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1. Introduction 
Fundamental to the global theory of differentiable manifolds is the concept of a vector 
bundle. The easiest nontrivial example is the tangent bundle to the �-sphere which we 
introduce from a purely topological point. The subtleties involved in this bundle are 
illustrated in the discussion of the vector field problem. As the global theory is 
developed, the tangent bundle, the cotangent bundle, various tensor bundles, and the 
associated (principal) frame bundles will play increasingly important roles [3], as will the 
related notions of infinitesimal G-structures and integrable �-structures. For conceptual 
simplicity, all manifolds, functions, bundles, vector fields, Lie groups, homogeneous 
spaces, etc., will be smooth of class �∞. We study Smooth manifolds and mapping, 
diffeomorphic structures, the tangent bundle, cocycles and geometric structures, global 
construction of smooth functions, manifolds with boundary and finally submanifolds. 
 
2. Smooth manifolds and mapping 
Let � be a topological manifold of dimension �. The locally Euclidean property allows 
us to choose local coordinates in any small region of �. 

 
Definition 2.1. A coordinate chart [2] on � is a pair (	, �), where 	 ⊆ � is an open 
subset and �:	 → ℝ� is a homeomorphism onto an open subset ℝ�. 
We usually write �(�) = (��(�),⋯⋯ , ��(�)), viewing this as the coordinate �-tuple of 
the point � ∈ 	. 
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Definition 2.2. Two coordinate charts (	, �) and (�, �) on � are said to be �� related if 
either 	 ∩ � = ∅ or 
                                              � ∘ ���:	�(	 ∩ �) → �(	 ∩ �)   
is diffeomorphism. 
 
Definition 2.3. A �� atlas on � is a collection � = {(	! , �!)}!∈# of coordinate charts 
such that  
                                  ($)		(	!, �!) is ��  related to (	% , �%), ∀	', ( ∈ #     
                                  ($$) � = ⋃!∈#	! 
Two �� atlas �	and �′ on � are equivalent if � ∪ �′ is also a �� atlas on �. 
 
Example 2.4. The manifold ℝ� has a canonical smooth structure [1], namely the set �� 
of all pairs (	, �) where 	 ⊆ ℝ� is open and �:	 → ℝ� is a diffeomorphism onto an 
open set �(	) ⊆ ℝ�. 
 
Example 2.5. If � is a smooth ,-manifold and - a smooth �-manifold with respective 
smooth structures � = {(	! , �!)}!∈# and ℬ = {(�%, �%)}%∈/, then � × - is 
canonically a smooth (, + �) manifold. Indeed  
                                              � × ℬ = {(	! × �% , �! × �%)}(!,%)∈#×/   
is a �� atlas, determining uniquely a maximal one, called the Cartesian product of the 
two smooth structures. 
 
Definition 2.6. Let � be a smooth �-manifold with smooth atlas � = {(	! , �!)}!∈#. 
Set the function 
                                         2!% = 	! ∘ 	�%��:	�%(	! ∩ 	%) → �!(	! ∩ 	%) 
These local diffeomorphisms in ℝ� satisfying the cocycle conditions 
                             ($)			2!% ∘ 2%3 = 2!3 
                           ($$)	2!! = $456(76) 
                          ($$$)			2%! = 2!%�� 
It should be noted that the properties ($$) and ($$$) follows from the property ($). 
 
Definition 2.7. Let � be a smooth �-manifold then {	8! = �!(	!), 2!%}!,%∈#. On the 
disjoint union 
                                                             �8 = ∐ 	8!!∈#  
define the relation 
                      �~; ⟺ ∃	', ( ∈ # such that � ∈ 	8!, ; ∈ 	8% and ; = 2%!(�). 
By properties ($), ($$) and ($$$) of the definition 1.06, this is an equivalence relation, so 
we form the topological quotient space �8/~. We will show that this space is 
homeomorphic to � and exhibit a natural smooth structure on it. 
Let [@] ∈ �8/~ denote the equivalence class @ ∈ �8. Define 
                                                           �:� → �8/~  

