Annals of Pure and Applied Mathematics Vol. 8, No. 2, 2014, 207-210 ISSN: 2279-087X (P), 2279-0888(online) Published on 17 December 2014 www.researchmathsci.org

The Middle Edge Dominating Graph of Prime Cycles

A.Elumalai¹ and M.Karthikeyan²

¹ Department of Mathematics, Valliammai Engineering College, Chennai-603203, India E-mail: aelu2000@yahoo.com

² Department of Mathematics, Agni College of Technology, Chennai-600130, India E-mail: kmkmkarthikeyan@gmail.com

Received 5 November 2014; accepted 21 November 2014

Abstract. The middle edge dominating graph $M_{ed}(G)$ of a graph G=(V,E) is a graph with the vertex set $E \cup S$ where S is the set of all minimal edge dominating set G and with two vertices u, v $\in E \cup S$ adjacent if u $\in E$ and V=F is a minimal edge dominating set of G containing u or u,v are not disjoint minimal edge dominating sets in S. In this paper we discuss about the middle edge dominating graph of Prime cycles

Keywords: Graph, Cycle, Edge dominating graph, Middle edge dominating graph

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

All graphs considered here are finite, undirected without loops, isolated vertices or multiple edges. Any undefined term in this paper may be found in Kulli [4]. Let G = (V, E) be a graph with $|V|=p\geq 2$ and |E|=q. A set $D \subseteq V$ is a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G.A set $F \subseteq E$ of edges in E-F is adjacent to at least one edge in F. An edge dominating set F of G is a minimal edge dominating set if for every e in F, F-e is not an edge dominating set of G. The edge domination number $\gamma'(G)$ of G is the minimum cardinality of an edge dominating set of G.

Let A be a finite set. Let $F = \{A_1, A_2, \dots, A_n\}$ be a partition of A. Then the intersection graph $\Omega(G)$ of F is the graph whose vertices are the subsets in F and in which two vertices A_i and A_i are adjacent if and only if $A_i \cap A_i = \Phi$

The minimal edge dominating graph $MD_e(G)$ of a graph G is the intersection graph defined on the family of all minimal edge dominating sets of G. This concept was introduced in [2].Some other dominating graphs are studied, for example, in [1] [3] [5] [6].

The edge dominating graph $D_e(G)$ of a graph G is the graph with the vertex set $E \cup S$ where S is the set of all minimal edge dominating sets of G and with two vertices u, v in $E \cup S$ adjacent if u is a minimal edge dominating set of G containing u. This concept was introduced by kulli [5].

The middle edge dominating graph $M_{ed}(G)$ of a graph G=(V,E) is the graph with the vertex set $E \cup S$ where S is the set of all minimal edge dominating sets of G and with

A.Elumalai and M.Karthikeyan

two vertices $u, v \to S$ adjacent if $u \in E$ and V = F is a minimal edge dominating set of G containing u or u, v are not disjoint minimal edge dominating sets in G.

In Figure 1, a graph G and its middle edge dominating graph $M_{ed}(G)$ are shown

We note that the middle edge dominating graph $M_{ed}(G)$ is defined only if G has not isolated vertices.

The degree of an edge uv is defined to be degu+degv-2.An edge called an isolated edge if deguv=0.Let $\Delta_1(G)$ denote the maximum degree among the edges of G

In this paper, we discuss about the middle edge dominating graph of prime cycles.

2. Results of Middle Edge Dominating Graph

Theorem 2.1. Let G be a graph without isolated vertices and with at least two edges. The edge dominating graph $D_e(G)$ is connected if and only if $\Delta_1(G) < q-1$.

Remark 1. For any graph G without isolated vertices, $D_e(G)$ is a subgraph of $M_{ed}(G)$.

Remark 2. For any graph G without isolated vertices, $D_e(G)$ and $MD_e(G)$ are edge disjoint subgraphs of $M_{ed}(G)$.

Theorem 2.2. $M_{ed}(G) = k_{1,p}$ if and only if $G = pk_2, p \ge 1$. **Proof:** Suppose $M_{ed}(G) = k_{1,p}$. Assume $G \ne pk_2$. Then there exist at least two minimal edge dominating sets. Thus $|V(M_{ed}(G))| \ge p+2$ Which is a contradiction. Thus $G = pk_2$

Conversely suppose $G=pk_2$. Then there exists exactly one minimal edge dominating set containing all the edges of G .From the definition of $M_{ed}(G)$, the result follows.

The Middle Edge Dominating Graph of Prime Cycles

Figure 2:

Theorem 2.3. The middle edge dominating graph $M_{ed}(G)$ of G is complete bipartite if and only if $G=pk_{2}, p\geq 1$.

