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Abstract. In this paper, we introduce the notions of m*-operfect sets, m*-clopen sets, α-

m*-closed sets, strongly α-m*-closed sets, pre-m*-closed sets, m-clopen sets, α*-m-I-

sets and obtain a diagram to show their relationships between these sets and related sets. 
Also we investigate some properties and characterizations of these sets. Suitable 
examples are given to establish the results. 

Keywords: m*-operfect set, α-m*-closed set, pre-m*-closed set, α*-m-I-set. 

AMS Mathematics Subject Classification (2010): 54A05, 54C10, 54D15 

1. Introduction and preliminaries 
The study of ideal topological spaces was initiated by Kuratowski [5] and 
Vaidyanathaswamy [14]. Several authors studied and developed the properties of 
topological spaces and ideal minimal spaces [2,3,6,8,11,12,13,15,16]. Jankovic and 
Hamlett [4] developed the study in local and systematic manner and offered some new 
results in the field of ideal topological spaces and established some applications. 
Bhattacharya [1] introduced regular closed sets. In [7] Maki introduced the notions of 
minimal structures and minimal spaces. Popa and Noiri introduced a new idea of M-
continuous function as a function defined between sets, satisfying some minimal 
conditions. The concept of ideal minimal spaces was introduced by Ozbakir and Yildirim 
[9] by combining a minimal space and ideals. In this paper, we define m*-operfect and α-

m*-closed sets and investigate some of the properties of the above sets. The relationships 

among these sets are discussed. 

Example 1.1. [9] Let (X, mx) be a minimal space with an ideal I  on X. 

(i)   If I  = {φ}, then *
mA (φ) = m-Cl(A), 

(ii)   If I = ℘(X), then *
mA (℘(X)) = φ. 
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Lemma 1.1. [9] Let (X, mx, I) be an ideal minimal space and  A ⊆ X.  If A is m*-dense  

in itself, then *
mA  =  m-Cl( *

mA )  =  m-Cl(A)  =  m-Cl*(A). 
 
2. Some new subsets 
Definition 2.1. [10] A subset A of an ideal minimal space (X, mx, I) is said to be 

(i) regular-m-I-closed if A = (m-Int(A))*m, 
(ii)  t-m-I-set if m-Int(A) = m-Int(m-Cl*(A)), 
(iii)  semi-m-I-regular if A is both semi-m-I -open and a t-m-I-set.  
 

 

Figure 2.1: 
Remark 2.1. None of the implications in Diagram 2.1 is reversible as seen in the 
following Examples. 
 
Example 2.1. Let (X, mx, I) be an ideal minimal space such that  

               X = {a, b, c, d},                                 
             mx = {φ, X, {c}, {b, c, d}}  
  and       I  = {φ}.  

Then A = {a, b, d} is an  m*-perfect set but not a regular-m-I-closed set. 
 
Example 2.2. Let (X, mx, I ) be an ideal minimal space such that  

                      X = {a, b, c, d},                    
                    mx = {φ, X, {a}, {c, d}, {b, c, d}}  
            and     I = {φ, {b}}.  
Then A = {a, b} is an m*-closed set but not an m*-perfect set. 

 
Example 2.3. Let (X, mx, I) be an ideal minimal space such that  
                        X = {a, b, c, d},                    
                       mx = {φ, X, {b}, {d}} 
            and       I  = {φ}.  
Then A = {a, d} is a t-m-I-set but not an  m*-closed set. 

 
Example 2.4. Let (X, mx, I) be an ideal minimal space such that  

         X = {a, b, c, d},                  
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        mx = {φ, X, {a, b}}  
            and      I = {φ, {a}, {c}, {a, c}}.  
Then A = {a, c} is a t-m-I-set but not a semi-m-I -regular set. 
 
Example 2.5. Let (X, mx , I) be an ideal minimal space such that  

 X = {a, b, c, d},                  
mx = {φ, X, {a}, {a, d}, {a, c, d}} 

       and   I = {φ, {a}}.  
Then A = {a, d} is a semi-m-I-open set but not a semi-m-I-regular set. 
 