By setting �(�) = [�!(�)] if � ∈ 	!. If  � ∈ 	% also then 2!% B�%(�)C = �!(�), so � 

is well defined. It is continuous. The map from �8 to � that takes @ ∈ 	8! to �!��(@) 
respects to equivalence relation, hence passes to a continuous map 
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                                                           �:�8/~ → �. 
It is easy to see that � and � are mutually inverse, so � and �8/~ are canonically 
homeomorphic. Each 	8! imbeds canonically in �8/~ as an open subset and $4!:		8! →	8! ⊆ ℝ� defines a coordinate chart D	8!, $4!Eon �8/~. These charts are ��-related via 
the cocycle {2!%}!,%∈#, so �8/~ is canonically identified with � as a smooth manifold 
via the mutually diffeomorphisms � and �.   
 
Definition 2.8. A function F:� → ℝ is said to be smooth if, for each � ∈ �, there exist a 
chart (	, �) ∈ � such that � ∈ 	 and  
                                                  F ∘ ���:	�(	) → ℝ 
is smooth. The set of all smooth, real valued functions on � will be denoted ��(�). 
 
Lemma 2.9. The function F:� → ℝ is smooth if and only if 
                                                   F ∘ �!��:	�!(	!) → ℝ 
is smooth, ∀	(	!, �!) ∈ �. 
Proof: Condition implies that F is smooth. For the converse, suppose that F is smooth 
and let � ∈ 	! where (	! , �!) ∈ �. By definition 1.08, choose (	%, �%) ∈ ℬ such that � ∈ 	% and 
                                                  F ∘ �%��:	�%(	%) → ℝ 
is smooth. Then 
                                            F ∘ �!��:	�!(	! ∩ 	%) → ℝ 
is given by the decomposition  

                                  �!(	! ∩ 	%) 	GH6			IJJK�%(	! ∩ 	%) 			L∘5HMN				IJJJJJKℝ 
as a composition of smooth maps, this is smooth. That is, 
                                              F ∘ �!��:	�!(	!) → ℝ 
is smooth on some neighborhood of the point �!(�). But � ∈ 	! is arbitrary, so F ∘ �!�� 
is smooth on all of �!(	!). □ 

 
Definition 2.10. Let � and - be �� manifolds with respective smooth structures � and ℬ. A mapping F:� → - is said to be smooth if, for each � ∈ �, there are (	! , �!) ∈ � 
and (	% , �%) ∈ ℬ such that � ∈ 	!, F(	!) ⊆ �%, and 
                                            �% ∘ F ∘ �!��:	�!(	!) → �%(�%) 
is smooth. 
 
Definition 2.11. A derivative of OP is a ℝ- linear map 
                                                    Q:	OP → ℝ	 
such that 
                                     Q(RS) = Q(R)TP(S) + TP(R)Q(S) ∀	R, S ∈ OP. This operator Q is called a tangent vector to � at � and the vector space UP(�) of all derivative of OP is called the tangent space [11] to � at �. 
 
Definition 2.12. If F:� → - is a smooth map between manifolds and if � ∈ �, the 
differential 
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                                                 F∗P = 4FP:	UP(�) → UL(P)� 
is the linear map defined by 
                                               (F∗P(Q))[2]L(P) = Q[2 ∘ F]P, 
for all Q ∈ UP(�) and all [2]L(P) ∈ OL(P). 
 
Lemma 2.13. If F:� → - and If 2:- → W are smooth map between manifolds and � ∈ �, then 4(2 ∘ F)X = 42X ∘ 4FX. 
Proof: Consider 

                             B(2 ∘ F)∗P(Q)C [ℎ]GDL(P)E = Q[ℎ ∘ F ∘ 2]P 

                                                     = (F∗P(Q)[ℎ ∘ 2]L(P)) 
                                                     = (2∗L(P)(F∗P(Q)))[ℎ]G(L(P)) 
Since [ℎ]G(L(P)) ∈ OG(L(P)) and Q ∈ UP(�) are arbitrary. □ 

 
Corollary 2.14. If � is a smooth manifold of dimension �, then UX(�) is a real vector 
space of dimension �, ∀	� ∈ �. 
Proof: Let (	, �) be a coordinate patch on � with � ∈ 	. Then UX(	) = UX(�) so we 
have  
                                             �∗X:	UX(	) → U5(X)(�(	)) 
is an ℝ- linear isomorphism. Since �(	) ∈ ℝ� is open, we know that 
                                                  U5(X)D�(	)E = ℝ�  □ 

 
3. Diffeomorphic structures 
Diffeomorphism is an isomorphism in the category of smooth manifolds. It is an 
invertible function that maps one differentiable manifold to another, such that both the 
function and its inverse are smooth functions. 

