Annals of Pure and Applied Mathematics Vol. 12, No. 1, 2016, 95-99 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 August 2016 www.researchmathsci.org

Annals of Pure and Applied <u>Mathematics</u>

Secure Edge Domination in Graphs

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585106, India e-mail: <u>vrkulli@gmail.com</u>

Received 8 August 2016; accepted 16 August 2016

Abstract. Let G = (V, E) be a graph without isolated vertices. A secure edge dominating set of *G* is an edge dominating set $F \subseteq E$ with the property that for each $e \in E - F$, there exists $f \in F$ adjacent to *e* such that $(F - \{f\}) \cup \{e\}$ is an edge dominating set. The secure edge domination number $\gamma'_{s}(G)$ of *G* is the minimum cardinality of a secure edge dominating set of *G*. In this paper, we initiate a study of the secure edge domination number and establish some results on this new parameter.

Keywords: Edge dominating set, secure edge dominating set, secure edge domination number.

AMS Mathematics Subject Classification (2010): 05C69

1. Introduction

All graphs considered here are finite, undirected without isolated vertices, loops and multiple edges. Let G = (V, E) be a graph with |V| = p, vertices and |E| = q edges. For definitions and notations, the reader may refer to [1].

A set $D \subseteq V$ is a dominating set if every vertex not in D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Recently many domination parameters are given in the books by Kulli in [2, 3, 4]. A set F of edges in a graph G is an edge dominating set if every edge ein E - F is adjacent to at least one edge in F. The edge domination number $\gamma'(G)$ of G is the minimum cardinality of an edge dominating set of G. A secure dominating set of G is a dominating set $D \subseteq V$ with the property that for each $u \in V - D$, there exists $v \in D$ adjacent to u such that $(D-\{v\}) \cup \{u\}$ is a dominating set. The secure domination number $\gamma'_s(G)$ of G is the minimum cardinality of a secure dominating set. The concept of secure domination was introduced by Cockayne et al. in [5]. Many other domination parameters were studied, for example, in [6, 7, 8, 9, 10, 11, 12, 13, 14].

The degree of a vertex u is denoted by deg(u) and the degree of an edge uv is defined as deg (u) + deg(v) - 2. Let Δ' denote the maximum degree among the edges of G. Let $\lceil x \rceil$ denote the least integer greater than or equal to x. In this paper, we introduce the secure edge domination number of a graph.

V.R.Kulli

2. Secure edge domination

We introduce the concept of secure edge domination in graphs.

Definition 1. A secure edge dominating set of *G* is an edge dominating set $F \subseteq E$ with the property that for each $e \in E - F$, there exists $f \in F$ adjacent to *e* such that $(F - \{f\}) \cup \{e\}$ is an edge dominating set. The secure edge dominating number $\gamma'_s(G)$ of *G* is the minimum cardinality of a secure edge dominating set of *G*.

Note that $\gamma'_s(G)$ is defined only if G has no isolated vertices. A γ'_s -set is a minimum secure edge dominating set.

Proposition 2. Let *G* be a graph without isolated vertices. Then

$$\gamma'(G) \le \gamma'_s(G) \tag{1}$$

and this bound is sharp.

Proof: Every secure edge dominating set of *G* is an edge dominating set. Thus (1) holds. The graphs $K_{1,p}$, $p \ge 2$, achieve this bound.

Proposition 3. Let *G* be a connected graph with $p \ge 2$ vertices. Then

$$1 \leq \gamma'_{s}(G)$$
.

This bound is sharp. For example, $\gamma'_{s}(K_{1,2}) = 1$.

We determine $\gamma'_{s}(G)$ for some standard graphs.

Proposition 4. For a path P_{p+1} with $p \ge 1$ vertices,

$$\gamma'_{s}\left(P_{p+1}\right) = \left\lceil \frac{3p}{7} \right\rceil$$

Proposition 5. For a cycle C_p with $p \ge 3$ vertices,

$$\gamma'_{s}\left(C_{p}\right)=\left\lceil\frac{3p}{7}\right\rceil.$$

Proposition 6. For a complete bipartite graph $K_{m,n}$, $2 \le m \le n$, $\gamma'_s(K_{m,n}) = m$.

Proposition 7. For a star $K_{1, p}$, $p \ge 2$,

$$\gamma'_s(K_{1,p})=1$$

The double star $S_{m,n}$ is the graph obtained from joining centers of two stars $K_{1,m}$ and $K_{1,n}$ with an edge.

Proposition 8. For a double star $S_{m,n}$, $1 \le m \le n$, $\gamma'_{s}(S_{m,n}) = 2$.

Suppose D_1 and D_2 are γ'_s -sets of G_1 and G_2 respectively. Then $D = D_1 \cup D_2$ is a γ'_s -set of $G_1 \cup G_2$. In view of this fact, we have the following proposition. **Proposition 9.** For any two graphs G_1 and G_2 , Secure Edge Domination in Graphs

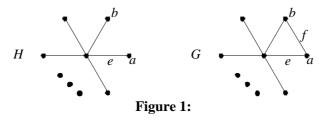
$$\gamma'_s (G_1 \cup G_2) = \gamma'_s(G_1) + \gamma'_s(G_2).$$

Theorem 10. Let *G* be a connected graph with $p \ge 3$ vertices. Then $\gamma'_s(G) = 1$ if and only if $G = K_{1, p-1}$ or K_3 .

Proof: Suppose $\gamma'_s(G) = 1$. If G is a connected graph with 3 vertices, then G is $K_{1,2}$ or K_3 . Clearly $\gamma'_s(K_{1,2})=1$ and $\gamma'_s(K_3)=1$.