Example 2.6. Let (X, mx, I) be an ideal minimal space such that  

 X  = {a, b, c, d},                  
             mx

  = {φ, X, {b}, {d}}  
            and           I  = {φ}.  
Then A = {a, d} is a semi-m-I -regular set but not a regular-m-I -closed set. 

 
3.  m*-operfect sets and αααα- m*-closed sets 
Definition 3.1. A subset A of an ideal minimal space (X, mx, I) is said to be 

(i)   m*-operfect if A is m-open and m*-perfect, 

(ii)   m*-clopen if A is m-open and m*-closed, 

(iii)   α- m*-closed if m-Cl*(m-Int(m-Cl*(A))) ⊆ A, 

(iv)   strongly α- m*-closed if m-Cl(m-Int(m-Cl*(A))) ⊆ A, 

(v)   pre-m*-closed if *
mInt(A))(m−  ⊆ A, 

(vi)   α*-m-I-set if m-Int(A) = m-Int(m-Cl*(m-Int(A)))    and 
(vii)   m-clopen if A is m-open and m-closed. 

 
Remark 3.1. To avoid confusion we will denote the family of all α-m*-closed sets by 

αm*C(X), strongly α-m*-closed sets by sαm*C(X) and pre-m*-closed sets by pm*C(X). 

 
Proposition 3.1. For a subset A of an ideal minimal space (X, mx, I), the following 
properties hold. 

(i)   Every m*-operfect set is a regular-m-I-closed set. 

(ii)   Every m*-clopen set is an m-open set. 

(iii)   Every m*-clopen set is an m*-closed set. 

Proof: 
(i) Let A be a m*-perfect set. 

Since A is both m-open and m*-perfect, we have 
*
mInt(A))(m− = *

mA =A.   

           This shows that A is regular-m-I-closed.  
  (ii) and (iii) are obvious from the Definition 3.1 that A is m-open and  m*-closed. 
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Remark 3.2. The converses of Proposition 3.1 need not be true as seen in the following 
examples. 

 
Example 3.1. Let (X, mx, I) be an ideal minimal space such that  
                           X = {a, b, c, d},                   
                          mx = {φ, X, {b},{c},{b, c, d}}  
              and        I  = {φ}.  
Then A = {a, b, d} is a regular-m-I-closed set which is not m-open. Therefore, A is 
neither an m*-clopen set nor an m*-operfect set. 

 
Example 3.2. Let (X, mx, I) be an ideal minimal space such that  
                      X = {a, b, c, d},                       
                     mx

 = {φ, X, {a}, {a, b}}  
             and     I = {φ}.  
Then A = {a, b} is an m-open set, but not an m*-closed set and hence not an m*-clopen 

set. Moreover, A is not a pre-m*-closed set. 

 
Example 3.3. Let (X, mx, I) be an ideal minimal space such that  
                                X = {a, b, c, d},                 
                               mx = {φ, X, {a}, {c, d}, {b, c, d}}  
                           and    I  = {φ, {b}}.  
Then A = {a, b} is an m*-closed set, but not an m-open set and hence not an m*-clopen 

set. Moreover, A is not an  m*-perfect set. 

 
Proposition 3.2. A subset A of an ideal minimal space (X, mx, I) which satisfies property 
B, then every  m*-operfect set is an m-clopen set. 

Proof: Let A be an m*-operfect set.  

Then A is m-open and m*-perfect.                               

 By Lemma 1.1, we have m-Cl(A) = m-Cl(*mA ) = *
mA  = A.                                                 

 Hence A is m-open and m-closed.  Therefore A is m-clopen. 
 
Remark 3.3. The converse of Proposition 3.2 need not be true as seen in the following 
example. 
 
Example 3.4. Let (X, mx, I) be an ideal minimal space such that  
      X   = {a, b, c, d},  

mx 
 = {φ, X, {a}, {d}, {b, c}, {a, d}, {b, c, d}, {a, b, c} }  

and       I     = {φ, {a}}.  
Then A = {a, b, c} is an m-clopen set, but not an m*-operfect set. 

Proposition 3.3.  For a subset A of an ideal minimal space (X, mx, I ), the following 
properties hold. 

(i)   Every m*-perfect set is a strongly α-m*-closed set. 