This section is really an extended remark on some very deep theorems. For this 
purpose, let � be a differentiable manifold with smooth structure [10] � ={(	!, �!)}!∈#. Let Φ:� → � be any homeomorphism. Set  
                                                 �[ = {(Φ��(	!), �! ∘ Φ)}!∈#. 

Proposition 3.1. The set �[ is a �� structure on � having the same structure cocycle as �.      
Proof: We know 
                                      2!% = �! ∘ �%�� = (�! ∘ Φ) ∘ (�% ∘ Φ)�� , 
and this map carries the set 

                                   D�% ∘ ΦE BΦ��(	!) ∩ Φ��D	%EC = �%(	! ∩ 	%) 
onto the set 

                                    (�! ∘ Φ) BΦ��(	!) ∩ Φ��D	%EC = �!(	! ∩ 	%) 
Finally, the maximality of the �� atlas �[ follows from that of � and the fact that �[[MN = �.   □ 

Definition 3.2. Two �� structures [6] � and ℬ, defined on some topological manifold �, are said to be diffeomorphic structures ℬ = �[, for some homeomorphism      Φ:� → �. 
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Example 3.3. Let \(�) denote the number of diffeomorphism classes of differentiable 
structures on ]�. It was long known that \(�) = 1 for � = 1,2,3. The value of \(4) 
remains mystery. The following table for 5 ≤ � ≤ 18 was computed by Kervaire and 
Milnor.              � 5 6 7 8 9 10 11 12 13 14   15 16 17 18 \(�) 1 1 28 2 8  6 992 1  3  2 16256  2 16 16 
 
4. The tangent bundle  
Let � be a ��	�-maifold with structure {(	!, �!)}!∈#. Consider the set  
                                              U = ∐ UX(�)X∈e  
a disjoint union with, as set no topological structure. For each 	!, ' ∈ #, define 
                                            U(	!) = ∐ UX(�) ⊆ UX∈76 . 
Then the individual linear maps 4�!X, � ∈ 	!, unite a define a set map 
                                   4�!:	U(	!) → UD�!(	!)E = �!(	!) × ℝ� ⊆ ℝf�     
More precisely, if gX denotes a tangent vector to � at � ∈ 	! 
                                         4�!(gX) = (�!(�), 4�!X(gX)) 
and this defines a bijection of U(	!) onto an open subset of ℝf�. If 	! ∩ 	% ≠ ∅, 
consider 
                                       4�! ∘ 4�%��: U(�%(	! ∩ 	%)) → U(�!(	! ∩ 	%)) 
By the chain rule  
                                       42!%: U(�%(	!) ∩ U(	%)) → U(�!(	!) ∩ U(	%)) 
a �� diffeomorphism between the open subsets of ℝf�. 
We topologize the set U. If  
                                                i ⊆ 4�!DU(	!)E = U(�!(	!) 
is an open set, then 4�!��(i) is to be an open subset of U.  

Definition 4.1. The system j: U� → � is said called the tangent bundle [5] of �. The 
total space U(�), the base space is �, and j is called the bundle projection.     

Definition 4.2. A vector field on � is a smooth map k:	� → U(�)(� ⟼ kP) such that j ∘ k = $4e. The set of all vector fields on � is denoted by m(�). 
Remark: Let k be a vector field on �, (	, ��,⋯⋯ , ��) a coordinate chart on �. Then 

                                                          k|	 = ∑ ppXq�rs�  

where Fr: 	 → ℝ is smooth, 1 ≤ $ ≤ �.     

