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Abstract.   Two odd primes p < q  differ by  an even value  k.  The values  k = 2, 4, 6, 8, 
and some particular values of  k > 8  are investigated for solutions and no-solution cases 
of the title equation. All of these are established and exhibited. 
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1.  Introduction 
The history of Diophantine Equations dates back to antiquity. There are endless varieties 
of Diophantine Equations, and there is no general method of solution. It is often asked 
how big are the gaps between two consecutive primes. These gaps get larger and larger 
since the density of primes approaches zero in accordance with the prime number 
theorem. Many articles have been written on this subject, and a very small fraction of 
them in [4, 5] is given here.  
       In this article, we wish to solve the equation 
                                                       px + qy = z2                                                                  (1) 
in positive integers, and in particular when  p, q  are odd primes. The literature contains a 
very large number of articles with various equations involving primes and powers of all 
kinds. Among them are for example  [7, 8, 9]  which relate to  (1). 
       Let  k  denote the gap between  p  and  q  in  (1),  i.e., p + k = q. Many examples 
correspond to (1) in which   k > 2  and   x ≥ 1,  such as: 

31 + 131 = 42,    32 + 71 =  42,    33 + 731 = 102,    34 + 191 = 102,    35 + 131 = 162. 
Therefore, in  Section 2  we shall restrict ourselves to equation  (1)  when  x = y = 1.  The 
values  k  = 2, 4, 6, 8,  and some values  k > 8  are investigated.  Solutions, and also cases 
where  (1)  has no solutions are demonstrated.  In  Section 3,  when  k > 8  and  x > 1,  a 
certain type of solutions to  (1)  is introduced. 
 
2.   The values  k = 2, 4, 6, 8, and some general cases of  k 
We consider the value  k = 2  in Lemma 2.1, the values  k = 4, 8  in Lemma 2.2, and the 
value  k = 6  in Lemma 2.3. When  k > 8, some general cases are established in Lemma 
2.2  and Corollary 2.1. 
       In (1) suppose that:  p < q  are odd primes,  k = 2,  and  x = y = 1. 
       All odd integers are of the form  6N + 1, 6N + 3, 6N + 5  where  N ≥ 0. When   N = 0,  
we have in  (1):  p = 3,  q = 5,  but  8 ≠  z2.  Therefore  N > 0.  For all values of  N > 0,  
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the pairs with  k = 2  such as  (6N + 1, 6N + 3)  and  (6N + 3, 6N + 5)  are impossible 
since  6N + 3  is not prime.  The only possible pairs of primes with  k = 2  are then of the 
form  (6N + 5, 6(N + 1) + 1),  or simply  (6N + 5, 6N + 7). 
       In  Lemma 2.1,  we establish the values of  N, 6N + 5, 6N + 7,  z,  which may satisfy  
(1)  when  p, q  are primes. 
 
Lemma  2.1.   Suppose that  x = y = 1  in  (1), and  N, R  are positive integers. If 
                                       (6N + 5) + (6N + 7) = z2,                                                            (2) 
then 
(i)          N = 3R2 – 1, 
(ii)        6N + 5 = 18R2 - 1,    6N + 7 = 18R2 + 1, 
(iii)       z = 6R. 
Proof:   From  (2)  it follows that 

(6N + 5) + (6N + 7) = 12(N + 1) = z2 
implying that  z2  is even, thus  z  is even, and also a multiple of 3. Hence,  z = 6R  which 
proves (iii).  Then, 12(N + 1) = 36R2  or  N + 1 = 3R2, and  N = 3R2 - 1 yields (i).  
Substituting  N = 3R2 - 1  into  6N + 5  and  6N + 7  results in 

6N + 5 = 18R2 – 1,          6N + 7 = 18R2 + 1 
as in  (ii). 
       This completes our proof.                                                      
 
Remark  2.1.   It is noted, that clearly Lemma 2.1 can not guarantee that  6N + 5,  6N + 7  
are  both  primes. However,  it does guarantee that for each  value of   R  when  R  =  1, 2, 
… ,  the right-hand side of  (2)  is indeed always a square. This is shown in Table 1. 
       For each fixed value  N,  the two integers  6N + 5,  6N + 7  may assume one of four 
possibilities, namely: the possibility of two primes, two composites, and composite/prime 
being interchanged. This is demonstrated in the following  Table 1 when  R =  2, 3, 4, 5. 
 

Table 1. 
 