(ii)   Every α-m*-closed set is a pre-m*-closed set. 
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(iii)   Every α-m*-closed set is a t-m-I -set. 

(iv)   Every m-preclosed set is a pre-m*-closed set. 

(v)   Every pre-m*-closed set is an α*-m-I-set. 

(vi)   Every m-clopen set is an m*-clopen set.   

Proof:  Let A be subset of an ideal minimal space (X, mx, I )  

(i) Let A be an m*-perfect set, then we have  *mA = A.   

   Thus we obtain that  

                  m-Cl(m-Int(m-Cl*(A)))  =  m-Cl(m-Int(A∪ *
mA ))  

                                       =  m-Cl(m-Int( *
mA ))   

                                       ⊆  m-Cl( *
mA ) = *

mA  = A.                                                                                                                         

      Hence A is a strongly α-m*-closed set. 

 
(ii)  Let A be an α-m*-closed set.   

      Therefore,   *
mInt(A))(m−   ⊆ m-Cl*(m-Int(A))  

                               ⊆ m-Cl*(m-Int(m-Cl*(A)))  
                ⊆ A.                                                                                                                                                                              
      Hence A is a pre-m*-closed set. 

 
(iii) Let A be an α-m*-closed set.  

      Then we obtain that,  
                        m-Int(m-Cl*(A)) = m-Int(m-Cl*(m-Int(m-Cl*(A))))   

                                ⊆ m-Int(A).                                                                       
      Since  A⊆ m-Cl*(A), m-Int(A) ⊆ m-Int(m-Cl*(A)).  
      This shows that A is a t-m-I -set. 
 
(iv) Let A be a m-preclosed set.   

      Then we have  *
mInt(A))(m−  ⊆ m-Cl(m-Int(A)) ⊆ A. 

      This shows that A is a pre-m*-closed set. 

 
(v) Let A be a pre-m*-closed set.  

     Then we have *
mInt(A))(m−  ⊆ A.  

     Then we obtain that  

                           (m-Int(A)) ∪ *
mInt(A))(m−  ⊆ (m-Int(A)) ∪ A ⊆ A    

                     and        m-Int(m-Cl*(m-Int(A))) ⊆ (m-Int(A)).  
     On the other hand, it is obvious that  
                                     (m-Int(A)) ⊆ m-Int(m-Cl*(m-Int(A))).  
     This shows that A is an α*-m-I -set. 
 
(vi) Let A be an m-clopen set.  



C.Loganathan, R.Vijaya Chandra and O.Ravi 

136 
 

      Then A is m-open and m-closed and we obtain that *
mA ⊆ m-Cl(A)=A.  

       Hence A is m-open and m*-closed and hence m*-clopen. 

 
Proposition 3.4. For a subset A of an ideal minimal space (X, mx, I) satisfying property I, 
then every  m*-closed set is an α-m*-closed set. 

Proof: Let A be an m*-closed set, then we have *mA ⊆ A.  

Therefore,  
       m-Cl*(m-Int(m-Cl*(A))) ⊆ m-Cl*(m-Cl*(A))   
                                                 = m-Cl*(A) = A. 

This shows that A is an α-m*-closed set. 

 
Remark 3.4. The converses of Propositions 3.3 and 3.4 need not be true as shown in the 
following examples. 
 
Example 3.5. Let (X, mx,I ) be an ideal minimal space such that X = {a, b, c}, 
                        mx = {φ, X, {a}, {a, c}} and  I  = {φ, {a}}.  
Then A = {a} is an m*-closed set and hence A is an m*-clopen set, but it is neither an m-

clopen set nor an m*-perfect set. 

 
Example 3.6. Let (X, mx,I) be an ideal minimal space such that  
                        X = {a, b, c, d},                
                      mX  = {φ, X, {a}, {b, c}}  
      and              I = {φ, {a}, {b}, {a, b}}.  
Then A = {a, b, d} is a strongly α-m*-closed set, but not an m*-perfect set. 

 
Example 3.7: Let (X, mx, I) be an ideal minimal space such that  

                   X = {a, b, c, d},                
                             mX  = {φ, X, {a}, {c, d}}  
              and             I = {φ, {a}}.  
Then A = {a, d} is a pre-m*-closed set, but it is neither a t-m-I -set nor an α-m*-closed 

set. Moreover, A is not an m-open set. 
 