Definition 4.3. Let �	be a smooth ,-manifold, t a smooth (, + �)- manifold, and j: t → � a smooth map. This will be called an �-plane bundle over � (or a vector 
bundle over � of fiber dimension �) if the following properties hold 
   ($) For each � ∈ �, tX = j��(�) has the structure of real, �-dimensional vector space. 
   ($$) There is an open cover {iu}u∈v of �, together with commutative diagrams  

                                                  j��(iu) 																	wx																							IJJJJJJJJJJJJJJJK iu × ℝ� 
 
                                                     j                                                  ��      
                                                         iu 																														ry																									IJJJJJJJJJJJJJJJJJJJJK iu 
 



M.R.Hossain, Md. Raknuzzaman, Md. Mijanoor Rahman and Md. Jamal Hossain 

226 

 

such that �u is diffeomorphism, ∀	z ∈ {. ($$$) For each z ∈ { and � ∈ iu , �uX = �u|tX maps the vector space tX isomorphically 
onto the vector space {�} × ℝ�. 

As with tangent bundles, we call t is the total space, � is the base space and j 
the bundle projection. We also call each iu a trivializing a neighborhood for the bundle 
and {iu}u∈v a locally trivializing cover (of �) for t. 
 
Definition 4.4. An �-plane bundle is trivial if it is a isomorphic to the product bundle ��:� × ℝ� → �.   
 
Definition 4.5. A section of the �-tuple is trivial j: t → � is a smooth map |:� → t 
such that j ∘ | = $4e. The set of all such sections is denoted by Γ(t). 
 
 Definition 4.6. The manifold � parallelizable if there are fields 
                                                  k�, kf, k~,⋯⋯ ,k� ∈ m(�)	 
such that {k�X, kfX, ⋯⋯ ,k�X} is a basis of UX(�), ∀	� ∈ �. 
 
Example 4.7. We give 1-plane bundle (a line bundle) over a circle, known as the Möbius 

bundle. On ℝ × ℝ, define the equivalence relation (|, �)~(| + �, (−1)��), � ∈ ℤ. 
Remark that � → (−1)�� is a linear automorphism of ℝ. The projection (|, �) → | passes 
to a well defined map : (ℝ × ℝ)/(~) → ℝ/ℤ = ]�. It should be clear, intuitively that this 
a vector bundle over ]� of fiber dimension one. 
 
5. Cocycles and geometric structures 
Let j: t → � be an �-plane bundle and let {iu}u∈v be a locally trivializing open cover of t, the trivializations being �u:	j��(iu) → iu × ℝ�. If ir ∩ iu ≠ ∅, consider 

                               (ir ∩ iu) × ℝ� 			wqMNIJJJKj��(ir ∩ iu)					wx				IJJJKj��(ir ∩ iu)× ℝ�. 
This composition must have the form 

                                       					�u	�r�� ��, ���⋮���� = ��, �ru(�), ���⋮����, 

where �ru(�) ∈ ��(�), ∀	� ∈ ir ∩ iu. 
 
Lemma 5.1. The map �ru:		ir ∩ iu → ��(�) is smooth. 
Proof: Let T� denote the column vector with 0’s in all places except the ���, where the 
entry 1. Then T�(�) = �u	�r��(�, T�) defines a smooth map 
                                                    T�:	ir ∩ iu → (ir ∩ iu) × ℝ�, 1 ≤ � ≤ �. But T�(�) = �u	�r��(�, �ru(�), T�) and the second entry is just the ��� 
column of �ru(�). Since � is arbitrary, 1 ≤ � ≤ �, we see that the �fentries of �ru(�) are 
the smooth functions of �. □ 

 

Definition 5.2. The smooth maps have the ‘cocycle’ property 
                                               ($) ��u(�). �ur(�) = ��r(�) 
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∀	� ∈ ir ∩ iu ∩ i�	∀	$, z, � ∈ {. As usual, this property implies the following also, for 
all appropriate choice of � and indices $, z ∈ {. 
                                       ($$) �rr(�) = �� 

                                      ($$$) �ru(�) = B�ur(�)C��
 

 
Definition 5.3. A ��(�)- cocycle property [4] on � is a family � = �iu, �ru�r,u∈v such 

that �iu�u∈v is an open cover of � and �ur:	ir ∩ iu → ��(�) is a smooth map, ∀	$, z ∈ {, 
all subject to the cocycle condition property ($) of definition 4.02. if the cocycle � arises 
as above from an �-plane bundle t, it is said to be a structure cocycle of t. 
 
