Annals of Pure and Applied Mathematics
Vol. 12, No. 2, 2016, 221-232

Annals of
ISSN: 2279-087X (P), 2279-0888(online) .
Published on 14 December 2016 P“re and Applled
www.researchmathsci.org :
DOI: http://dx.doi.org/10.22457/apam.v12n2al3 Mathe—n‘atlcs

Global Theory of Smooth Functions of Manifolds

Mohammad Raquibul Hossain®, Md. Raknuzzaman?
Md. Mijanoor Rahman® and Md. Jamal Hossain*

L“Department of Applied Mathematics, Noakhali SciefcBechnology University
Noakhali-3814, Bangladesh. E-magquib.math@gmail.conz_math_du@yahoo.com
“Department of Arts and Sciences, Ahsanullah Unityecs Science and Technology
Dhaka, Bangladesh. Emaitkon011@gmail.com
*Department of Mathematics, Mawlana Bhasani Sciénitechnology University
Santos, Tangail-1902, BangladeBmail: mizanmath@yahoo.com
'Corresponding author

Received 4 November 2016; accepted 30 November 2016

Abstract. Our present goal is to extend the theory of smdotittions, developed on
open subsets dR" in the global theory of smooth functions to asdniyr differentiable
manifolds, in this case geometric topology becoaresssential feature.

Keywords: Topology, differential geometry, algebraic topatpganifold
AMS Mathematics Subject Classification (2010): 57R19, 58A05

1. Introduction

Fundamental to the global theory of differentiabianifolds is the concept of a vector
bundle.The easiest nontrivial example is the tangent umallthen-sphere which we
introduce from a purely topological point. The deties involved in this bundle are
illustrated in the discussion of the vector fieldoldem. As the global theory is
developed, the tangent bundle, the cotangent burdiéous tensor bundles, and the
associated (principal) frame bundles will play gasingly important roles [3], as will the
related notions of infinitesimal G-structures antegrableG-structures. For conceptual
simplicity, all manifolds, functions, bundles, vectfields, Lie groups, homogeneous
spaces, etcwill be smooth of clas€*. We study Smooth manifolds and mapping,
diffeomorphic structures, the tangent bundle, clesy@and geometric structures, global
construction of smooth functions, manifolds wittuhdary and finally submanifolds.

2. Smooth manifolds and mapping
Let M be a topological manifold of dimensian The locally Euclidean property allows
us to choose local coordinates in any small regfav.

Definition 2.1. A coordinate chart [2] oM is a pair(U, ¢), whereU € M is an open
subset ang: U —» R" is a homeomorphism onto an open sulkdet

We usually writep(p) = (x*(p), -+ ,x™(p)), viewing this as the coordinatetuple of
the pointp € U.

221



M.R.Hossain, Md. Raknuzzaman, Md. Mijanoor Rahwauaeh Md. Jamal Hossain

Definition 2.2. Two coordinate chartd/, ¢) and(V,y) onM are said to b€* related if
eitherUnV =0 or

QoY LY NV) > pUNV)
is diffeomorphism.

Definition 2.3. A C™ atlas onM is a collectionA = {(U,, ¢4)}qen Of coordinate charts
such that

(1) (Ug 9q) isC™ related tqUgp, @p),Va,p €A

() M = UgeqUq
Two C* atlasA andA' onM are equivalent if4 U A’ is also &€ atlas onM.

Example 2.4. The manifoldR™ has a canonical smooth structure [1], namely &teds
of all pairs(U, ¢) whereU < R" is open andp: U —» R" is a diffeomorphism onto an
open sep(U) € R™.

Example 2.5. If M is a smoothm-manifold andN a smoothn-manifold with respective
smooth structuresA = {(Ug, @a)}aex and B = {(Vz, Yp)}ges, then M XN is
canonically a smoottin + n) manifold. Indeed

AXB={(Ug X Vg, @0 XPp)}(ap)euxs
is aC® atlas, determining uniquely a maximal one, catlegl Cartesian product of the
two smooth structures.

