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Abstract. Let G = (V, E) be a graph without isolated vertices. A securgeatbminating
set of G is an edge dominating sEflE with the property that for eaad E — F, there
existsfF adjacent tae such that — {f}) O {e€} is an edge dominating set. The secure
edge domination numbeyy(G) of G is the minimum cardinality of a secure edge
dominating set ofc. In this paper, we initiate a study of the secedge domination
number and establish some results on this new pdeam
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1. Introduction

All graphs considered here are finite, undirectdathaut isolated vertices, loops and
multiple edges. LeG = (V, E) be a graph with\] = p, vertices andg| = q edges. For
definitions and notations, the reader may refgt o

A setD O Vis a dominating set if every vertex nothris adjacent to at least one
vertex in D. The domination numbey(G) of G is the minimum cardinality of a
dominating set of5. Recently many domination parameters are giverhénttooks by
Kulliin [2, 3, 4]. A setF of edges in a grapB is an edge dominating set if every edge
in E — Fis adjacent to at least one edgé-iriThe edge domination numbgfG) of G is
the minimum cardinality of an edge dominating deGoA secure dominating set &fis
a dominating seb O V with the property that for eaah 0 V — D, there existy O D
adjacent tai such thatD—{v}) O {u} is a dominating set. The secure domination number
Vs(G) of G is the minimum cardinality of a secure dominatietj §he concept of secure
domination was introduced by Cockayne et al. in [l&ny other domination parameters
were studied, for example, in [6, 7, 8, 9, 10,112,,13, 14].

The degree of a vertaxis denoted by deg) and the degree of an edge is
defined as dequj + degy) — 2. LetA' denote the maximum degree among the edges of
G. Let[ x| denote the least integer greater than or equal ltothis paper, we introduce
the secure edge domination number of a graph.
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2. Secure edge domination
We introduce the concept of secure edge dominatignaphs.

Definition 1. A secure edge dominating set®fis an edge dominating sEt] E with
the property that for ead] E — F, there exist$ 0 F adjacent t@ such thatE — {f}) O

{€e} is an edge dominating set. The secure edge ddimghaumbery{(G) of G is the
minimum cardinality of a secure edge dominatingo$&s.

Note thatyyG) is defined only ifG has no isolated vertices. $-set is a
minimum secure edge dominating set.

Proposition 2. Let G be a graph without isolated vertices. Then

Y(G) =v«G) 1)
and this bound is sharp.
Proof: Every secure edge dominating seGdé an edge dominating set. Thus (1) holds.
The graph¥, p, p= 2, achieve this bound.

Proposition 3. Let G be a connected graph wipre 2 vertices. Then
1<v4G).
This bound is sharp. For exampfgK, ») = 1.

We determing/{(G) for some standard graphs.

Proposition 4. For a patiPy., with p=1 vertices,
1 — 3p
ACAEEY
Proposition 5. For a cycleC, with p=3 vertices,

]

Proposition 6. For a complete bipartite graphy, ,, 2<m<n,
Yo(Kmn) =m.

Proposition 7. For a staKy p, p= 2,

Ys(Ky,p) = 1.
The double stag, , is the graph obtained from joining centers of starsK;
andK; , with an edge.

Proposition 8. For a double st ,, L<m<n,
YoSnn) = 2.
Supposd; andD, areyssets ofG; andG, respectively. The® =D; 0 D, is a
yeset of G, O G,. In view of this fact, we have the following praiion.
Proposition 9. For any two graph&; andG,,
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Ys (G U G2) =Vo(Gy) +YGo).

Theorem 10. Let G be a connected graph wipre 3 vertices. Theys(G) = 1 if and only
if G= Kl,p—l or K3.

Proof: Suppose/s(G) = 1. If Gis a connected graph with 3 vertices, tiis K, , or Ks.
Clearlyyy(Kj, =1 andyy(Ks)=1.

SupposeG is a connected graph with> 4 vertices. LeD={e} be a secure edge
dominating set 0o6. We now prove tha6 = K, ,_: On the contrary, assun®# K; ,_1
We consider the following two cases.

Case 1. LetH =K, ,_;and let endvertices, b0 V(H). Consider the graph obtain&i
from H by adding the edgke=ablJE(H), see Figure 1. It follows that the s&t € {€}) O
{f} = {f} is not an edge dominating set &f This implies thatD is not a secure edge
dominating set, which is a contradiction. Tiis K, ,_1.

Figure 1.

Case 2: LetH =K, ,_;and an endvertea J V(H). Consider the graph obtain&ifrom
H by adding the vertex [0 V(H) and the edgé= av, see Figure 2. It follows that the set
(D —{e}) O {f} = {f} is not an edge dominating set & This implies thaD is not a
secure edge dominating set, which is a contradiclibus
G:Kl,p—l-

Converse is obvious.

Figure2:
The following result is immediate.

Proposition 11. If Gis a connected graph af&is not a star oKz, then

2<Y4G)
and this bound is sharp.
Proof: This result follows from Theorem 10.
The double sta®, ,achieves this bound.

Proposition 12. For any grapl with maximum edge degree,

q :
b= @
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Further, equality holds i = Ps.
Proof: Due to Jayaram [15])('(6)2{ 9 -‘

A'+1
Also by Proposition 2, we hawdG) < y(G). Thus (2) holds.

The following result gives that the value of trergmeten/y(G) ranges over all
positive integers.

Theorem 13. Given positive integerk andp such thatp=3 and kk<p, there exists a
connected grapt with p vertices an¢/s(G) = k.

Proof: We consider the following cases.

Case 1. Supposék = 1. LetG = Ks. Clearly Y/(G)| = 3 and/s(G) = 1.

Case 2. LetCon = {vy, €1, Va, &, V3, ... Vom, €2m, V1} DE @n even cycle withra vertices. For
each odd integer join the vertices; andvi.; to a new vertex; to form the graplt, see

Figure 3.
W %
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Figure 3: A graph withys=4
It is easy to see that the $et {ey, €3, ..., &m_ 1} IS @ Minimum secure edge dominating
set ofG. Then F|=m. HenceV(G) | = 3nandy{(G) =m=k.
Problem 14. Characterize graphs for whichy(G) = y«G).
Problem 15. Characterize graphs for whichyy(G) = 2.

Problem 16. Characterize grapt for which y (G) = {AiJ.
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