Annals of Pure and Applied Mathematics Vol. 13, No. 2, 2017, 249-255 ISSN: 2279-087X (P), 2279-0888(online) Published on 9 May 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v13n2a12

Annals of **Pure and Applied Mathematics**

Some Remarks on Intuitionistic L- T₂ Spaces

R. Islam¹, M.S. Hossain² and M.R. Amin³

¹Department of mathematics, Pabna University of Science and Technology, Pabna-6600 Bangladesh. Email: rafiqul.pust.12@gmail.com

²Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh Email: sahadat@ru.ac.bd

³Department of Mathematics, Begum Rokeya University, Rangpur-5400, Bangladesh Email: ruhulbru1611@gmail.com

Received 11 April 2017; accepted 23 April 2017

Abstract. We defined and studied four notions of T_2 space in intuitionistic L-topological spaces in this paper. We showed some implications among them. Also, we studied some other properties of these concepts.

Keywords: Intuitionistic L-fuzzy sets, Intuitionistic L-fuzzy point, Intuitionistic L-fuzzy open sets, Intuitionistic topology.

AMS Mathematics Subject Classification (2010): 54A40, 03F55

1. Introduction

The notion of fuzzy sets was initially introduced by Zadeh [20] in 1965. After then in 1984, intuitionistic fuzzy sets were first published by Attanassov [2] and many works by the same author and his colleagues appeared in the literature [3, 4, 5]. Later, this concept was generalized to 'intuitionistic L-fuzzy set' by Atanassov and Stoeva [6]. Here, we introduced 'intuitionistic L-topology' by using 'intuitionistic L-fuzzy set' in Chang sense [7]. Moreover, we defined possible four notions, investigated some properties and features of T_2 space in intuitionistic L-topological spaces.

2. Basic definitions and preliminaries

We recall some definitions and known results in intuitionistic L-fuzzy sets and intuitionistic L-topological spaces.

Definition 2.1. [20] Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a function $u: X \to I$ which assigns to each element $x \in X$, a degree of membership $u(x) \in I$.

Definition 2.2. [16] Let $f: X \to Y$ be a function and u be fuzzy set in X. Then the image f(u) is a fuzzy set in Y which membership function is defined by $(f(u))(y) = \{ sup(u(x)) | f(x) = y \}$ if $f^{-1}(y) \neq \emptyset, x \in X$

(f(u))(y) = 0 if $f^{-1}(y) = \emptyset, x \in X$.

Definition 2.3. [14] Let *X* be a non-empty set and *L* be a complete distributive lattice with 0 and 1. An L-fuzzy set in *X* is a function $\alpha: X \to L$ which assigns to each element $x \in X$, a degree of membership, $\alpha(x) \in L$.

Remark 2.4. Throughout this paper we consider the complete distributive lattice $L = \{0, 0.1, 0.2, ..., 1\}$ and from above definitions we show that every L-fuzzy set is also a fuzzy set but converse is not true in general.

Example 2.4.1. Let $X = \{a, b, c\}$ and $L = \{0, 0.1, 0.2, ..., 1\}$. A function $\alpha: X \to L$ is defined by $\alpha(a) = 0.2, \alpha(b) = 0.5, \alpha(c) = 0$ which is L-fuzzy set and also a fuzzy set.

Example 2.4.2. Let $X = \{a, b, c\}$ and I = [0, 1]. A function $u: X \to I$ is defined by u(a) = 0.25, u(b) = 0.55, u(c) = 0 which is fuzzy set but not an L-fuzzy set because $0.25, 0.55 \notin L$.

Definition 2.5. [6] Let *X* be a non-empty set and *L* be a complete distributive lattice with 0 and 1. An intuitionistic L-fuzzy set (ILFS for short) *A* in *X* is an object having the form $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$. Where the functions $\mu_A : X \to L$ and $\gamma_A : X \to L$ denote the degree of membership (namely $\mu_A(x)$) and the degree of none membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Let L(X) denote the set of all intuitionistic L-fuzzy set in X. Obviously every L-fuzzy set $\mu_A(x)$ in X is an intuitionistic L-fuzzy set of the form $(\mu_A, 1 - \mu_A)$.

Throughout this paper we use the simpler notation $A = (\mu_A, \gamma_A)$ instead of $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$.