Definition 2.6. Let M be a smootm-manifold with smooth atlast = {(U,, 94)}aen-
Set the function
Gap = Ug © @El: @B(Ua n UB) - Pa(Ug N UB)
These local diffeomorphisms IR" satisfying the cocycle conditions
) Gap ° 9By = Gay

(i) Jaa = id(pa(Ua)

(it) 9pa = ap
It should be noted that the propert{éd and(iii) follows from the propertyi).

Definition 2.7. Let M be a smootm-manifold then{U, = ¢,(U,), Japlapeu- ON the
disjoint union
M = Hae‘u Uq
define the relation
x~y < Ja,p € Asuchthak € U,,y € UB andy = ggq(x).
By properties(i), (ii) and(iii) of the definition 1.06, this is an equivalenceatiein, so
we form the topological quotient spadé/~. We will show that this space is
homeomorphic td1 and exhibit a natural smooth structure on it.
Let [z] € M/~ denote the equivalence class M. Define
o:M—> M/~
By settingp(x) = [@,(x)] If x € U,. If x € Up also thengqp ((pﬁ(x)) = @, (x), SO@
is well defined. It is continuous. The map frdvhto M that takesz € U, to ¢z (2)
respects to equivalence relation, hence passesdot@muous map
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Q:M/~— M.
It is easy to see that andiy are mutually inverse, st and M/~ are canonically
homeomorphic. Eacl, imbeds canonically i/~ as an open subset ai},: U, —
U, S R" defines a coordinate chdi/,, id, )on M/~. These charts ar¢™-related via
the cocycle{gap}a peu soM/~ is canonically identified witlM as a smooth manifold
via the mutually diffeomorphismg andy.

Definition 2.8. A functionf: M — R is said to be smooth if, for eaghe M, there exist a
chart(U, ¢) € A such thakr € U and

_ feo o)~ R .

is smooth. The set of all smooth, real valued fiomstonM will be denoted:* (M).

Lemma 2.9. The functionf: M — R is smooth if and only if

fopa'i9a(Us) » R
is smoothy (U,, ¢,) € A.
Proof: Condition implies thaf is smooth. For the converse, suppose fhat smooth
and letx € U, where(Ug, ¢,) € A. By definition 1.08, choos@Ug, ) € B such that
x € Ug and

feogtiopUp) » R
is smooth. Then

fo §0071: Pa(Ug N UB) - R

is given by the decomposition
1

9pa fopp
(pa(Ua n UB) —_— (PB(Ua n UB) —R
as a composition of smooth maps, this is smootht iBh
fe QD(;IZ 0a(Ug) » R
is smooth on some neighborhood of the pgiptx). Butx € U, is arbitrary, sqgf o ¢ ?
is smooth on all op,(U,). O

Definition 2.10. Let M andN be C* manifolds with respective smooth structusésand
B. A mappingf: M — N is said to be smooth if, for eaghe M, there ardU,, ¢,) € A
and(Ug, @) € B such thak € U, f(U,) € V3, and

Ypofopat:pa(Uy) = Pp(Vp)
is smooth.

Definition 2.11. A derivative of®,, is aR- linear map
D:®, >R
such that
D(£0) = D(D)ep(Q) + e,()D(Q)
v ¢,{ € ®,. This operatoD is called a tangent vector 16 atp and the vector space
T, (M) of all derivative of®, is called the tangent space [11Maatp.

