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Abstract. In a weighted graph model, the reduction of flow value between some pairs of 
nodes is more relevant and more frequent than the total disruption of the flow or the 
disconnection of the entire network. So it is necessary to analyse connectivity by levels. 
Some new connectivity and acyclicity parameters are introduced in this paper and 
weighted trees are categorized depending on the structure of the level graphs. 
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1. Introduction  
We can consider a totally weighted graph (Both nodes and arcs are given weights) G as a 
pair ),( µσ  where ℜ→V:σ  and ℜ→×VV:µ . Also we denote the underlying 

graph by ),(: ** µσG , where { }0)(,* >∈= uVu σσ  and * {( , ) ;u v V Vµ = ∈ ×  

( , ) 0}u vµ > [11]. If we have a weighted graph representing some cities and roads 
connecting them, then µ  may be taken as the populations function and σ  the daily 
exchange of population between the cities. In such a model, connectivity plays a crucial 
role. Similar problems arise in all types of networks like communication, computer, 
biological, etc. Depending on the strength of a vertex (population, size, capacity), we can 
have different categories of vertices (A Class city, Big dam, etc). Also depending on the 
rate of flow (data flow, transport, etc.) between two nodes, we can have different 
categories of arcs (Broad band, national highway, etc.). Producing a path between any 
two nodes guarantee the connectedness of a network.  But in any network, the analysis by 
different levels is very important. For example, high exchange of people between two big 
cities, less flow rate of data in a network of large capacity, etc. Also it is relevant to 
verify whether nodes of a given level are connected by roads of sufficient higher level. If 
higher category nodes are connected only by law category arcs or vice versa, the design is 
likely to be defective.  

In this article we introduce some new connectivity concepts in weighted graphs. In a 
weighted graph model, for example, in an information network or electric circuit, the 
reduction of flow between pairs of nodes is more relevant and may frequently occur than 
the total disruption of the flow or the disconnection of the entire network [10,12]. This 
concept is our motivation. As weighted graphs are generalized structures of graphs, the 
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concept introduced in this article also generalizes the classic connectivity concepts. Some 
related works can be seen in [7,8,9]. 

A weighted graph G is a graph in which every arc e is assigned a nonnegative number 
w(e), called the weight of e.  A graph is said to be totally weighted if both its node set and 
arc set are weighted [8]. The set of all the neighbours of a node v in G is denoted by 
NG(v) or simply N(v), and its cardinality by dG(v) or d(v)[4]. The weighted degree of v is 
defined as ∑

∈

=
)(

).,()(
vNx

w
G xvwvd  When no confusion occurs, we denote )(vd w

G
 

by )(vd w
. The weight of a cycle is defined as the sum of the weights of its arcs. An 

unweighted graph can be regarded as a weighted graph in which every arc e is assigned 
weight w(e) = 1. Thus, in an unweighted graph, dw(v) = d(v) for every node v, and the 
weight of a cycle is simply the length of the cycle.  An optimal cycle is a cycle which has 
maximum weight [1]. 

The strength of a path P of n edges ei, for ,1 ni ≤≤ denoted by s(P ) is equal to s(P ) 

= ni≤≤1min { w(ei)} [8]. The strength of connectedness of a pair of vertices )(, GVvu ∈ , 

denoted by CONNG(u, v), is defined as CONNG(u, v) = {Max s(P ); P is a u -v path in G}. 
If u and v are in different components of G, then CONNG(u,  v) = 0.  A u-v path in a 
weighted graph G is called a strongest u-v path if s(P ) = CONNG(u, v). An edge (x, y) is 
strong if its weight is at least equal to the strength of connectedness between x and y in G. 
[8] A connected weighted graph is called a partial tree if G has a spanning sub graph F 
(V; E) which is a tree, where for all arcs (x,y) of G which are not in F , we have 
CONNG(x, y) > µ(x,  y). 