Remark 3.5. By Examples 3.2 and 3.7, m-open sets and pre-m*-closed sets are 

independent. 
 
Example 3.8. Let (X, mx, I) be an ideal minimal space such that  

                    X = {a, b, c, d},                       
                                mx = {φ, X, {b}, {d}}  
                     and       I  = {φ}.  
Then A = {a, d} is a t-m-I-set, but it is neither an  α-m*-closed set nor a pre-m*-closed 

set. Moreover, it is an α*-m-I -set. 
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Example 3.9. Let (X, mx, I ) be an ideal minimal space as in Example 3.7. Then it is clear 
that  
A = {a, d} is a pre-m*-closed set, but not an m-preclosed set. 

 
Example 3.10. Let (X, mx, I ) be an ideal minimal space such that  

                    X  = {a, b, c, d},                   
                                mx  = {φ, X, {a}, {c}}  
                     and        I  = {φ, {a}}.  
Then A = {a, d} is an α-m*-closed set, but not an m*-closed set. 

 
Remark 3.6. By example 3.11, m-clopen sets and m*-perfect sets are independent. 

 
Example 3.11.  
(i) Let (X, mx, I) be an ideal minimal space such that  

                X = {a, b, c, d},   
                            mx = {φ, X, {a}, {d}, {b, c}, {a, d}, {b, c, d}, {a, b, c} }  
                and        I  = {φ, {a}}. 
Then A = {a, b, c} is an m-clopen set, but not an m*-perfect set. 

(ii)  Let (X, mx, I ) be an ideal minimal space such that  
                 X = {a, b, c, d},  

                             mx = {φ, X, {b}, {c}, {b, c, d}}  
                  and       I  = {φ}.  
      Then A = {a, b, d} is an  m*-perfect set, but not an m-open set and hence not an    

m-clopen set. 
 

Remark 3.7. It follows from Examples 3.7 and 3.8 that pre-m*-closed sets and t-m-I-sets 

are independent. 
 
Proposition 3.5. For a subset A of an ideal minimal space (X, mx, I), the following 
properties hold. 

(i)   Every m-α-closed set is strongly α-m*-closed. 

(ii)   Every strongly α-m*-closed set is α-m*-closed. 

Proof: 
(i) Let A be an m-α-closed set.            
            Then,  m-Cl(m-Int(m-Cl*(A))) ⊆ m-Cl(m-Int(mCl(A))) ⊆ A.  
            This shows that A is strongly α-m*-closed. 

(ii)  Let A be a strongly α-m*-closed.  

            Then, m-Cl*(m-Int(m-Cl*(A))) ⊆  m-Cl(m-Int(m-Cl*(A))) ⊆ A.  
            This shows that A is α-m*-closed.  

 
Remark 3.8. The converses of Proposition 3.5 need not be true as seen in the following 
Examples. 
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Example 3.12. Let (X, mx, I ) be the same ideal minimal space as in Example 3.6. 
Then it is clear that A = {a, b, d} is a strongly α-m*-closed.  
But since  m-Cl(m-Int(m-Cl(A))) = X ⊄  A, it is not an m-α-closed set. 
 
Example 3.13. Let (X, mx, I ) be the same ideal minimal space as in Example 3.10.  
Then it is obvious that A = {a, d} is an α-m*-closed set.  

Since m-Cl(m-Int(m-Cl*(A))) = {a, b, d} ⊄  A, A is not a strongly α-m*-closed set.  

Moreover, it is not an m*-closed set. 

From the above propositions and diagram 2.1 we obtain the following diagram.  

 

Figure 3.1: 

Theorem 3.1. For a pre-m-I-open set A of an ideal minimal space (X, mx, I) satisfying 
property B, the following property holds. 
A is strongly α-m*-closed if and only if A is m-closed. 

Proof:  Let A be a m-closed set.             
Then m-Cl(m-Int(m-Cl*(A))) ⊆ m-Cl(m-int(m-Cl(A)))  
                                             ⊆ m-Cl(A) = A.  
Therefore, A is strongly α-m*-closed.  