Definition 2.12. If f:M — N is a smooth map between manifolds ang & M, the
differential
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fop = dfp: Ty (M) = Ty )M
is the linear map defined by

(FpDNI9lf ) = DIg © flp,
for all D € T,,(M) and all[g] s ) € G (p)-

Lemma 2.13. If f:M - N and If g: N - P are smooth map between manifolds and
x € M,thend(g o f), =dg,cdfy.
Proof: Consider

((g 2 1)ep(D)) [l g(rpy) = DA F © gl
= (fip(D)[h° gl fp))

= (921 Usp DM g (o3
Since[h]grm)) € Ogrp)) andD € T, (M) are arbitraryo

Corollary 2.14. If M is a smooth manifold of dimensien thenT, (M) is a real vector
space of dimension, V p € M.
Proof: Let (U, p) be a coordinate patch dfi with x € U. ThenT, (U) = T,(M) so we
have

Pux: Ty (U) = qu(x) (pU))
is anR- linear isomorphism. Singg(U) € R™ is open, we know that

T<p(x)(§0(U)) =R" o

3. Diffeomorphic structures
Diffeomorphism is an isomorphism in the category smhooth manifolds. It is an
invertible function that maps one differentiablenifiald to another, such that both the
function and its inverse are smooth functions.

This section is really an extended remark on soerg geep theorems. For this
purpose, letM be a differentiable manifold with smooth structufg0] A =
{(Up, ®0)}aen Letd: M — M be any homeomorphism. Set

Ao = {(q)_l(Ua): Pa © P)}aeu-
Proposition 3.1. The setA4 is aC™ structure oM having the same structure cocycle as
A.
Proof: We know
Jap = Pa°Pp" = (@g°P) o (pgo®)",

and this map carries the set

(052 @) (071 Wa) N ®72(Up)) = 95U N Up)
onto the set

(@a @) (@71 (Ue) N 71(Up)) = @a(Uy N Up)
Finally, the maximality of the&€® atlasA4 follows from that ofA and the fact that
c/q,q)q)—l = c/q O

Definition 3.2. Two C® structures [6}4 andB, defined on some topological manifold
M, are said to be diffeomorphic structur&s= A4, for some homeomorphism
O:M - M.
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Example 3.3. Let o(n) denote the number of diffeomorphism classes démdifitiable
structures ors™. It was long known that(n) = 1 for n = 1,2,3. The value ofs(4)
remains mystery. The following table f6r<n < 18 was computed by Kervaire and
Milnor.

n |56 |7 |8]9 |10 |11 |12 |13 |14 15 16 |17 |18
on) |1 |1 28|28 |6 |99 |1 3 | 2 |1625¢| 2 16 | 16

4. Thetangent bundle
Let M be aC*® n-maifold with structurg(U,, ¢4)}qaca- CONnsider the set
T = ]_IxEM Tx(M)
a disjoint union with, as set no topological stuet For eacl/,, « € U, define
T(Ug) = HxEUa (M) <T.
Then the individual linear mapkp,.,, x € U,, unite a define a set map
dpa: TWe) > T(9aUa)) = 9o (Ug) X R* € R?"
More precisely, ifr, denotes a tangent vectorMoatx € U,
Apa(Vx) = (Pa(x), dPax(vy))
and this defines a bijection @f(U,) onto an open subset &2". If U, n Ug # 0,
consider
dgg o dpg':T(pg(Uqa N Up)) = T(9a(Uq N Up))
By the chain rule
dgap:T(@p(Ua) NT(Up)) = T(9a(Uq) NT(Up))
aC® diffeomorphism between the open subseR%.
We topologize the sét. If
W € doy(TWUL)) = T(9a(Us)
is an open set, thetp, (W) is to be an open subsetmf

Definition 4.1. The systent: TM — M is said called the tangent bundle [5]Mf The
total spacd’ (M), the base spacel, andr is called the bundle projection.

Definition 4.2. A vector field onM is a smooth mag: M - T(M)(p — X,,) such that
o X = idy. The set of all vector fields avf is denoted b¥(M).
Remark: LetX be a vector field o, (U, x1, -+ -+ ,x™) a coordinate chart aif. Then
d
XU = Z?=1ﬁ
wheref!:U - R is smooth]l < i < n.