Definition 2.6. [6]) Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic L-fuzzy sets in *X*. Then

(1) $A \subseteq B$ if and only if $\mu_A \leq \mu_B$ and $\gamma_A \geq \gamma_B$

- (2) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (3) $A^c = (\gamma_A, \mu_A)$
- (4) $A \cap B = (\mu_A \cap \mu_B; \gamma_A \cup \gamma_B)$
- (5) $A \cup B = (\mu_A \cup \mu_B; \gamma_A \cap \gamma_B)$
- (6) $0_{\sim} = (0^{\sim}, 1^{\sim})$ and $1_{\sim} = (1^{\sim}, 0^{\sim})$.

Let f be a map from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an ILFS of X and $B = (\mu_B, \gamma_B)$ be an ILFS of Y. Then $f^{-1}(B)$ is an ILFS of X defined by $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ and f(A) is an ILFS of Y defined by $f(A) = (f(\mu_A), 1 - f(1 - \gamma_A))$.

Definition 2.7. [11] An intuitionistic topology (IT for short) on a nonempty set *X* is a family *t* of IS's in *X* satisfies the following axioms:

(i) $\emptyset_{\sim}, X_{\sim} \in t$.

- (ii) If G_1 , $G_2 \in t$ then $G_1 \cap G_2 \in t$.
- (iii) If $G_i \in t$ for each $i \in \Lambda$ then $\bigcup_{i \in \Lambda} G_i \in t$.

Then the pair (X, t) is called an intuitionistic topological space (ITS for short) and the members of t are called intuitionistic open sets (IOS for short).

Definition 2.8. [12] An ITS (X, t) is called $I - T_2$ space if for all $x, y \in X, x \neq y, \exists$ IOS $A = (A_1, A_2), B = (B_1, B_2) \in t$ such that $x \in A_1, y \in B_1$ and $A \cap B = \emptyset_{\sim}$.

Definition 2.9. Let $p, q \in L = \{0, 0.1, 0.2, ..., 1\}$ and $p + q \leq 1$. An intuitionistic L-fuzzy point (ILFP for short) $x_{(p,q)}$ of X is an ILFS of X defined by

$$x_{(p,q)}(y) = \begin{cases} (p,q) \ if \ y = x, \\ (0,1)if \ y \neq x \end{cases}$$

In this case, x is called the support of $x_{(p,q)}$ and p and q are called the value and none value of $x_{(p,q)}$, respectively. The set of all ILFP of X we denoted it by S(X).

An ILFP $x_{(p,q)}$ is said to belong to an ILFS $A = (\mu_A, \gamma_A)$ of X denoted by $x_{(p,q)} \in A$, if and only if $p \le \mu_A(x)$ and $q \ge \gamma_A(x)$ but $x_{(p,q)} \notin A$ if and only if $p \ge \mu_A(x)$ and $q \le \gamma_A(x)$.

Definition 2.10. If A is an ILFS and $x_{(p,q)}$ is an ILFP then the intersection between ILFS and ILFP is defined as $x_{(p,q)} \cap A = (p \cap \mu_A(x); q \cup \gamma_A(x))$.

Definition 2.11. An intuitionistic L-topology (ILT for short) on X is a family τ of ILFSs in X which satisfies the following conditions:

- (i) $0_{\sim}, 1_{\sim} \in \tau$.
- (ii) If A_1 , $A_2 \in \tau$ then $A_1 \cap A_2 \in \tau$.
- (iii) If $A_i \in \tau$ for each $i \in \Lambda$ then $\bigcup_{i \in \Lambda} A_i \in \tau$.

Then the pair (X, τ) is called an intuitionistic L-topological space (ILTS for short) and the members of τ are called intuitionistic L-fuzzy open sets (ILFOS for short). An intuitionistic L-fuzzy set *B* is called an intuitionistic L-fuzzy closed set (ILFC for short) if $1 - B \in \tau$.

Definition 2.12. Let (X, τ) and (Y, s) be two ILTSs. Then a map $f: X \to Y$ is said to be

- (i) Continuous if $f^{-1}(B)$ is an ILFOS of X for each ILFOS B of Y, or equivalently, $f^{-1}(B)$ is an ILFCS of X for each ILFCS B of Y,
- (ii) Open if f(A) is an ILFOS of Y for each ILFOS A of X,
- (iii) Closed if f(A) is an ILFCS of Y for each ILFCS A of X,
- (iv) A homeomorphism if f is bijective, continuous and open.

