion of the edde, v,)
decreases the~ andu* strength of connectedness betwegmund v,. In otherwords,
NCONNG_ (44, v,) (U0, Vo) < 5 (g, Vo) @andPCONNg_(y,, v,) (1o, Vo) < pg (g, Vo). Then

by theorem 3.2(u,, vy) is an IVF bridge of;.

Corollary 3.2. Let G = (4,B) be an IVFG as given in theorem 3.5. Then an €dge)
for which ug (u, v) anduf (u, v) are maximum is an IVF bridge 6t

The converse of corollary 3.2 is not true whicklesar from the following example.

Example 3.5.

[0.4,0.5]

a[0.6,0.8] €l0.8.0.91

[0.6,0.7] d[0.8,0.9]

[0.8,0.9]

b[0.7,0.9] [0.3,0.4]

G
Figure 3.5: Example to shovconverse of corollary 2 is not true

Here(a; b) is an IVF bridge. Buug, u#1(a, b) is not maximum.
Next we give two theorems on IVF cutnode withoutqsr

Theorem 3.6.Let G = (4, B) be an IVFG such tha&* is a cycle. Then a node 6fis an
IVF cutnode if and only if it is a common node wbtIVF bridges.

Theorem 3.7 If w is common node of atleast two IVF bridges, theris an IVF
cutnode.

The following example shows that the converséefabove theorem is not true.

Example 3.6.In the following IVFG,a is an IVF cutnhode. Bufa, d) and (b, c) are the
only IVF bridges.
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[0.5,0.6]
a[0.7,0.8] b[0.8,0.9]
[0.5,0.4
0.2,0.3]
d [0.8,0.9] ¢[0.7,0.8]
[0.2,0.3]
G

Figure 3.6.Example to show that converse of theorem 3.7 tisroe

Theorem 3.8.Let G be an IVFG such that* is a cycle. If[ug-,ug+] is a constant for
every edge of7, thenG does not have an IVF bridge. Also, it does notehan IVF
cutnode.

Proof: SinceG* is a cycle, there exist two distinct paths betwaey two vertices. Again
since [ug-,ug+] is a constant for every edge ®f deletion of an edge does not reduce
the strength of connectedness between any twocesertiSoG does not have an IVF
bridge and hence by theorem 376also does not have an IVF cutnode.

Theorem 3.9. A RIVFG on an odd cycle does not have an IVFdmidHence it does not
have an IVF cutnode.

Proof: LetG = (4, B) be a RIVFG on an odd cycle. Then by theorem[2d5, pg+] is

a constant for every edge @fand by above theoreth does not have an IVF bridge and
hence an IVF cutnode.

Theorem 3.10.LetG = (4,B) be a RIVFG on an even cydie = (V,E). Then either

G does not have an IVF bridge or it Hé/sz IVF bridges wherg = |E|. Also, G does not
have an IVF cutnode.

Proof: Let G = (4,B) be a RIVFG on an even cyd¥ = (V,E). Then by theorem
2.2, either[ug-,ug+] is a constant for every edge 6for alternate edges have same
membership values.

Case 1. [ug-,ug+] is a constant. Then by theorem 3@,does not have an IVF bridge
and hence an IVF cutnode.

Case 2. Alternate edges have same membership values. bhearorollary 3.1, those
edges with greater membership values are IVF bsidd&. There areq/2 such edges
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whereq = |E|. HenceG hasq/2 IVF bridges. But then no vertex is a common vedéx
two IVF bridges. So by theorem 3.6, does not have an IVF cutnode.

Theorem 3.11.An arc(u,v) is an IVF bridge ofz = (4, B) if and only if (u, v) is in
every MST ofG.

Proof: Let (u,v) be an IVF bridge of;. Then arc(u, v) is the unique strongeat— v
path and hence is in every MST @f

Conversely, lef(u,v) be in every MSTT of ¢ and assume thdu, v) is not an IVF
bridge. Then by theorem 3.2, three cases arise.

Case 1. (u,v) is the N- weakest arc of some cycleGiThenNCONN (u, v) > ug (u,v)
andPCONN;; (u, v) = uf (u, v) which implies thafu, v) is in no MST ofG.

Case 2. (u,v) is the P- weakest arc of some cycl&irThenPCONN;; (u, v) > uf (u, v)
and TherNCONNg; (u, v) = ug (u, v) which implies thatu, v) is in no MST ofG.