Definition 4.3. Let M be a smoothn-manifold, E a smooth(m + n)- manifold, and
m:E - M a smooth map. This will be called anplane bundle oveM (or a vector
bundle oveM of fiber dimensiom) if the following properties hold
(i) For eachx € M, E,, = m~1(x) has the structure of real,dimensional vector space.
(it) There is an open cov@l;};c; of M, together with commutative diagrams

Pi
T~ (W) - W; x R™

Y

] id ]
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such thatp; is diffeomorphismy j € J.
(iit) For eacly € ] andx € W}, ¥, = ¥;|E, maps the vector spadk isomorphically
onto the vector spade’} x R™.

As with tangent bundles, we cdllis the total spacé/ is the base space and
the bundle projection. We also call edth a trivializing a neighborhood for the bundle
and{W;} e, a locally trivializing cover (oM) for E.

Definition 4.4. An n-plane bundle is trivial if it is a isomorphic tbet product bundle
p1:M X R" > M.

Definition 4.5. A section of then-tuple is trivialm: E - M is a smooth map: M — E
such thatr o s = id,,. The set of all such sections is denoted ).

Definition 4.6. The manifoldM parallelizable if there are fields
Xl,Xz,X3, """ ,Xn EX(M)
such tha{X,,, X, - , Xnyx} is a basis of (M), V x € M.

Example 4.7. We give 1-plane bundle (a line bundle) over alejrknown as the Mébius
bundle. OnR x R, define the equivalence relatiots,t)~(s + n,(—1)"t),n € Z.
Remark that — (—1)"t is a linear automorphism @&. The projectior(s,t) — s passes
to a well defined map(R x R)/(~) = R/Z = S*. It should be clear, intuitively that this
a vector bundle oves! of fiber dimension one.

5. Cocycles and geometric structures
Letm: E — M be am-plane bundle and I§W/;}c, be a locally trivializing open cover of

E, the trivializations beingy;: m=*(W;) - W; x R". If W; n W, # @, consider

Wil 2
(W; N W) x R* —— =1 (W; N W))—> =L (W; n W))x R™.

This composition must have the form
al al
a™ a™

v (x
wherey;;(x) € GI(n),V x € W; n W;.
Lemmab5.1. The mapy;;: W; N W; - Gl(n) is smooth.
Proof: Let e, denote the column vector with O’s in all placesept thek”, where the
entry 1. There, (x) = y; ;1 (x, e,) defines a smooth map

ex: W, nW; > (W; nW;) X R",

1<k<n Butel(x)=1; wi_l(x,yij(x),ek) and the second entry is just thé&"
column ofy;;(x). Sincek is arbitrary,1 < k < n, we see that the?entries ofy; j(x) are
the smooth functions of. o

Definition 5.2. The smooth maps have the ‘cocycle’ property
@) Vij (). vi(x) = Y (x)
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VxeEW,NnW;nW,Vijk€]. As usual, this property implies the following @ldor
all appropriate choice of and indices, j € J.
@) vulx) =1
N _1
(i) 1) = (v (@)

Definition 5.3. A GI(n)- cocycle property [4] oM is a familyy = {ij')/ij}ije] such
that{l/l/}-}je] is an open cover aff andy;;: W; n W; - Gl(n) is a smooth mapy i,j € J,

all subject to the cocycle condition propefty of definition 4.02. if the cocyclg arises
as above from an-plane bundld, it is said to be a structure cocyclefof

Definition 5.4. Two Gl(n)-cocycles

V= {M/f')/if}i_jej ando = {Vateab}a,beA
On the same manifolt equivalent if they are contained in a comnéi(in)-cocycle on
M. The equivalence class pfwill be denoted byy].

Corollary 5.5. Equivalencezl(n)-cocycles is an equivalence relation.