R 18R2 - 1 = 6N + 5 18R2 + 1 = 6N + 7 z2 6R = z 
1 17                       prime 19                         prime 36 6 
2 71                       prime 73                         prime 144 12 
3 161 = 7∙23      composite 163                       prime 324 18 
4 287 = 7∙41      composite 289 = 172         composite 576 24 
5 449                     prime 451 = 11∙41     composite 900 30 

 
     We now conclude the case  k = 2  in the following Remark 2.2. 
 
Remark  2.2.   If in  (1)  x = y = 1,  and  p, q  are substituted respectively by 6N + 5  and  
6N + 7,  then by  Lemma 2.1 it follows that for each value  R ≥ 1, (1)  has one and only 
one solution in positive integers namely: 

(p, q, x, y, z) = (18R2 – 1, 18R2 + 1, 1, 1, 6R). 
In particular,  this is true  when   p = 18R2 – 1,   q = 18R2 + 1,   p,  q  are primes and  q = p 
+ 2  (twin primes).  Clearly, if the twin primes conjecture is true, i.e., there exist infinitely 
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many primes  p  and  p + 2,  then for each such prime  p = 18R2 – 1, (1)  has a unique 
solution. 
 
Lemma  2.2.   Suppose that  x = y = 1 in  (1), and  p < q  are odd primes. If  q = p + 2n  
when n ≥ 2  is an integer, then for each such value n, equation (1) has no solutions. 
Proof:   By (1)  and our supposition, we have 
                             p + q = p + (p + 2n) = 2(p + 2n-1) =  z2                                                   (3) 
implying that  z  is even, and  z2  is a multiple of  4. But, in (3)  2(p + 2n-1)  is a multiple of  
2,  whereas  z2  is a multiple of  4.  Therefore, when  k  =  2n  and  n ≥ 2,  (3)  is 
impossible, and hence equation  (1)  has no solutions.                                                       
       An extension of Lemma 2.2 for values of k > 8 is provided in the following Corollary 
2.1. 
 
Corollary  2.1.  Suppose that  x = y = 1 in (1),  and  p < q  are odd primes. Let  n  ≥  2,  M  
≥ 1 be integers, and gcd (p, 2M + 1) = 1. If  k = (2M + 1)∙2n, then  equation  (1)  has no 
solutions. 
Proof:   By  (1)  and our supposition, we get 
                 p + q = p + (p + (2M + 1)2n) = 2(p + (2M + 1)2n-1) = z2                                   (4) 
and therefore  z  is even,  and  z2  is a multiple of  4. In (4),  2(p + (2M + 1)2n-1)  is a 
multiple of  2, whereas  z2 is a multiple of  4.  It then follows that  (4) is impossible. 
       Thus, equation  (1)  has no solutions.                                                  
 
Remark  2.3.   From Lemma 2.2  it follows that when  k = 4  (n = 2),  k = 8 (n = 3), and 
also larger values of  k  such as  k ≥ 16  (n ≥ 4),  equation  (1)  has no solutions. 
Moreover, from Corollary 2.1  it follows that when  k =  (2M + 1)∙2n ≥ 12,  more no-
solutions cases of equation  (1) exist. 
       It is noted that every odd integer belongs exactly to one member of the set 

{10A + 1,   10A + 3,   10A + 5,   10A + 7,   10A + 9}. 
       We shall apply this set in the following  Lemma 2.3,  in which we consider the case  
k = 6. 
 
Lemma  2.3. Suppose that  x = y = 1 in  (1), and p < q are odd primes such that q = p + 6. 
(a)   If   p  is of the form 10A + 1,  10A + 3,  10A + 9,  then  (1)  has no solutions. 
(b)   If   p  is of the form  10A + 5,  then  (1)  has exactly one solution. 
(c)   If   p  is of the form  10A + 7  and  p < 105, then  (1)  has  exactly  six solutions. 
Proof: (a) Suppose   p = 10A + 1 when  A ≥ 1. 
       Then   p + 6 = 10A + 7,  and  p + (p + 6) = 2p + 6 = 20A + 8 = 4(5A + 2) =  z2  
implying that  5A + 2  must be a square in order to satisfy  (1).  But, all values of   5A + 2  
end  either in the digit 2 or in the digit  7.  Hence, 5A + 2  is never a square. Thus,  p = 
10A + 1  when  A ≥ 1  does not yield solutions of  (1). 
       Suppose   p = 10A + 3 when  A ≥ 0. 
       When  A = 0,  then  p = 3,  but  p + 6 = 9  is not prime. Therefore,  let  A ≥ 1.  Then   
p + 6 = 10A + 9,  and  p + (p + 6) = 2p + 6 = 20A + 12 = 4(5A + 3) =  z2 implying that  5A 
+ 3  must be a square in order to satisfy (1). Since all values of 5A + 3 end either in the 
digit 3 or in the digit 8, it follows that 5A + 3 is never a square.  Hence, equation  (1)  has 
no solutions when  p = 10A + 3  and  A ≥ 0. 
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       Suppose   p = 10A + 9 when   A ≥ 1. 
       Since   p + 6  =  (10A + 9) + 6 = 10A + 15,  hence, for all values  A ≥ 1   p + 6 is not 
prime, and  (1)  has no solutions. 
       This concludes the proof of  (a). 
 