3. Definition and properties of ILF-T₂ Spaces

Definition 3.1. An ILTS (X, τ) is called

- (a) $IL T_2(i)$ if for all $x, y \in X, x \neq y, \exists$ ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x) = 1 = \mu_B(y)$ and $A \cap B = 0_{\sim}$.
- (b) $IL T_2(ii)$ if for any pair of distinct ILFP $x_{(p,q)}$, $y_{(r,s)} \in S(X)$, \exists ILOS $A = (\mu_A, \gamma_A)$, $B = (\mu_B, \gamma_B) \in \tau$ such that $x_{(p,q)} \in A$, $y_{(r,s)} \in B$ and $A \cap B = (0_{\sim}, \alpha_{\sim})$ where $\alpha \in L \{0\}$.

R. Islam, M.S. Hossain and M.R. Amin

- (c) $IL T_2(iii)$ if for all $x, y \in X, x \neq y, \exists$ ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x) > 0, \mu_B(y) > 0$ and $A \cap B = 0_{\sim}$.
- (d) $IL T_2(iv)$ if for all $x, y \in X, x \neq y, \exists$ ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x) = 1 = \mu_B(y), \gamma_A(x) = 0 = \gamma_B(y)$ and $A \subseteq B^c$ where B^c is the complement of B.

Theorem 3.2. Let (X, τ) be an ILTS. Then we have the following implications:

$$IL - T_2(i) \qquad IL - T_1(iii) \qquad IL - T_2(ii) \qquad IL -$$

Proof: $IL - T_2(i) \Rightarrow IL - T_2(iii)$ and $IL - T_2(i) \Rightarrow IL - T_2(iv)$: Suppose (X, τ) is an $IL - T_2(i)$. Then we have by definition, for all $x, y \in X, x \neq y, \exists$ ILOS A = $(\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x) = 1 = \mu_B(y)$ and $A \cap B = 0_{\sim}$. (1) $\Rightarrow \mu_A(x) > 0, \mu_B(y) > 0 \text{ and } A \cap B = 0_{\sim}.$ (2) $\Rightarrow \begin{cases} \mu_A(x) = 1 = \mu_B(y) \\ \gamma_A(x) = 0 = \gamma_B(y) \text{ and } A \subseteq B^c. \end{cases}$ From (1) and (2) we see that $IL - T_2(i) \Rightarrow IL - T_2(iii) \text{ and } IL - T_2(i) \Rightarrow IL - T_2(iv). \end{cases}$ $IL - T_2(ii) \Rightarrow IL - T_2(iii)$ and $IL - T_2(ii) \Rightarrow IL - T_2(iv)$: Suppose (X, τ) is an $IL - T_2(ii)$. Then we have by definition, if for any pair of distinct ILFP $x_{(p,q)}$, $y_{(r,s)} \in S(X)$, \exists ILOS $A = (\mu_A, \gamma_A)$, $B = (\mu_B, \gamma_B) \in \tau$ such that $x_{(p,q)} \in T$ $A, y_{(r,s)} \in B$ and $A \cap B = (0_{\sim}, \alpha_{\sim})$ where $\alpha \in L - \{0\}$. (3) $\Rightarrow \begin{cases} p \le \mu_A(x), q \ge \gamma_A(x) \\ r \le \mu_B(y), s \ge \gamma_B(y) \text{ and } A \cap B = (0_{\sim}, \alpha_{\sim}). \end{cases}$ Since $p, q, r, s \in L = \{0, 0.1, 0.2, ..., 1\}$ and $\alpha \in L - \{0\}$, we have from (3) (4) \Rightarrow { $\mu_A(x) > 0, \mu_B(y) > 0$ and $A \cap B = 0_{\sim}$. And (5) $\Longrightarrow \{\mu_A(x) = 1 = \mu_B(y); \gamma_A(x) = 0 = \gamma_B(y) \text{ and } A \subseteq B^c$ From (4) and (5) which shows that $IL - T_2(ii) \Longrightarrow IL - T_2(iii)$ and $IL - T_2(ii) \Longrightarrow IL - T_2(iii)$ $T_2(iv)$. $IL - T_2(iii) \Rightarrow IL - T_2(iv)$: Suppose (X, τ) is an $IL - T_2(iii)$. Then we have by definition, if for all $x, y \in X, x \neq y, \exists$ ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x) > 0, \mu_B(y) > 0 \text{ and } A \cap B = 0_{\sim}.$ $\Rightarrow \begin{cases} \mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1 \text{ and} \\ \mu_B(y) = 1, \gamma_B(y) = 0; \mu_B(x) = 0, \gamma_B(x) = 1. \end{cases}$ (6) $\Rightarrow \begin{cases} \mu_A(x) = 1 = \mu_B(y) \\ \gamma_A(x) = 0 = \gamma_B(y) \text{ and } A \subseteq B^c \end{cases}$ This is $IL - T_2(iii) \Rightarrow IL - T_2(iv).$