Proof: If y~68 and6~46, lety be a cocycle containing both and 8, ¢ be cocycle
containing bothd andé. Theniy and both containd. We know the theorem “If two
Gl(n)-cocycles on same manifold contain a comm@iin)-cocycle, then they are
contained in a commoigi(n)-cocycle” from this theorem guarantees that they ar
contained in a common cocygle Theny € p ands < p, soy~4. O

Theorem 5.6. If y is aGl(n)-cocycle onM, the isomorphism clasB[y] € Vect, (M)
depends only one equivalence cld$d € H*(M; Gl(n)). This defines a canonical
bijective correspondence

Vect, (M) » HY(M; GlL(n))
whereVect, (M) denote the set of isomorphism clasggp of n-plane bundle on M
andH(M; Gl(n)) denote the equivalence classe&kf)-cocycles.
Proof: In this case we have to identifiect,, (M) to H1(M; GL(n)). The tangent bundle

T (M), any smooth atlagU,, ¢)}.ecu, With associated structure cocytﬁyhﬁ}a ger for

M, provides a structure cocyd,,/gaplepeu- There are, of course structure cocycles
for T(M) that are not obtained in this way, but these spaemcycles tie together the
bundle structure df (M) and the smooth structure Mf o

Definition 5.7. A structure cocycl€Uy,,/gap}apexn for T(M), associated to smooth atlas
on M, will be called a Jacobian cocycle.T{M) admits a Jacobian cocycle such that
J9ap = In, ¥V a, B € U, thenM is said to be integrably parallelizable.

Definition 5.8. Let G < Gl(n) be a subgroup and It E - M be am-plane bundle. We
say that the structure group &f can be reduced té if there is aGl(n)-cocycle
{Wj,yﬁ}”e] representing the isomorphism clas€duch thay;;) € G,V j,i € J. Such

a cocycle will be called &-cocycle forE.
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6. Global constructions of smooth functions

Proposition 6.1. Let M be ann-manifold, letU € M be an open subset aikdc U a
compact subset. Then there is a smooth funcfiol - R such thatf|K =1 and
suppf)c U.

Proof: For eactp € K, choose a coordinate neighborh@dd, z,,) aboutp, U,, < U, and
an openn-dimensional interva#,, with /Tp c Up, centered ap. SinceK is compact,
finitely many of thed,, coverk. o

Lemma6.2. Let M be a smooth manifold and tete M. Then the natural map

C®(M) - B,
that carrie§ — [f], is surjective.
Proof: Given[g], € By, find ¢ € C*(M) with suppfp)c dom(g) andep = 1 on some
compact neighborhood of in dom(g). Thengpg extends by 0 to the smooth functifn
onM and[f], = [g]x- O

Proposition 6.3. If U = {U,},eq IS @n open cover dif, there is &€* partition of unity
{Aa}aeu Subordinate tal.
Proof: First remark thaV? = {V}geg is a refinement of unity subordinatetanduces a
smooth partition of unity subordinate of. Indeed, leti: 8 - A be a map such that
Vg S Uiy, VB €B. If {ug}pen is a partition of unity subordinate 1, defined, =
Ypei-i(a)Hp, Va €U If i~'(a) = @, we understand that, = 0. It is clear that
{Aa}aex IS @ partition of unity subordinate 6
By passing to a suitable locally finite refinemehfl and applying the above paragraph,
we lose no generality in assuming that

(i) U is locally finite.

(ii) eachU, € U is the domain of & coordinate chatU,, ¢,);

(iii) there are open-dimensional intervalsl, with A, c ¢,(U,) compact and
such that {0z (AQ)}ges COVEISM.,
By Proposition 5.01, defing, € C*(M) in such a way thaf,|¢;'(4,) =1 and
suppf,)c U,. Since the coveiU, },cy is locally finite, we can define

f = 2Zaeufa € CT(M),

remarking thatf > 0 on M. We obtain the smooth partition of unity by segtit), =
folf, Va € Ao