Let G: ),( µσ  be a weighted graph, then for any two nodes u and v of G, the −θ  

evaluation of u and v is defined as θ (u, v) = };{ ℜ∈αα , where α is the strength of a 

strong cycle passing through both u and v [14]. Max  },);,(;{ *σθαα ∈∈ vuvu  is defi- 
ned as the cycle connectivity between u and v in G and is denoted by Cu,v

G.  Cycle 

connectivity of a graph G is defined as CC(G) = max },;{ *
, σ∈vuC G
vu . 

 
2. t-cuts and connectedness levels 
Consider a totally weighted graph ),(: µσG , For ,ℜ∈t the direct t-cut of G or t-cut of 

G, denoted by tG or ),( tt µσ  is the sub graph of G with node set  

})(/{ txVxt ≥∈= σσ  and arc set }.),(/),{( tyxVVyxt ≥×∈= µµ  Consider 
Example 1. 

Even though both the structures in figure 2 are the same, the connectivity of G2 is 
more than that of G1. The strength of a path in G2 is 8 where as that of G1 is 1. Now 
consider another example (Figure 3).   

All t-cuts Gt of G1 in (Figure 3) are connected for ],8,4(∈t  but not in G2. Thus 
G1 shows some kind of connectedness which is not in G2. Motivated by the above 
examples, we have the following definition. 
 
Definition 1.  Let G be a weighted graph. Then the connectedness level of G is defined as 
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}.,,/),(min{)( yxVyxyxCONNGC G ≠∈=  

   
Example 1.   (Figure 1) 
 
                  5                                                5                                                           5 
 
                  
        3               1                                  3                                                    3 
 
 
 
3                                    2               3                  2                  2                 3 
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                  G                                                       G2                                   G3 
                            
                                               Figure 1:  t-cuts of a graph        
 
Now   consider the following two graphs. 
 
 
 
                          
                       7                                                                 9 
 
                          7                                                                     8 
 

1                                                          9 
 
                         G1                                                                G2 
 
                             Figure 2: Different connectivity levels. 
 
 
 
 
 
 
 
 
 
                            G1                                                                 G2 
                                       Figure 3: Connected t-cuts. 
 

Note that if C(G) = 0, then only G is connected. Also if C(G) = t, then Gt will be 
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connected. 
 

Definition 2.  Let G be a weighted graph. Then G is called weakly connected if there 
exists some t-cut of G which is connected. 
 

In the previous example, G1 is weakly connected. Clearly every connected weighted 
graph G is weakly connected. But converse is not true. (G1 in previous example is weakly 
connected but not connected.) 

Given a graph G, the cyclomatic number of G is defined as m- n + p where n, m and p 
denote the number of vertices, number of edges and number of connected components 
respectively. Using this we have a new definition as follows. 

 
Definition 3.  [9] Let G be a weighted graph with n vertices, m edges and p connected 
components. The cyclomatic function ℜ∈∪→ℜ tNtG },0{:),(ψ is defined by 

),( tGψ = cyclomatic number of Gt = ,ttt pnm +− where nt, mt, pt  denotes the number 
of vertices strong edges and connected components of Gt. 
 
Example 2:  Consider the following weighted graph (Figure 4) with two components, 5 
vertices and 5 edges.  
 
                           7                              3 
 
                     3           4                                2 
 

 
 
      6          5               5                      4 
 
                                     G 

              Figure 4: Cyclomatic number of a disconnected graph 
 

Here for any ),2,(−∞∈t    .1254),( =+−=+−= ttt pnmtGh  For t =2.1, 

.,1353)1.2,( etcGh =+−=  
Now we shall discuss some of the elementary properties of the cyclomatic function 

),,( tGψ  First we have a trivial proposition. 
 
Proposition 1.  For any totally weighted graph G, and ,ℜ∈t  .0),( ≥tGψ . 
 

Also note that h is a piecewise constant function with finitely many jumps. In the next 
theorem, we show that ψ is a non increasing function. 
 