None of the reverse implications is true in general which can be seen from the following counter examples:

Example 3.2.1. Let $X = \{x, y\}$, $L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 0.4, 0)\}$. Hence we see that (X, τ) is an $IL - T_2(iii)$ but not $IL - T_2(i)$ and $IL - T_2(ii)$.

Some Remarks on Intuitionistic L- T₂ Spaces

Example 3.2.2. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 1, 0)\}$. Hence we see that (X, τ) is an $IL - T_2(i\nu)$ but not $IL - T_2(i), IL - T_2(i)$ and $IL - T_2(ii)$.

Theorem 3.3. Let (X, τ) be an ILTS and (X, t) be an ITS. Then we have the following implications:

$$IL - T_{2}(i) \longleftrightarrow IL - T_{2}(iii)$$

$$IL - T_{2}(i) \longleftrightarrow IL - T_{2}(ii)$$

$$IL - T_{2}(iv)$$

Proof: Suppose (X, t) is $I - T_2$. We prove that (X, τ) is $IL - T_2(i)$. Since (X, t) is $I - T_2$, $\forall x, y \in X, x \neq y, \exists A = (A_1, A_2), B = (B_1, B_2) \in t$ such that $x \in A_1, y \in B_1$ and $A \cap B = \emptyset_{\sim} \implies 1_{A_1}(x) = 1, 1_{B_1}(y) = 1$ and $A \cap B = \emptyset_{\sim}$. Let $1_{A_1} = \mu_A$ and $1_{B_1} = \mu_B$. Then $\mu_A(x) = 1 = \mu_B(y)$ and $A \cap B = 0_{\sim}$ which is $IL - T_2(i)$. Conversely suppose that (X, τ) is $IL - T_2(i)$. We prove that (X, t) is $I - T_2$. Since (X, τ) is $IL - T_2(i)$, we have by definition, for all $x, y \in X, x \neq y, \exists$ ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that

 $\mu_A(x) = 1 = \mu_B(y)$ and $A \cap B = 0_{\sim}$. Let $A_1 = \mu_A^{-1}\{1\}$ and $B_1 = \mu_B^{-1}\{1\}$. Then we have $x \in A_1, y \in B_1$ and $A \cap B = \emptyset_{\sim}$ which is $I - T_2$. Therefore $I - T_2 \Leftrightarrow IL - T_2(i)$. Furthermore it can be shown that $I - T_2 \Rightarrow IL - T_2(ii), I - T_2 \Rightarrow IL - T_2(iii)$ and $I - T_2 \Rightarrow IL - T_2(iv)$.

None of the reverse implications is true in general which can be seen from the following counter examples:

Example 3.3.1. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}, x_{(0.2,0.3)}, y_{(0.3,0.4)} \in S(X)$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.5), (y, 0.5, 0)\}$. Hence we see that (X, τ) is an $IL - T_2(ii)$ but not $I - T_2$.

Example 3.3.2. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 0.4, 0)\}$. Hence we see that (X, τ) is an $IL - T_2(iii)$ but not $I - T_2$.

Example 3.3.3. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 1, 0)\}$. Hence we see that (X, τ) is an $IL - T_2(iv)$ but not $I - T_2$.

4. Hereditary properties of ILF $-T_2(j)$ for (j=i, ii, iii, iv)

Definition 4.1. Let (X, τ) be an ILTS and $A \subseteq X$. we define $\tau_A = \{u | A : u \in \tau\}$ the subspace ILT's on A induced by τ . Then (A, τ_A) is called the subspace of (X, τ) with the underlying set A.

An IL-topological property 'P' is called hereditary if each subspace of an IL-topological space with property 'P' also has property 'P'.

Theorem 4.2. Let (X, τ) be an ILTS, $U \subseteq X$ and $\tau_U = \{A | U: A \in \tau\}$. Then (a) (X, τ) is $IL - T_2(i) \Longrightarrow (U, \tau_U)$ is $IL - T_2(i)$.