Definition 5.4. Two ��(�)-cocycles 
                                           � = �iu , �ru�r,u∈v and � = {�� , ���}�,�∈� 

On the same manifold � equivalent if they are contained in a common ��(�)-cocycle on �. The equivalence class of � will be denoted by [�]. 
 
Corollary 5.5. Equivalence ��(�)-cocycles is an equivalence relation. 
Proof: If �~� and �~�, let � be a cocycle containing both � and �, � be cocycle 
containing both � and �. Then � and � both contain �. We know the theorem “If two ��(�)-cocycles on same manifold contain a common ��(�)-cocycle, then they are 
contained in a common ��(�)-cocycle” from this theorem guarantees that they are 
contained in a common cocycle �. Then � ⊆ � and � ⊆ �, so �~�. □ 

 
Theorem 5.6. If � is a ��(�)-cocycle on �, the isomorphism class t[�] ∈ �T���(�) 
depends only one equivalence class [�] ∈ ��(�; ��(�)). This defines a canonical 
bijective correspondence 
                                                        �T���(�) ↦ ��(�;��(�))        
where �T���(�) denote the set of isomorphism classes [t] of �-plane bundles t on � 
and ��(�; ��(�)) denote the equivalence classes of ��(�)-cocycles.         
Proof:  In this case we have to identify �T���(�) to ��(�; ��(�)). The tangent bundle U(�), any smooth atlas {(	! , �!)}!∈#, with associated structure cocycle �2!%�!,%∈# for �, provides a structure cocycle {	! , {2!%}!,%∈#. There are, of course structure cocycles 
for U(�) that are not obtained in this way, but these special cocycles tie together the 
bundle structure of U(�) and the smooth structure of �. □ 

 

Definition 5.7. A structure cocycle {	! , {2!%}!,%∈# for U(�), associated to smooth atlas 
on �, will be called a Jacobian cocycle. If U(�) admits a Jacobian cocycle such that {2!% = ��, ∀	', ( ∈ #, then � is said to be integrably parallelizable. 
 
Definition 5.8. Let � ⊆ ��(�) be a subgroup and let j: t → � be an �-plane bundle. We 
say that the structure group of t can be reduced to � if there is a ��(�)-cocycle �iu , �ur�r,u∈v representing the isomorphism class of t such that D�urE ⊆ �, ∀	z, $ ∈ {. Such 

a cocycle will be called a �-cocycle for t.  
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6. Global constructions of smooth functions 
Proposition 6.1. Let � be an �-manifold, let 	 ⊆ � be an open subset and � ⊂ 	 a 
compact subset. Then there is a smooth function F:� → ℝ such that F|� ≡ 1 and 
supp(F)⊂ 	. 
Proof: For each � ∈ �, choose a coordinate neighborhood (	P, @P) about �, 	P ⊆ 	, and 
an open, �-dimensional interval �P with �̅P ⊂ 	P, centered at �. Since � is compact, 
finitely many of the �P cover �. □ 

 

Lemma 6.2. Let � be a smooth manifold and let � ∈ �. Then the natural map  
                                                             ��(�) → /X 
that carries F → [F]X is surjective.  
Proof: Given [2]X ∈ /X, find � ∈ ��(�) with supp(�)⊂ dom(2) and � ≡ 1 on some 
compact neighborhood of 	� in dom(2). Then �2 extends by 0 to the smooth function F 
on � and [F]X = [2]X. □ 

 