Theorem 2. 4. $M_{ed}(G) = pk_2$ if and only if $G = k_{1,p} p \ge 1$ or k_3 **Proof:** Suppose $M_{ed}(G) = pk_2$, $p \ge 1$. Assume $G \ne k_{1,p}$ or k_3 . Then there exists at least one minimal edge dominating set S containing two or more edges of G. By definition, S will form a subgraph P_3 in $M_{ed}(G)$, which is a contradiction.

Conversely suppose $G = k_{1,p}$ or k_3 . Then each edge e_i of G forms a minimal edge dominating set $\{e_i\}$. Thus e and $\{e_i\}$ are adjacent vertices in $M_{ed}(G)$. Since each minimal edge dominating set $\{e_i\}$ contains only one edge no two vertices of G are adjacent in $M_{ed}(G)$ and no two corresponding vertices of minimal edge dominating sets are adjacent in $M_{ed}(G)$. Thus $M_{ed}(G) = pk_2$ or k_3 .

3. Main results

In this section we study about the middle edge dominating graph of prime cycles and one edge union of prime cycles is shown below.

Definition 3.1. A one edge union C_n^{k} of K copies of cycles is the graph obtained by taking e as a common edge such that any two cycles C_n^{i} and C_n^{j} (i,j) are edge disjoint and do not have any vertex in common except v_i and v_j .

Theorem 3.1. $M_{ed}(G) = pK_{1,(n+1)}$ for n=1,2,3... if and only if $G=C_p$ for all p=5,7,11,... **Proof:** Suppose $M_{ed}(G) = pK_{1,(n+1)}$ for n=1,2,3... Assume $G \neq C_p$ p=5,7,11,... Then there exists at least one minimal edge dominating set S containing two or more edges of G. By definition, S will form a subgraph P_n in $M_{ed}(G)$, which is a contradiction.

Conversely suppose $G = C_p p = 5,7,11,...$ Then each edge e_i of G forms a minimal edge dominating set $\{e_i\}$. Thus e and $\{e_i\}$ are adjacent vertices in $M_{ed}(G)$. Since each minimal edge dominating set $\{e_i\}$ contains only one edge no two vertices of G are

A.Elumalai and M.Karthikeyan

adjacent in $M_{ed}(G)$ and no two corresponding vertices of minimal edge dominating sets are adjacent in $M_{ed}(G)$. Thus $M_{ed}(G) = pK_{1,(n+1)}$.

Example

Figure 4:

Theorem 3.2. $M_{ed}(G) = K_{1,(n+1)}$ for n=1,2,3,...if and only if G=C_p where p=5,7,11,... with one edge is common

Proof: Suppose $M_{ed}(G) = K_{1,(n+1)}$ for n=1,2,3... Assume $G \neq C_p$ p=5,7,11,...with one edge is common. Then there exists at least one minimal edge dominating set S containing two or more edges of G. By definition, S will form a subgraph P_n in $M_{ed}(G)$, which is a contradiction.

Conversely suppose $G = C_p p=5,7,11,...$ with one edge is common and take that edge as a one of the dominating edge and remaining edge e_i of G forms a minimal edge dominating set $\{e_i\}$. Thus e and $\{e_i\}$ are adjacent vertices in $M_{ed}(G)$. Since each minimal edge dominating set $\{e_i\}$ contains only one edge no two vertices of G are adjacent in $M_{ed}(G)$ and no two corresponding Vertices of minimal edge dominating sets are adjacent in $M_{ed}(G)$. Thus $M_{ed}(G) = K_{1,(n+1)}$ for n=1,2,3...

REFERENCES

- 1. V.R.Kulli and B.Janakiram, *The minimal dominating graph, Graph Theory Notes of New York, New York Academy of sciences,* XXVIII,12-15(1995).
- V.S.Naik, Some Results on Domination in Graph theory, Ph.D.Thesis, Bangalore University, Bangalore, India (2003).
- 3. V.R.Kulli, B. Janakiram and K.M.Niranjan, The dominating graph, *Graph Theory* notes of New York, New York Academy of sciences, XLVI, 5-8 (2004).
- 4. V.R.Kulli, *Theory of Domination in Graphs*, Vishwa International Publications, Gulbarga, India (2010).
- 5. V.R.Kulli, *The edge dominating graph of a graph*. In V.R.Kulli, editor, Advances in Domination Theory I, Vishwa International Publications, Gulbarga, India 127-131 (2012)
- 6. V.R.Kulli, *The middle edge dominating graph*. In V.R.Kulli, editor, Advances in Domination Theory I, Vishwa International Publications, Gulbarga, India 153 (2012).