Proposition 6.4. If M is a smooth manifold and € M, then

f:X > Rk
is smooth if and only i x € X, 3 an open neighborhodd, € M of x, and a smooth
mapf,: U, — R¥ such thaf, |(U, n X) = f|(U, N X).
Proof: This property clearly follows from our definitiaf smoothness. We must recover
our definition from this property. Lell = U,exU,. Then there is a must partition of
unity {1, },ex onU, subordinate to the open co\{ék,},cx of the manifoldU. Since each
f. in Rk-valued, 1, f, makes sense and can be interpreted as a smootbfiiiaipto R¥.
Then define

f = Yxex Axfrr
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a smooth map df into R*. Evidently

fO) = CrextONFO) = L. ) = fF),

V y € X, sof is the required smooth extensionfato the neighborhoot of X. o

Definition 6.5. A function f: X - Y from the subseX € M of smooth manifold [7|1

into the subseY € N of a smooth manifol&V is said to be smooth if, for eaahe X,

there is a open neighborhodfl. € M of x and smooth mayf,: U, » N such that
fl(U, nX) = f|(U, nX). Such a map is diffeomorphism &fontoY if it is bijective

and bothf andf~! are smooth.

Theorem 6.6. Let M andN beC* manifolds of the same dimensianlf U € M is open,
if X € N and ifp: U - X is a diffeomorphism, thekK is open inV.
Proof: Let x, € U and ¢(x,) € X. Sincep~1:X - U is smooth, there is an open
neighborhoodV of ¢(x,) in N and a smooth extensiap: V —» R™ of ¢~ 1|(V n X).
Sincegp: U - X is continuousy = ¢~ *|(V n X) is an open neighborhood &f in U and
YoolV =9t og|V = idy.
Sincep: U = N is smooth in the usual sense, the chain rulesgive
AP (x) © APx, = L, s
S0d@y,: Ty (M) = Ty(x,)(N) is a linear isomorphism. By the inverse functioadtem,
there is a open neighborhotd € V < U of x, which is carried by diffeomorphically
onto an open subsei(W) € N. But ¢(x,) is an arbitrary point of{ and ¢(x,) €
(W) € X, soX is an open subset &f. o

7. Manifoldswith boundary
Since Euclidean half spad#® is a subset of smooth manifdkf, definition 5.05 allows
us to talk about a smooth maps and diffeomorphi8jrbgtween open subsets Hf.
Thus, ifM is a topological manifold with boundary, it malsesise to talk about twid"-
charts onM beingC*-related, so we can define a differentiable stngconM to be a
maximalH"-atlas.A of C*-related charts. As in the topological case, wénéef

OM ={x e M| U, ¢y) EA, x €Uy, @u(x) € OH"}

inM) ={x e M| 3 (Uy, @) EA, x €EU,, pu(x) € int(H")}
The pair(M,A) is a (smoothh-manifold with boundaryM. Of course, all smooth-
manifolds without boundary are special cases, d§"istself. The notation of smooth
maps between manifolds with boundary is defined#yas in the boundaryless case.

Definition 7.1. If f:M - N andg: N —» P are smooth maps between manifolds with
boundary, them o f is smooth and for eache M.

d(geflx= dgf(x) odfy

Lemma 7.2. Let x € 9H" and let p: B,(R") - B, (H") be defined byp[f], =
[fI(H™ n dom(f))],. Thenp is a surjection.

Proof: Let U € H" be an open neighborhood of If g:U - R is smooth, there is a
neighborhood’” of x in R™ and a smooth extensighV — R of g|(V n U n H™). Then

[9]x € By (R™) andp[g]x =[9]x- O
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Lemma 7.3. For x € dH", definep*: T,(H™) - T,(R™) then by settingp*(D)[f], =
D(p[f].)- Then we have have to show tpatis bijective.

Proof: We prove thatp* is one to one. Ifp*(D;) = p*(D;), then D;(p[flx) =
D,(p[f1). VIfl, € B, (R™). Since p is surjective, it follows thatD,[g], =
D;[9]x, V[f]x € Bx(H™), sOD; = D,.

We have to prove that* is onto. Letv € T,,(R™) = R™. As an infinitesimal curve, this
vector is represented by(t) = x + tv. As an operator on germs,= Dy . Eitherv
points intoH™ (we intend this to include the case thais tangent ta@H™) or v points
out of H", in this case v points intoH™.