Proposition 6.3. If    = {	!}!∈# is an open cover of �, there is a �� partition of unity {¡!}!∈# subordinate to  . 
Proof: First remark that ¢ = {�%}%∈/ is a refinement of unity subordinate to ¢ induces a 
smooth partition of unity subordinate of  .  Indeed, let $:	/ → # be a map such that �% ⊆ 	r(%), ∀	( ∈ /. If {£%}%∈/ is a partition of unity subordinate to ¢, define ¡! =∑ £%%∈rMN(!) , ∀	' ∈ #. If $��(') = ∅, we understand that ¡! ≡ 0. It is clear that {¡!}!∈# is a partition of unity subordinate to  . 
By passing to a suitable locally finite refinement of   and applying the above paragraph, 
we lose no generality in assuming that  
          ($)   is locally finite. 
          ($$) each 	! ∈   is the domain of a �� coordinate chart (	! , �!); 
          ($$$) there are open �-dimensional intervals �! with �̅! ⊂ �!(	!) compact and 
such that                                       								{�!��(�!)}!∈# covers �. 
By Proposition 5.01, define F! ∈ ��(�) in such a way that F!|�!��(�̅!) ≡ 1 and 
supp(F!)⊂ 	!. Since the cover {	!}!∈# is locally finite, we can define  
                                                      F = ∑ F! ∈ ��(�)!∈# , 
remarking that F > 0 on �. We obtain the smooth partition of unity by setting ¡! =F!/F, ∀' ∈ #.□     
      
Proposition 6.4. If � is a smooth manifold and k ⊆ �, then  
                                                                    F: k → ℝ� 
is smooth if and only if ∀	� ∈ k, ∃ an open neighborhood 	X ⊆ � of �, and a smooth 
map FX:		X → ℝ� such that FX|(	X ∩ k) = F|(	X ∩ k). 
Proof: This property clearly follows from our definition of smoothness. We must recover 
our definition from this property. Let 	 = ⋃X∈¦	X. Then there is a must partition of 
unity {¡X}X∈¦ on 	, subordinate to the open cover {	X}X∈¦ of the manifold 	. Since each FX in ℝ�-valued, ¡XFX makes sense and can be interpreted as a smooth map of 	 into ℝ�. 
Then define  
                                                           F§ = ∑ ¡XFXX∈¦ , 
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a smooth map of 	 into ℝ�. Evidently  
                                            F§(;) = (∑ ¡X(;)X∈¦ )F(;) = 1. F(;) = F(;), ∀	; ∈ k, so F§ is the required smooth extension of F to the neighborhood 	 of k. □ 

 

Definition 6.5. A function F: k → ¨ from the subset k ⊆ � of smooth manifold [7] � 
into the subset ̈ ⊆ - of a smooth manifold - is said to be smooth if, for each � ∈ k, 
there is a open neighborhood 	X ⊆ � of � and smooth map FX:		X → - such that FX|(	X ∩ k) = F|(	X ∩ k). Such a map is diffeomorphism of k onto ̈  if it is bijective 
and both F and F�� are smooth. 
 
Theorem 6.6. Let � and - be �� manifolds of the same dimension �. If 	 ⊆ � is open, 
if k ⊆ - and if �:	 → k is a diffeomorphism, then k is open in -. 
Proof: Let �© ∈ 	 and �(�©) ∈ k. Since ���: k → 	 is smooth, there is an open 
neighborhood � of �(�©) in - and a smooth extension �:	� → ℝ� of ���|(� ∩ k). 
Since �:	 → k is continuous, �ª = ���|(� ∩ k) is an open neighborhood of �© in 	 and 
                                                   � ∘ �«�ª = ��� ∘ �«�ª = $4¬8. 
Since �:	 → - is smooth in the usual sense, the chain rules gives 
                                                  4�5(X­) ∘ 4�X­ = $4®̄ ­(e), 
so 4�X­ :	UX­(�) → U5(X­)(-)	is a linear isomorphism. By the inverse function theorem, 
there is a open neighborhood i ⊆ �ª ⊆ 	 of �© which is carried by � diffeomorphically 
onto an open subset �(i) ⊆ -. But �(�©) is an arbitrary point of k and �(�©) ∈�(i) ⊆ k, so k is an open subset of -. □ 