Case 3. (u,v) is both the N- weakest and P-weakest arc of soyete dn G Then
NCONNg; (u, v) > pg(u,v) and PCONNg (u,v) > ug(u,v) and hence(u,v) is in no
MST of G.

Corollary 3.3. Let G be a connected IVFG withi| = n. The G has atmost — 1 IVF
bridges.
Proof: Follows directly from the above theorem.

Theorem 3.12.A nodew is an IVF cutnode of an IVFG if and only ifw is an internal
node of every MST of.

Corollary 3.4. Every IVFG has atleast two nodes which are nét ¢dtnodes ofr.

3. Conclusion

In this paper, we have defined the strength of eotetuness between two vertices of an
IVFG and extended the notion of bridges and cutaaddVVFGs. Then we have obtained

some conditions to be satisfied by an IVFG to hatleast one IVF bridge. Also we have

obtained characterizations of IVF bridges and IMEhodes.

Acknowledgements. The author is extremely grateful to the reviewerd the Editor-in-
Chief for their valuable comments and suggestiongtiproving the paper.

REFERENCES

1. M.Akram, Bipolar fuzzy graphdnformation Sciences, 181 (2011) 5548-5564.
2. M.Akram, Interval-valued fuzzy line graphkleural Computing Applications, 21
(2012) 145-150.

484



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

Interval—valued Fuzzy Bridges and Interval-valuedZy Cutnodes

M.Akram and N.O.Alsheri, Intuitionistic fuzzy cydeand intuitionistic fuzzy trees,
The ientific World Journal, 2014 (2014), Article ID 305836, 11 pages.

M.Akram , N.O.Alsheri and W.A.Dudek, Certain typekinterval — valued fuzzy
graphsJournal of Applied Mathematics, Volume 2013 (2013), Article ID 857070, 11
pages.

M.Akram and W.A.Dudek, Interval-valued fuzzy graph€omputers and
Mathematics with Applications, 61 (2011) 289-299.

M.Akram and A.Farooq, Bipolar fuzzy treddew Trends in Mathematical Sciences,

3 (2016) 58-72.

M.Akram, M.Murthaza Yousaf and W.A.Dudek, Self ared interval-valued fuzzy
graphs Africa Mathematika, 26 (2015) 887-898.

B.A.Mohideen, Strong and regular interval-valuerzfugraphsJournal of Fuzzy Set
Valued Analysis, 3 (2015) 215-223.

P.Bhattacharya, Some remarks on fuzzy graftagtern Recognition Letters, 6
(1987) 297-302.

K.R.Bhutani, On automorphisms of fuzzy grapRsttern Recognition Letters, 9
(1989) 159-162.

K.R.Bhutani and A.Battou, On M-strong fuzzy graphsformation Sciences, 155
(2003) 103-109.

K.R.Bhutani and A.Rosenfeld, Geodesics in fuzzypbsa Electronic Notes in
Discrete Mathematics, 15 (2003) 51-54.

K.R.Bhutani and A.Rosenfeld, Fuzzy end nodes inzyugraphs, Information
Sciences, 152 (2003) 323-326.

K.R.Bhutani and A.Rosenfeld, Strong arcs in fuzzgpds, |Information Sciences,
152 (2003) 319-322.

J.Hongmei and W.Lianhua, Interval-valued fuzzy suhigroups and subgroups
associated by interval-valued fuzzy gra2)9 WRI Global Congress on Intelligent
Systems, 2009, 484- 487.

A.Kaufman, Introduction a la Theorie des Sous-endesnFlous Masson et Cie 1,
(1973).

S.Mathew, M.S.Sunitha and N.Anjali, Some conneisticoncepts in bipolar fuzzy
graphsAnnals of Pure and Applied Mathematics, 7 (2) (2014) 98-108.
J.N.Mordeson, Fuzzy line graphattern Recognition Letters, 14 (1993) 381-384.
J.N.Mordeson and P.S.Nair, Cycles and cocyclesuakyf graphs,Information
Sciences, 90 (1996) 39-49.

J.N.Mordeson and P.S.Nakuzzy Graphs and Fuzzy Hypergraphs, Physica-verlag,
Heidelberg, (2000).

J.N.Mordeson and C.S.Peng, Operations on fuzzyhgrapformation Sciences, 79
(1994) 159-170.

A.Nagoor Gani and M.Basheer Ahmed, Order and siziizzy graphBulletin of
Pure and Applied Sciences, 22E (1) (2003) 145-148.

A.Nagoor Gani and J.Malarvizhi, Isomorphism on fuzgraphs, International
Journal of Mathematical, Computational, Physical, Electrical and Computer
Engineering, in press.