If v points intoH", thens(t) € H", t > 0. DefineD: B, — R by

D[gly = lim_ g+ w
It is elementary thab € T, (H") and thap®(D) = D), = v.
If v points out of”, thens(t) € H", vVt < 0. DefineD: B,(H") - R by
i ©)-g(x)
D[g]y = lim;,o- M

Again,D € T,,(H") andp*(D) = v. O

8. Submanifolds
Let M be anm-manifold, possibly with the boundary. A subset= M is a properly
imbedded submanifold [1] of dimension if and only if, V p € X, there is anH™
coordinate char{U, ¢) aboutp in M in which (U NX) = ¢(U) n H*, whereH" c
H™ is the (image of the) standard inclusion.

Remark that, in the above definitiéd N X, ¢|(U N X)) can be viewed as &
coordinate chart o and that the collection of all such charts makKea smoothn-
manifold with boundargX = X n dM. Thus ifoM = @, thendX = @ also.

Theorem 8.1. Let f:M - N be a smooth map between the manifolds of resgectiv
dimensiongn andn. Assume thatN = @ and thatn > n. If y € N is a regular value
simultaneously fof for f = f|oM, thenf~1(y) is a properly imbedded submanifold of
dimensiorm — n.

Proof: Letp € f~1(y) and the find a suitable coordinate chart agoirt M. There are
two cases.

Case 1. Suppogee int(M). Choose a coordinate neighborhddtix) aboutp such that

U C int(M). Theny is a regular value of|U so it implies thayf ~*(y) n U is a smooth
submanifold ofU of a dimensionn — n.

Case 2. Suppose € M and let(U,x', x?, ......,x™) be anH™ charts aboup in M.
Assume thatf(u) € W, where (W, y',y?,.....,y™) is a coordinate chart aboyt in
which y = 0. Let df|(UndM) be denoted byp(x?,..... ,x™) with component
functionse?, ... ... , @™ relative to the coordinate & . Sincep is a regular point fop, U
can be chosen so small that the matrix

ot dp?t

ﬁ ...... axm

BqJ". 64)"

axz ax™.
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has constant rank on U n dM. By permutation of coordinates, ... ... ,x™, it can be
assumed that the lastx n block
dp? dp?t
Gpm—nAL M
6<p". 6(})”
W ...... ax_m

is non singular ory N dM. ChoosingU even smaller, if necessary the corresponding
n X n block in the matrix

ort ot ort
ox1 o9x2™ axm
ort of" ot
oal aa Py

is also nonsingular. We then resort to the trickemfoordinatizingy nearp by setting
zi=x, 1<i<m-n, andz™ ™" = f/,1 <j <n. The inverse function theorem
shows, by the above remarks, that this will defaweH" chart on a small enough
neighborhood (again calldf) of p. But, relative to these coordinates,
f(zt,z%, ... ... ,z™) = (2™ L ,z™)
Thenf~1(y) n U is the set of points with coordinates, ... ...,z™,0, .......,0). Thatis
fFfOH)NU=H""NnU.o

Example8.2. Let f: H**! - R be given by
fltx?, ., x™) = Z?:ll(xi)z
Then1 € R is a singular value both fgf and fordf. The hemispher¢—1(1) is the

intersectionS™ N H**! and is amm- manifold with boundary [4]f~1(1) N 9H"*! =
sn1

Lemma 84. If 0M =@ andf: N —» M is smooth, then the set of pointsihthat are
simultaneous regular values fbranddf in dense irM.

Proof: Clearly, ifp € dN is a regular point fodf, it is also the regular point fgr. Thus

y € M is a regular value both ¢gf anddf precisely when it is a regular value both of
flint(N) and ofdf. Use countable coordinate coverif@s};c; of int(N), {Vj}jej of dN,

and{W, }.cx of M. For eactk € K, consider the countable family of smooth maps
fuc Ui 0 71 (W) » Wy
af]'k: U] n af_l(Wk) 4 Wk
Obtained by restrictions. So we hayes W, is a common regular value of all these
maps. Doing this for eadhe K, we complete proofa
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