(b) Suppose   p = 10A + 5 when  A ≥ 0. 
       When  A = 0,  then  p = 5  and  p + 6 = 11. Hence, in (1)  p + (p + 6) = 16 = z2 and  z 
= 4. Thus 

(p, q, x, y, z) = (5, 11, 1, 1, 4) 
is a solution of  (1). 
       For all values   A ≥ 1, 10A + 5  is not prime, and  (1)  has no solutions. 
       Thus, the above solution is the only solution of (1) as asserted, and completes part (b 
 (c)  Suppose  p = 10A + 7  when  A ≥ 0. 
       When   A = 0,  then  p = 7  and  p + 6 = 13.  Hence, in  (1)  p + (p + 6) = 7 + 13 = 20 
≠  z2.  Therefore,  A  ≠  0  and  A ≥ 1.  For all values of  A,  it follows from  (1)  that 

p + (p + 6) = (10A + 7) + (10A + 13) = 4 ∙ 5 (A + 1) =  z2 
implying that (1) exists only if  A + 1 = 5K2  where K  is a positive integer. Since A =  5K2 
– 1,  it follows that 

10A + 7  =  50K2 – 3  and  10A + 13  =  50K2 + 3. 
       Furthermore,  since  10A + 7  and  10A + 13  are both primes, hence  K  is not a 
multiple of  3.  Therefore,  K  =  3T + 1  or  K  =  3T + 2  where  T  ≥  0  is an integer. 
       We  shall  now  investigate  these  two  possibilities of  K  for  all  values of  10A + 7  
and  10A + 13  up to 105.        
       Let   K =  3T + 1.  Then 
                            10A + 7  =  50K2 – 3  = 450T2 +  300T + 47.                                        (5) 
Formula  (5) implies that there are fifteen possible values of  T,  0 ≤ T ≤ 14  up to 105. 
The values  T = 0, 7, 8  yield three solutions of  (1)  namely: 
(p, q, x, y, z) = (47, 53, 1, 1, 10), (24197, 24203, 1, 1, 220), (31247, 31253, 1, 1, 250). 
       Let   K =  3T + 2.  Then 
                           10A + 7  =  50K2 – 3  =  450T2 +  600T  + 197.                                     (6) 
From  (6),  it follows that there are fifteen possible values of  T, 0 ≤ T  ≤ 14  up to 105,  
and we obtain for  T  = 3, 10, 13  the following three solutions of  (1): 
(p, q, x, y, z) = (6047, 6053,1,1,110), (51197, 51203,1,1,320), (84047, 84053,1,1,410). 
       When  p = 10A + 7  and  q = 10A + 13  are both primes, the six solutions of  (1)  up 
to  105  are established, and part (c) is proved. 
       The proof of  the lemma is complete.                                                
 
Remark  2.4.    In  Lemma 2.3,  the solutions of  (1)  have been restricted to all values of  
p  where   p < S = 105. Evidently, formulae (5) and  (6)  are valid for all values of  T , and 
enable us to find all the solutions of  (1)  up to any value of   S  where  S  is as large as we 
wish. 
 
3.   On   px + qy  =  z2  and  Sophie Germain primes 
The problem concerning the infinitude of pairs of primes having the form  (P, 2P + 1) has 
been of great interest to the author [1, 2] and to a vast number of other authors. 
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       In this section, we establish the connection between equation (1) and the Sophie 
Germain primes. 
       Sophie Germain (1776 – 1831) was a French lady mathematician, physicist and 
philosopher.  Among other fields, she was also known in Number Theory for her work on 
Fermat's Last Theorem, and for the Sophie Germain prime numbers. 
       A Sophie Germain prime is a prime number  P  such that  2P+1  is also prime.  The 
prime  P  is also called a "Sophie Germain number", whereas 2P+1  is called a "safe 
prime".  The first few  Sophie Germain primes are  P = 2, 3, 5, 11, 23, 29,…. 
       Numerous articles have been written on the Sophie Germain primes, as well as on the 
Twin primes.  It is conjectured that there are an infinite number of: Twin prime pairs (p, p 
+ 2), and also of  Sophie Germain pairs (P, 2P + 1). These two conjectures are related, 
and it is extremely difficult to prove them. 
       From  [3]  we cite the conjecture on Sophie Germain primes. 