(b) (X,τ) is $IL - T_2(ii) \Longrightarrow (U,\tau_U)$ is $IL - T_2(ii)$.

R. Islam, M.S. Hossain and M.R. Amin

(c) (X,τ) is $IL - T_2(iii) \Longrightarrow (U,\tau_U)$ is $IL - T_2(iii)$.

(d) (X,τ) is $IL - T_2(iv) \Longrightarrow (U,\tau_U)$ is $IL - T_2(iv)$.

Proof: We prove only (a). Suppose (X, τ) is $IL - T_2(i)$, we prove that (U, τ_U) is $IL - T_2(i)$. $T_2(i)$. Let $x, y \in U, x \neq y$. Then $x, y \in X, x \neq y$ as $U \subseteq X$. Since (X, τ) is $IL - T_2(i)$, we have for all $x, y \in X, x \neq y, \exists$ ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x) =$ $1 = \mu_B(y)$ and $A \cap B = 0_{\sim}$. For $U \subseteq X$, we find ILOS $A|U = (\mu_{A|U}, \gamma_{A|U}), B|U =$ $(\mu_{B|U}, \gamma_{B|U}) \in \tau_U$ such that $\mu_{A|U}(x) = 1 = \mu_{B|U}(y)$ and $A|U \cap B|U = (A \cap B)|U =$ 0_{\sim} as $A \cap B = 0_{\sim}$. Hence (U, τ_{II}) is $IL - T_2(i)$. Similarly (b), (c), (d) can be proved.

We observe here that ILF-T₂(j), (j = i, ii, iii, iv) concepts are preserved under continuous, one-one and open maps.

Theorem 4.3. Let (X, τ) and (Y, s) be two ILTS, $f: (X, \tau) \to (Y, s)$ be one-one, onto and continuous map. Then

(a) (X,τ) is $IL - T_2(i) \Leftrightarrow (Y,s)$ is $IL - T_2(i)$

(b) (X,τ) is $IL - T_2(ii) \Leftrightarrow (Y,s)$ is $IL - T_2(ii)$

- (c) (X,τ) is $IL \overline{T_2(iii)} \Leftrightarrow (Y,s)$ is $IL \overline{T_2(iii)}$
- (d) (X,τ) is $IL T_2(iv) \Leftrightarrow (Y,s)$ is $IL T_2(iv)$.

Proof: We prove only (a). Suppose (X, τ) is $IL - T_2(i)$, we prove that (Y, s) is $IL - T_2(i)$. $T_2(i)$. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is onto, $\exists x_1, x_2 \in X$, such that $f(x_1) =$ $y_1, f(x_2) = y_2$ and $x_1 \neq x_2$ as f is one-one. Again since (X, τ) is $IL - T_2(i)$, we have for all $x_1, x_2 \in X, x_1 \neq x_2, \exists$ an ILOS $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_A(x_1) =$ $1 = \mu_B(x_2)$ and $A \cap B = 0_{\sim}$. Now \exists ILOS $f(A) = (f(\mu_A), 1 - f(1 - \gamma_A)), f(B) =$ $(f(\mu_B), 1 - f(1 - \gamma_B)) \in s$ such that $f(\mu_A)(y_1) = \{\sup \mu_A(x_1): f(x_1) = y_1\} = 1$ $f(\mu_B)(y_2) = \{\sup \mu_B(x_2): f(x_2) = y_2\} = 1 \text{ and } f(A) \cap f(B) = f(A \cap B) = 0_{\sim} \text{ as}$ $A \cap B = 0_{\sim}$. Thus we have $f(x_1), f(x_2) \in Y$ with $f(x_1) \neq f(x_2) \exists$ ILOS f(A) = $(f(\mu_A), 1 - f(1 - \gamma_A)), f(B) = (f(\mu_B), 1 - f(1 - \gamma_B)) \in s$ such that $f(\mu_A)(y_1) = 1 =$ $f(\mu_B)(y_2)$ and $f(A) \cap f(B) = 0_{\sim}$. Hence (Y, s) is $IL - T_2(i)$. Conversely suppose that (Y, s) is $IL - T_2(i)$. We prove that (X, τ) is $IL - T_2(i)$. Let $x_1, x_2 \in X$ with $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$ as f is one-one. Put $f(x_1) = y_1$, and $f(x_2) = y_2$ then $y_1 \neq y_2$. Since (Y, s) is $IL - T_2(i), \exists ILOS A = (\mu_A, \gamma_A), B =$ $(\mu_B, \gamma_B) \in s$ such that $\mu_A(y_1) = 1 = \mu_B(y_2)$ and $A \cap B = 0_{\sim}$. $\Rightarrow \{\mu_A f(x_1) = 1 = \mu_B f(x_2) \text{ and } f^{-1}(A \cap B) = 0_{\sim}$ ${}^{1}\mu_{A}(x_{1}) = 1 = f^{-1}\mu_{B}(x_{2}) \text{ and } f^{-1}(A) \cap f^{-1}(B) = 0_{\sim}.$ $\Rightarrow \{f^-$ Since $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in s, f^{-1}(A) = (f^{-1}(\mu_A), f^{-1}(\gamma_A)), f^{-1}(B) =$ $(f^{-1}(\mu_B), f^{-1}(\gamma_B)) \in \tau$. Hence it is clear that, $x_1, x_2 \in X, x_1 \neq x_2 \exists ILOS f^{-1}(A) =$ $(f^{-1}(\mu_A), f^{-1}(\gamma_A)), f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)) \in \tau$ such that $f^{-1}\mu_A(x_1) = 1 = f^{-1}\mu_B(x_2)$ and $f^{-1}(A) \cap f^{-1}(B) = 0_{\sim}$. Hence