Let A be a strongly α-m*-closed set.  

Since A is pre-m-I-open,   
 m-Cl(A) ⊆ m-Cl(m-Int(m-Cl*(A)))  

                                              ⊆ A.  
Hence A is an m-closed set. 

Theorem 3.2: For a pre-m-I-open set A of an ideal minimal space (X, mx, I) satisfying 
property I, the following property holds. A is α-m*-closed if and only if A is m*-closed. 

Proof: By Proposition 3.4, every m*-closed set is an α-m*-closed set.  

 Let A be an α-m*-closed set. Then  

             m-Cl*(A) ⊆ m-Cl*(m-Int(m-Cl*(A)))  
                             ⊆ A   since A is pre-m-I-open. 
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Hence we obtain that A is an m*-closed  set. 

 
Theorem 3.3. For a subset A of an ideal minimal space (X, mx, I ), the following are 
equivalent. 

(i) A is an α-m*-closed set. 

(ii)   A is a pre- m*-closed set and a t-m-I-set. 

Proof:  
(i) ⇒ (ii) According to diagram 3.1, it is obvious. 
(ii) ⇒ (i) Let A be a pre-m*-closed and t-m-I-set.  

Thus, m-Cl*(m-Int(m-Cl*(A))) = m-Cl*(m-Int(A))  

                                                   = (m-Int(A))∪ *
mInt(A))(m−  ⊆ A.  

This shows that A is an α-m*-closed set. 

 
Theorem 3.4. For a subset A of an ideal minimal space (X, mx, I), the following are 
equivalent.  

(i) A is a regular-m-I-closed set. 
(ii)  A is a semi-m-I-regular set and a strongly α-m*-closed set. 

(iii)  A is a semi-m-I-regular set and an α-m*-closed set. 

(iv) A is a semi-m-I-open set and an α-m*-closed set. 

(v) A is a semi-m-I-open set and a pre-m*-dosed set. 
Proof: 
(i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv) and (iv) ⇒ (v) are easily seen by diagram 2.1 and    
diagram 3.1. 
(v) ⇒ (i) Let A be a semi-m-I-open and pre-m*-closed set.  

Then, we have *
mInt(A))(m−  ⊆ A since A is pre-m*-closed.  

Also since mx ⊆ mx*, m-Int(A) ⊂ *
mInt(A))(m− .  

 
Since A is semi-m-I-open, we obtain that 
                     A ⊆ m-Cl*(m-Int(A))  

                         = (m-Int(A)) ∪ *
mInt(A))(m−    

                         = *
mInt(A))(m−  ⊆ A.  

This implies that A is a regular-m-I-closed set. 
 
Example 3.14. 
(i) Let (X, mx, I ) be an ideal minimal space such that  
                               X = {a, b, c, d},                                
                              mx = {φ, X, {b}, {d}}  
                     and     I  = {φ}.  
       Then A= {a, d} is a semi-m-I-open set and a  t-m-I-set and hence a semi-m-I-regular 

set but not a pre-m*-closed set. 
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(ii)  Let (X, mx, I ) be an ideal minimal space such that  
                  X = {a, b, c, d},    

                                     mx = {φ,X,{a,b}} 
                         and        I = {φ, {a},{c},{a, c}}.  
        Then A = {a, c} is a pre-m*-closed set and a t-m-I-set but not a semi-m-I-open set 

and hence not a  semi-m-I-regular set. 
From the above example 3.14 that the semi-m-I-open (hence semi-m-I-regular) sets and 
pre-m*-closed sets are independent. 

Example 3.15.  

(i) Let (X, mx, I) be the same ideal minimal space as in Example 3.14 (ii).  Then A 
= {a, c} is a strongly α-m*-closed set and hence an α-m*-closed set but not a 

semi-m-I-regular set. 
(ii)  Let (X, mx, I) be the same ideal minimal space as in Example 3.14 (i). Then A = 

{a, d} is semi-m-I-regular set but it is neither a strongly α-m*-closed set nor an 

α-m*-closed set. 

From the above example 3.15 that the semi-m-I-open (hence semi-m-I-regular) sets and 
strongly     α-m*-closed (hence α-m*-closed) sets are independent. 
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