 
Conjecture.  The number of Sophie Germain primes  P  with  P ≤ N  is approximately 
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where  C2 = 0.66016 … is the twin prime constant. 
       From [6] we also cite: As of  29.2.2016, the largest known proven Sophie Germain 
prime  P  denoted here by  PL  is 

PL = 2618163402417 ∙ 21290000 – 1 
having 388342 decimal digits. 
       If indeed, the Sophie Germain conjecture is true,  i.e., there exist infinitely many 
pairs  (P, 2P + 1),  then there exist infinitely many solutions of equation  (1).  Under this 
assumption, the infinite solutions of  (1)  are established in  Lemma 3.1. 
 
Lemma  3.1.   Let  (p, q) be any  Sophie Germain  pair (P, 2P + 1). If there exist 
infinitely many Sophie Germain pairs, then equation (1) has infinitely many solutions 
each of which is unique. 
Proof:   In   px + qy =  z2,  set 

p = P,     x = 2,     q = 2P + 1,     y = 1. 
We then obtain 

z2 = px + qy = P2 + (2P + 1)1 = (P + 1)2 
where  z  =  P + 1. 
       The infinite solutions of  (1)  of the form 

(p, q, x, y, z) = (P, 2P + 1, 2, 1, P + 1) 
correspond to each  Sophie Germain prime  P  (even P = 2),  and each such solution is 
clearly unique. 
       This completes our proof.                                                                
 
Remark  3.1.  If  PL  is still the largest Sophie Germain prime, then accordingly the 
solution of  (1) 

(p, q, x, y, z)  =  (PL,  2PL + 1, 2, 1, PL + 1) 
contains the largest values of   p,  q, and  z. 
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Remark  3.2.   Throughout this paper, our main objective has been finding solutions of  
(1)  in the case of odd primes  p < q.  The proof of  Lemma  3.1  nevertheless suggests the 
following generalized solution of  (1)  when the restriction  p, q  are primes is omitted.  In  
Lemma  3.1,  replace  (p, q)  by  (B, 2B + 1)  where  B  is an integer. Then, clearly 
equation (1) has a solution of the form (B, 2B+1, 2, 1, B + 1)  for each value of  B  where  
B ≥ 1.  
       The following question may now be raised:  How many solutions of the form 

(p, q, x, y, z) = (P, 2P + 1, 1, 1, z) 
satisfy  (1) ?  The answer is given in  Lemma  3.2. 
 
Lemma  3.2.  Suppose (p, q) is a Sophie Germain pair (P, 2P + 1). If  x = y = 1,  then  (1)  
has exactly one solution. 
Proof: Any solution of  (1) of the form 

(p, q, 1, 1, z) = (P, 2P + 1, 1, 1, z) 

implies that  3P + 1 =  z2,  and   P = 
3

)1)(1(

3

12 +−=− zzz
.  If  3|(z + 1), then  z = 2 and 

hence P = 1 which is impossible. But  3|(z - 1)  yields  z = 4  which implies  P = z + 1 = 5  
and 2P + 1 = 11. Thus, the only solution of  (1) is 

 (p, q, 1, 1, z) = (5, 11, 1, 1, 4). 
       This concludes our proof.                                                             
       We note that the above solution has already been obtained in Lemma 2.3  for k = 6 in 
the case  p = 10A + 5  when  A = 0. 
 
4.  Conclusion    
Equation  (1) folds in itself some interesting questions, two of which are brought here. 
In  Section 1, we have presented five solutions of  (1) with  y = 1  and  x = 1, 2, 3, 4, 5.   
The following Question 1 is now raised: 
 
Question  1.  Does  (1)  have a solution of the form 

(p, q, x, y, z) = (p, q, x, 1, z)       for every value  x = 6, 7, 8, …? 
We  believe that the answer is affirmative. 
         Since  32 + 71  =  24,     51 + 591  =  26,   35 + 131  =  28,     51 + 10191  =  210,      
35 + 38531  =  212, we may ask: 
 
Question  2.  If a solution of  (1)  is of the form 

(p, q, x, y, z) = (p, q, x, 1, t2 )     t  an even positive integer, 
what conditions must   p, q, x  satisfy ? 
how many solutions exist for any given value  t ? 
       We presume that some more interesting questions concerning  (1)  may be raised. 
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