Suppose *G* is a connected graph with $p \ge 4$ vertices. Let $D=\{e\}$ be a secure edge dominating set of *G*. We now prove that $G = K_{1, p-1}$. On the contrary, assume $G \ne K_{1, p-1}$. We consider the following two cases.

Case 1. Let $H = K_{1, p-1}$ and let endvertices $a, b \in V(H)$. Consider the graph obtained G from H by adding the edge $f=ab \notin E(H)$, see Figure 1. It follows that the set $(D - \{e\}) \cup \{f\} = \{f\}$ is not an edge dominating set of G. This implies that D is not a secure edge dominating set, which is a contradiction. Thus $G = K_{1, p-1}$.



Case 2: Let $H = K_{1, p-1}$ and an endvertex $a \in V(H)$. Consider the graph obtained *G* from *H* by adding the vertex $v \notin V(H)$ and the edge f = av, see Figure 2. It follows that the set $(D - \{e\}) \cup \{f\} = \{f\}$ is not an edge dominating set of *G*. This implies that *D* is not a secure edge dominating set, which is a contradiction. Thus $G = K_{1,p-1}$.

Converse is obvious. $H \xrightarrow{e} a$ $G \xrightarrow{e} a f$ vFigure 2:

The following result is immediate.

Proposition 11. If G is a connected graph and G is not a star or K_3 , then

 $2 \leq \gamma'_s(G)$

and this bound is sharp.

Proof: This result follows from Theorem 10. The double star $S_{m,n}$ achieves this bound.

Proposition 12. For any graph *G* with maximum edge degree Δ' ,

$$\frac{q}{\Delta'+1} \le \gamma'_{s}(G).$$
⁽²⁾

V.R.Kulli

Further, equality holds if $G = P_3$.

Proof: Due to Jayaram [15], $\gamma'(G) \ge \left\lceil \frac{q}{\Delta'+1} \right\rceil$.

Also by Proposition 2, we have $\gamma'(G) \leq \gamma'_s(G)$. Thus (2) holds.

The following result gives that the value of the parameter $\gamma'_s(G)$ ranges over all positive integers.

Theorem 13. Given positive integers k and p such that $p \ge 3$ and $1 \le k < p$, there exists a connected graph G with p vertices and $\gamma'_s(G) = k$.

Proof: We consider the following cases.

Case 1. Suppose k = 1. Let $G = K_3$. Clearly |V(G)| = 3 and $\gamma'_s(G) = 1$.

Case 2. Let $C_{2m} = \{v_1, e_1, v_2, e_2, v_3, \dots, v_{2m}, e_{2m}, v_1\}$ be an even cycle with 2m vertices. For each odd integer *i*, join the vertices v_i and v_{i+1} to a new vertex u_i to form the graph *G*, see Figure 3.

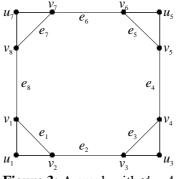


Figure 3: A graph with $\gamma'_s = 4$

It is easy to see that the set $F = \{e_1, e_3, ..., e_{2m-1}\}$ is a minimum secure edge dominating set of *G*. Then |F|=m. Hence |V(G)| = 3m and $\gamma'_s(G) = m = k$.

Problem 14. Characterize graphs *G* for which $\gamma'(G) = \gamma'_s(G)$.

Problem 15. Characterize graphs *G* for which $\gamma'_s(G) = 2$.

Problem 16. Characterize graphs *G* for which $\gamma'_{s}(G) = \left| \frac{q}{\Delta'+1} \right|$.

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. V.R.Kulli, *Theory of Domination in Graphs*, Vishwa International Publications, Gulbarga, India (2010).
- 3. V.R.Kulli, *Advances in Domination Theory I*, Vishwa International Publications, Gulbarga, India (2012).

Secure Edge Domination in Graphs

- 4. V.R.Kulli, *Advances in Domination Theory II*, Vishwa International Publications, Gulbarga, India (2013).
- 5. E.J.Cockayne, O.Favaron and C.M.Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, *Bull. Inst. Combin. Appl.* 39(2003) 87-100.
- 6. S.Benecke, E.J.Cockayne, and C.M.Mynhardt, Secure total domination in graphs, *Utilitas Math.* 74(2007) 247-259.
- 7. E.J.Cockayne, P.J.P.Grobler, W.R.Grundlingh, J.Munganga and J.H. van Vuuren, Protection of a graph, *Utilitas Math.* 67(2005) 19-32.
- 8. E.L.Enriquez and S.R.Canoy, Jr, Secure convex domination in a graph, *International J. of Mathematical Analysis*, 9(7) (2015) 317-325.
- 9. V.R.Kulli, Inverse and disjoint secure dominating sets in graphs, *International Journal of Mathematical Archive*, 7(8) (2016).
- 10. V.R.Kulli, Inverse and disjoint secure total domination in graphs, *Annals of Pure and Applied Mathematics*, 12(1) (2016) 23-29.
- 11. V.R.Kulli, *Inverse total edge domination in graphs*. In Advances in Domination Theory I, V.R.Kulli ed., Vishwa International Publications, Gulbarga, India (2012) 35-44.
- 12. V.R.Kulli and S.C.Sigarkanti, Inverse domination in graphs, *Nat. Acad. Sci. Lett.*, 14 (1991) 473-475.
- V.R.Kulli and D.K.Patwari, On the total edge domination number of a graph. In A. M. Mathai ed., Proc. of the Symp on Graph Theory and Combinatorics. Kochi, Centre Math. Sci. Trivandrum, Series Publications 21 (1991) 75-81.
- 14. V.R.Kulli and N.D.Soner, Complementary edge domination in graphs, *Indian J. Pure Appl. Math.* 28(7) (1997) 917-920.
- 15. S.R.Jayaram, Line domination in graphs, Graphs Combin. 3 (1987) 357-363.