Theorem 1.  Let G be a totally weighted graph and let ℜ∈', tt  such that 'tt ≥ . Then 

).,(),( 'tGtG ψψ ≤  That is ψ is non increasing in t. 
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Proof: We have 
Itt mm ≤ implies 1kmm

Itt −= , Ζ∈1k  and .01 ≥k  Also 
Itt nn ≤  

implies 2kmm
Itt −= , Ζ∈2k  and .02 ≥k  The number of connected components of  

tG may increase, decrease or remains same as t ranges over .ℜ  Thus for 'tt ≥ , 

3kpp
Itt −= , for some ℜ∈3k  and .03 ≥k  

 Thus )(),( 1kmtG
It −=ψ -( )2kn

It − + ( )3kp
It − = )(),( 312 kkktG

I

−−+ψ = 

.),( ktG
I

+ψ  We shall prove that k > 0 is impossible. If 02 <k  there is nothing to 
prove. So we prove the following cases. 
 
Case 1. .02 =k  

This case implies that the vertex set does not change from Gt to .
ItG  Thus ,03 ≤k  

because components cannot decrease by edge suppression. Thus ,13 kk ≤−  which 

implies .0≤k  
 
Case 2.  .02 >k  

We denote h, the number of eliminated connected components of .
ItG . Obviously 

hk ≤3  and hk ≤2  . Let skh −= 2 ; }.,...,2,1,0{ 2ks ∈  From the definition of s, 

sk ≥1 and thus ,32132 kskkkkkk −+−≤−−=  which implies 01 ≤−≤ ksk . 

 
Next we have a definition. 
 
Definition 4.  The cyclomatic kernel of a weighted graph G is defined as 

}.0),(;{)( =ℜ∈= tGtGK a ψ  

In other words,  )(GK a  is the set of all real numbers such that Gt is a forest. In the 

previous example, ).(5 GK a∈  Using this kernel, we have a measure for the acyclic 

nature of the graph. 
 
Definition 5. The strong acyclic level of a weighted  graph  G is  defined  as 

)}(;inf{)( GKttGS aw ∈=  and which is same as the cycle connectivity of the weighted 

graph G. i.e. ).()( GCCGS w =  It will help to measure the number of strong cycles in a 

given graph G. 
The following theorem can be easily proved from the above definition and by 

using the properties of cycle connectivity. 
 
Theorem 3.  Let ),(: µσG    be a weighted graph, then Gt has no cycles if and only if  

).(GCCt >  
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Proof:  Let ),(: µσG  be a connected weighted graph such that Gt has no cycles in it. 

Let CC(G) be the cycle connectivity of G such that Cu;v
G < t for every ., Vvu ∈  For 

otherwise suppose that there exist a cycle in G, whose strength is more than or equal 
to t. which will be remain in Gt. which is a contradiction. Conversely, suppose CC(G) be 
the cycle connectivity of G such that CC(G) < t, to prove Gt has no cycles. Assume that 
Gt has a cycle (say) C. Then strength of the cycle C(s(C)) is more than or equal to t, 
therefore ,)()( tCsGCC ≥≥  again a contradiction. This completes the proof. 
    Now we can introduce a definition using cycle connectivity. 
 
Definition 6.  A weighted graph ),(: µσG  is said to be fully strong acyclic if and only if 
CC(G)=0. 

Clearly a weighted graph is fully acyclic if and only if it is a partial forest. Let 
G1, G2, …, Gn be the components of G, then for each Gi, i= 1,2,…,n is a partial tree. Then 
by the theorem 2.7 in [15], CC(G)=0. 
 
Definition 7.  A weighted graph ),(: µσG  is strong acyclic by t-cuts if there exist a 

ℜ∈t  such that Gt has no cycles. 
 
Proposition 2.  Every strongly acyclic graph is strong acyclic by t- cuts. 
Proof: Let ),(: µσG  be any strongly acyclic weighted graph, then CC(G) = 0 and hence 
Cu,v

G = 0 for every pair of nodes in G. That is G will be strong acyclic by t-cuts. 
 
3. Concluding remarks  
Connectivity concepts are the key in graph clustering and network problems. The 
classical parameters are dealing with the disconnection of the graph. In practical 
applications the reduction in the flow is more frequent than the disconnection. The 
authors made an attempt to generalize the connectivity concepts in weighted graphs. Also 
one of the major theorems in Graph theory due to Whitney is generalized. 
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