 

7. Manifolds with boundary 
Since Euclidean half space ℍ� is a subset of smooth manifold ℝ�, definition 5.05 allows 
us to talk about a smooth maps and diffeomorphism [8] between open subsets of ℍ�. 
Thus, if � is a topological manifold with boundary, it makes sense to talk about two ℍ�-
charts on � being ��-related, so we can define a differentiable structure on � to be a 
maximal ℍ�-atlas � of ��-related charts. As in the topological case, we define 
                         ±� = {� ∈ �|	∃	(	! , �!) ∈ �, � ∈ 	! , �!(�) ∈ ±ℍ�} 
                       int(�)	= {� ∈ �|	∃	(	! , �!) ∈ �, � ∈ 	!, �!(�) ∈ $��(ℍ�)}  
The pair (�,�) is a (smooth) �-manifold with boundary ±�. Of course, all smooth �-
manifolds without boundary are special cases, as is ℍ� itself. The notation of smooth 
maps between manifolds with boundary is defined exactly as in the boundaryless case.    
 
Definition 7.1. If F:� → - and 2:- → W are smooth maps between manifolds with 
boundary, then 2 ∘ F is smooth and for each � ∈ �. 
                                                       4(2 ∘ F)X = 42L(X) ∘ 4FX  
 
Lemma 7.2. Let � ∈ ±ℍ� and let �:	/X(ℝ�) → /X(ℍ�) be defined by �[F]X =[F|(ℍ� ∩ 4²,(F))]X. Then � is a surjection. 
Proof: Let 	 ⊆ ℍ� be an open neighborhood of �. If 2:	 → ℝ  is smooth, there is a 
neighborhood � of � in ℝ� and a smooth extension 2³: � → ℝ of 2|(� ∩ 	 ∩ ℍ�). Then [2³]X ∈ /X(ℝ�) and �[2³]X = [2]X. □ 
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Lemma 7.3. For � ∈ ±ℍ�, define �∗:	UX(ℍ�) → UX(ℝ�) then by setting �∗(Q)[F]X =Q(�[F]X). Then we have have to show that �∗ is bijective. 
Proof: We prove that �∗ is one to one. If �∗(Q�) = �∗(Qf), then Q�(�[F]X) =Qf(�[F]X), ∀[F]X ∈ /X(ℝ�).  Since � is surjective, it follows that Q�[2]X =Qf[2]X, ∀[F]X ∈ /X(ℍ�), so Q� = Qf. 
We have to prove that �∗ is onto. Let g ∈ UX(ℝ�) = ℝ�. As an infinitesimal curve, this 
vector is represented by |(�) = � + �g. As an operator on germs, g = Q〈µ〉¯. Either g 
points into ℍ� (we intend this to include the case that g is tangent to ±ℍ�) or g points 
out of ℍ�, in this case –g points into ℍ�. 
If g points into ℍ�, then |(�) ∈ ℍ�, � ≥ 0. Define Q:	/X → ℝ by 

                                                  Q[2]X = lim�→©» GDµ(�)E�G(X)�  

It is elementary that Q ∈ UX(ℍ�) and that �∗(Q) = Q〈µ〉¯ = g. 
If g points out of ℍ�, then |(�) ∈ ℍ�, ∀� ≤ 0. Define Q:	/X(ℍ�) → ℝ	 by 

                                      Q[2]X = lim�→©M GDµ(�)E�G(X)�  

Again, Q ∈ UX(ℍ�) and �∗(Q) = g. □ 

 

8. Submanifolds  
Let � be an ,-manifold, possibly with the boundary. A subset k ⊂ � is a properly 
imbedded submanifold [1] of dimension � if and only if, ∀	� ∈ k, there is an ℍ¼ 
coordinate chart (	, �) about � in � in which �(	 ∩ k) = �(	) ∩ ℍ�, where ℍ� ⊂ℍ¼ is the (image of the) standard inclusion. 

Remark that, in the above definition (	 ∩ k,�|(	 ∩ k)) can be viewed as an ℍ� 
coordinate chart on k and that the collection of all such charts makes k a smooth �-
manifold with boundary ±k = k ∩ ±�. Thus if ±� = ∅, then ±k = ∅ also. 
 