 (X,τ) is also $IL - T_2(i)$. Similarly, (b), (c) and (d) can be proved.

REFERENCES

- 1. A.K.Adak, M.Bhowmik and M.Pal, Intuitionistic fuzzy block matrix and its some properties, Annals of Pure and Applied Mathematics, 1(1) (2012) 13-31.
- 2. K.T.Atanassov, Intuitionistic fuzzy sets, Central Sci. Tech. Library, Bulg. Acad. Sci., 1984.

Some Remarks on Intuitionistic L- T₂ Spaces

- 3. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87–96.
- 4. K.T.Atanassov, Review and new results on intuitionistic fuzzy sets, *Preprint MFAIS*-1-88 (1988) 1-8.
- 5. K.T.Atanassov and S.Stoeva, Intuitionistic fuzzy sets, in: Polish Symp. On interval & Fuzzy Mathematics, Poznan (1983) 23-26.
- 6. K.T.Atanassov and S.Stoeva, Intuitionistic L-fuzzy sets, *in: R. Trappl, Ed., Cybernetics and System Research*, 2 (1984) 539-540.
- 7. C.L.Chang, Fuzzy topological spaces, J. Math. Anal Appl., 24 (1968) 182-192.
- 8. D.Coker, A note on intuitionistic sets and intuitionistic points, *TU J. Math.*, 20 (3) (1996) 343-351.
- 9. D.Coker, An introduction to fuzzy subspace in intuitionistic fuzzy topological space, *J. fuzzy Math.*, 4 (1996) 749-764.
- 10. D.Coker, An introduction to intuitionistic fuzzy topological space, *Fuzzy Sets and Systems*, 88 (1997) 81-89.
- 11. D.Coker, An introduction to intuitionistic topological space, *BUSEFAL*, 81 (2000) 51-56.
- 12. E.Ahmed, M.S.Hossain and D.M.Ali, On intuitionistic fuzzy T₂ spaces, *IOSR Journal of Mathematics*, 10 (2014) 26-30.
- 13. E.Ahmed, M.S.Hossain and D.M.Ali, On intuitionistic fuzzy R₀-spaces, *Anals of Pure and Applied Mathematics*, 10 (2015) 7-14.
- 14. J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967) 145-174.
- 15. T.Senapati, M.Bhowmik and M.Pal, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in BCK/BCI-algebras, *Notes on Intuitionistic Fuzzy Sets*, 19 (1) (2013) 32-47.
- 16. R.Islam, M.S.Hossain and D.M.Ali, On T₂ space in L-topological space, J. Bangladesh Acad. Sci., 39 (2015) 203-211.
- 17. R.Islam and M.S.Hossain, On T₁ space in L-topological spaces, *Journal of Physical Science*, 21 (2016) 15-22.
- 18. S.J.Lee and E.P.Lee, The category of intuitionistic fuzzy topological spaces, *Bull. Korean Math. Soc.*, 37 (2000) 63-76.
- 19. M.A.M.Talukder and D.M.Ali, Certain properties of countably compact fuzzy sets, *Annals of Pure and Applied Mathematics*, 5 (2014) 108-119.
- 20. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.