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Abstract. Let G = (V, E) be a graph without isolated vertices. A secure edge dominating 
set of G is an edge dominating set F⊆E with the property that for each e ∈ E – F, there 
exists f∈F adjacent to e such that (F – {f}) ∪ {e} is an edge dominating set. The secure 
edge domination number γ's(G) of G is the minimum cardinality of a secure edge 
dominating set of G. In this paper, we initiate a study of the secure edge domination 
number and establish some results on this new parameter. 
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1. Introduction 
All graphs considered here are finite, undirected without isolated vertices, loops and 
multiple edges. Let G = (V, E) be a graph with |V| = p, vertices and |E| = q edges. For 
definitions and notations, the reader may refer to [1]. 

A set D ⊆ V is a dominating set if every vertex not in D is adjacent to at least one 
vertex in D. The domination number γ(G) of G is the minimum cardinality of a 
dominating set of G. Recently many domination parameters are given in the books by 
Kulli in [2, 3, 4]. A set F of edges in a graph G is an edge dominating set if every edge e 
in E – F is adjacent to at least one edge in F. The edge domination number γ'(G) of G is 
the minimum cardinality of an edge dominating set of G. A secure dominating set of G is 
a dominating set D ⊆ V with the property that for each u ∈ V – D, there exists v ∈ D 
adjacent to u such that (D–{v})  ∪ {u} is a dominating set. The secure domination number 
γ's(G) of G is the minimum cardinality of a secure dominating set. The concept of secure 
domination was introduced by Cockayne et al. in [5]. Many other domination parameters 
were studied, for example, in [6, 7, 8, 9, 10, 11, 12, 13, 14].  

The degree of a vertex u is denoted by deg(u) and the degree of an edge uv is 
defined as deg (u) + deg(v) – 2. Let ∆' denote the maximum degree among the edges of 
G. Let x denote the least integer greater than or equal to x. In this  paper, we introduce 
the secure edge domination number of a graph. 
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2. Secure edge domination 
We introduce the concept of secure edge domination in graphs. 

Definition 1. A secure edge dominating set of G is an edge dominating set F ⊆ E with 
the property that for each e ∈ E – F, there exists f ∈ F adjacent to e such that (F – {f}) ∪ 
{ e} is an edge dominating set. The secure edge dominating number γ's(G) of G is the 
minimum cardinality of a secure edge dominating set of G. 
 Note that γ's(G) is defined only if G has no isolated vertices. A γ's-set is a 
minimum secure edge dominating set. 
 
Proposition 2. Let G be a graph without isolated vertices. Then  
    γ'(G) ≤ γ's(G)                         (1) 
and this bound is sharp. 
Proof: Every secure edge dominating set of G is an edge dominating set. Thus (1) holds. 
 The graphs K1, p, p ≥ 2, achieve this bound. 
 
Proposition 3. Let G be a connected graph with p ≥ 2 vertices. Then 

1 ≤ γ's(G). 
 This bound is sharp. For example, γ's(K1, 2) = 1. 
 
 We determine γ's(G) for some standard graphs. 

Proposition 4. For a path Pp+1 with p≥1 vertices, 

( )1

3
'

7s p

p
Pγ +

 =  
 

 

Proposition 5. For a cycle Cp with p≥3 vertices,  

( ) 3
' .

7s p

p
Cγ  =  

 
 

 
Proposition 6. For a complete bipartite graph Km, n, 2 ≤ m ≤ n,  

γ's(Km, n) = m. 
 
Proposition 7. For a star K1, p, p ≥ 2,  

γ's(K1, p) = 1. 
 The double star Sm, n is the graph obtained from joining centers of two stars K1, m 
and K1, n with an edge. 
 
Proposition 8. For a double star Sm, n, 1 ≤ m ≤ n, 

γ's(Sm, n) = 2. 
 

 Suppose D1 and D2 are γ's-sets of G1 and G2 respectively. Then D = D1 ∪ D2 is a 
γ's-set of G1 ∪ G2. In view of this fact, we have the following proposition. 
Proposition 9. For any two graphs G1 and G2, 
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γ's (G1 ∪ G2) = γ's(G1) + γ's(G2). 
 

Theorem 10. Let G be a connected graph with p ≥ 3 vertices. Then γ's(G) = 1 if and only 
if  G = K1, p – 1 or K3. 
Proof: Suppose γ's(G) = 1. If G is a connected graph with 3 vertices, then G is K1, 2 or K3. 
Clearly γ's(K1, 2)=1 and γ's(K3)=1. 
 Suppose G is a connected graph with p ≥ 4 vertices. Let D={e} be a secure edge 
dominating set of G. We now prove that G = K1, p – 1. On the contrary, assume G ≠ K1, p – 1. 
We consider the following two cases. 
Case 1. Let H = K1, p – 1 and let endvertices a, b ∈ V(H). Consider the graph obtained G 
from H by adding the edge f=ab∉E(H), see Figure 1. It follows that the set (D – {e}) ∪ 
{ f} = { f} is not an edge dominating set of G. This implies that D is not a secure edge 
dominating set, which is a contradiction. Thus G = K1, p – 1. 

b

H ae

b

f

G ae

 
Figure 1: 

 
Case 2: Let H = K1, p – 1 and an endvertex a ∈ V(H). Consider the graph obtained G from 
H by adding the vertex v ∉ V(H) and the edge f = av, see Figure 2. It follows that the set 
(D – {e}) ∪ { f} = { f} is not an edge dominating set of G. This implies that D is not a 
secure edge dominating set, which is a contradiction. Thus  
G=K1, p – 1. 
 Converse is obvious. 

H ae f
G ae v

 
Figure 2: 

The following result is immediate. 
 
Proposition 11. If G is a connected graph and G is not a star or K3, then 

2 ≤ γ's(G) 
and this bound is sharp. 
Proof: This result follows from Theorem 10. 
 The double star Sm, n achieves this bound. 

Proposition 12. For any graph G with maximum edge degree ∆', 

    ( )' .
' 1 s

q
Gγ  ≤ ∆ + 

                          (2) 
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Further, equality holds if G = P3. 

Proof: Due to Jayaram [15], ( )' .
' 1

q
Gγ  ≥  ∆ + 

 

Also by Proposition 2, we have γ'(G) ≤ γ's(G). Thus (2) holds. 
 
 The following result gives that the value of the parameter γ's(G) ranges over all 
positive integers. 
 
Theorem 13. Given positive integers k and p such that p≥3 and 1≤k<p, there exists a 
connected graph G with p vertices and γ's(G) = k. 
Proof: We consider the following cases. 
Case 1. Suppose k = 1. Let G = K3. Clearly |V(G)| = 3 and γ's(G) = 1. 
Case 2. Let C2m = {v1, e1, v2, e2, v3, … v2m, e2m, v1} be an even cycle with 2m vertices. For 
each odd integer i, join the vertices vi and vi+1 to a new vertex ui to form the graph G, see 
Figure 3. 
 

u7 u5

u1 u3

v8 v5

v1 v4

v7

v2

v6
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e1 e3

e8 e4

e6

e2

 
Figure 3: A graph with γ's = 4 

 
It is easy to see that the set F = {e1, e3, ..., e2m – 1} is a minimum secure edge dominating 
set of G. Then |F|=m. Hence |V(G) | = 3m and γ's(G) = m = k. 

Problem 14. Characterize graphs G for which γ'(G) = γ's(G). 

Problem 15. Characterize graphs G for which γ's(G) = 2. 

Problem 16. Characterize graphs G for which ( )' .
' 1s

q
Gγ  =  ∆ + 
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