Theorem 8.1. Let F:� → - be a smooth map between the manifolds of respective 
dimensions , and �. Assume that ±- = ∅ and that , > �. If ; ∈ - is a regular value 
simultaneously for F for ±F = F|±�, then F��(;) is a properly imbedded submanifold of 
dimension , − �.  
Proof: Let � ∈ F��(;) and the find a suitable coordinate chart about � in �. There are 
two cases. 
Case 1. Suppose � ∈ int(�). Choose a coordinate neighborhood (	, �) about � such that 	 ⊆ int(�). Then ; is a regular value of F|	 so it implies that F��(;) ∩ 	 is a smooth 
submanifold of 	 of a dimension , − �. 
Case 2. Suppose � ∈ ±� and let (	, ��, �f, …… , �¼) be an ℍ¼ charts about � in �. 
Assume that F(¾) ⊂ i, where (i, ;�, ;f, …… , ;�) is a coordinate chart about ; in 
which ; = 0. Let ±F|(	 ∩ ±�) be denoted by �(�f, …… , �¼) with component 
functions ��, …… , �� relative to the coordinate of i. Since � is a regular point for �, 	 
can be chosen so small that the matrix 

                                                               ¿p5NpXÀ …… p5NpXÁ⋮ ⋮p5ÂpXÀ …… p5ÂpXÁ
Ã   
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has constant rank � on 	 ∩ ±�. By permutation of coordinates �f, …… , �¼, it can be 
assumed that the last � × � block 

                                                            ¿ p5NpXÁMÂ»N …… p5NpXÁ⋮ ⋮p5ÂpXÁMÂ»N …… p5ÂpXÁ
Ã 

is non singular on 	 ∩ ±�. Choosing 	 even smaller, if necessary the corresponding � × � block in the matrix 

                                                                  ¿pLNpXN pLNpXÀ …… pLNpXÁ⋮ ⋮ ⋮pLÂpXN pLÂpXÀ …… pLÂpXÁ
Ã    

is also nonsingular. We then resort to the trick of recoordinatizing 	 near � by setting @r = �r, 1 ≤ $ ≤ , − �, and @¼��Äu = Fu , 1 ≤ z ≤ �. The inverse function theorem 
shows, by the above remarks, that this will define an ℍ� chart on a small enough 
neighborhood (again called 	) of �. But, relative to these coordinates, 
                                             F(@�, @f, …… , @¼) = (@¼��Ä�, …… , @¼) 
Then F��(;) ∩ 	 is the set of points with coordinates (@�, …… , @¼, 0, …… . ,0). That is  
                                               F��(;) ∩ 	 = ℍ¼�� ∩ 	. □ 

 

Example 8.2. Let F:	ℍ�Ä� → ℝ be given by 

                                             F(��, �f, …… , ��Ä�) = ∑ D�rEf�Ä�rs�  
Then 1 ∈ ℝ is a singular value both for F and for ±F. The hemisphere F��(1) is the 
intersection ]� ∩ ℍ�Ä� and is an �- manifold with boundary [4] F��(1) ∩ ±ℍ�Ä� =]���.  
 
Lemma 8.4. If ±� = ∅ and F: - → � is smooth, then the set of points in � that are 
simultaneous regular values for F and ±F in dense in �. 
Proof: Clearly, if � ∈ ±- is a regular point for ±F, it is also the regular point for F. Thus ; ∈ � is a regular value both of F and ±F precisely when it is a regular value both of F|$��(-) and of ±F. Use countable coordinate coverings {	r}r∈Å of int(-), ��u�u∈v of ±-, 

and {i�}�∈Æ of �. For each � ∈ �, consider the countable family of smooth maps 
                                                       Fr�:		r ∩ F��(i�) → i� 
                                                     ±Fu�:		u ∩ ±F��(i�) → i� 
Obtained by restrictions. So we have ; ∈ i� is a common regular value of all these 
maps. Doing this for each � ∈ �, we complete proof. □ 
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