A.Nagoor Gani and K. Radha, Some sequences in fgraphs Far East Journal of
Applied Mathematics, 31 (3) (2008) 321-325.

485



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Ann Mary Philip

A.Nagoor Gani and K.Radha, On regular fuzzy graptur,nal of Physical Sciences,
12 (2008) 33-40.

M.Pal and H.Rashmanlou, Irregular interval-valuezizly graphsAnnals of Pure and
Applied Mathematics, 3(1) (2013) 56-66.

M.Pal, S.Samanta and H.Rashmanlou, Some resultgamal-valued fuzzy graphs;
International Journal of Computer Science and Electronics Engineering, 3(3) (2015)
205-211.

P.Debnath, Domination in interval-valued fuzzy drap Annals of Fuzzy
Mathematics and Informatics, in press.

H.Rashmanlou, Y.B.Jun, Complete interval-valuedzjugraphs,Annals of Fuzzy
Mathematics and Informatics, 6(3) (2013) 677-687.

H.Rashmanlou and M.Pal, Balanced interval-valuedzyugraphs, Journal of
Physical Sciences, 17 (2013) 43-57.

H.Rashmanlou and M.Pal, Antipodal interval-valuettzly graphs,International
Journal of Applications of Fuzzy Sets and Artificial Intelligence, 3 (2013) 107-130.
H. Rashmanlou and M. Pal, Isometry on interval-gdlfuzzy graphs nternational
Journal on Fuzzy Mathematical Archive, 3 (2013) 28-35.

H.Rashmanlou and M.Pal, Some properties of Highiggular interval-valued fuzzy
graphs World Applied Sciences Journal, 27(12) (2013) 1756-1773.

S.Ravi Narayanan and N.R.Santhi Maheswari, Stromglge irregular interval-
valued fuzzy graphsinternational Journal of Mathematical Archive, 7(1) (2016)
192-199.

A.Rosenfeld, Fuzzy GraphBuzzy Sets and their Applications. In: Zadeh, L.A., Fu,
K.S, Shimura, M.(eds.), Academic Press, New York (1975),77-95.

S.Samanta and M.Pal, Fuzzy tolerance grapies;national Journal of Latest Trends
in Mathematics, 1(2) (2011) 57-67.

S.Samanta and M.Pal, Fuzikycompetition graphs ang-competition fuzzy graphs,
Fuzzy Information and Engineering, 5(2) (2013) 191-204.

S.Samanta and M.Pal, Fuzzy threshold gra@hig, International Journal of Fuzzy
Systems, 3 (12) (2011) 360-364.

S.Samanta and M.Pal, Bipolar fuzzy hypergraphternational Journal of Fuzzy
Logic Systems, 2(1) (2012) 17-28.

S.Sebastian and Ann Mary Philip, On total regwadf the join of two interval
valued fuzzy graphs$nternational Journal of Scientific and Research Publications,
6(12) (2016) 45-55.

S. Sebastian and Ann Mary Philip, Regular andebdgular interval valued fuzzy
graphsJournal of Computer and Mathematical Sciences, 8(7) (2017) 309-322.
M.S.Sunitha and S.Mathewruzzy graph theory: A surveyAnnals of Pure and
Applied Mathematics, 4 (1) (2013) 92-110.

M.S.Sunitha and A.Vijayakumar, Complement of a fugzraph,Indian Journal of
Pure and Applied Mathematics, 33 (9) (2002) 1451-1464.

M.S.Sunitha and A.Vijayakumar, A characterizatioh fozzy trees,Information
Sciences, 113 (1999) 293-300.

M.S.Sunitha and A.Vijayakumar, Blocks in fuzzy dgnapThe Journal of Fuzzy
Mathematics, 13 (1) (2005) 13-23.

486



Interval—valued Fuzzy Bridges and Interval-valuedZy Cutnodes

46. M.S.Sunitha and A.Vijayakumar, Some metric aspetfsizzy graphsProceedings
of the conference on Graph connections, Cochin University of Science & Tech,
Cochin, India, January 28-31(1998) 111-114.

47. A.A.Talebi and H.Rashmanlou, Isomorphism on intewedued fuzzy graphs,
Annals of Fuzzy Mathematics and Informatics, 6(1) (2013) 47-58.

48. A.A.Talebi, H.Rashmanlou and Reza Ameri, New cotxegf product interval-
valued fuzzy graphsjournal of Applied Mathematics and Informatics, 34 (3-4)

(2016) 179-192.

487



