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Abstract. In a weighted graph model, the reduction of floalue between some pairs of
nodes is more relevant and more frequent thandta disruption of the flow or the

disconnection of the entire network. So it is neaegto analyse connectivity by levels.
Some new connectivity and acyclicity parameters iateoduced in this paper and
weighted trees are categorized depending on thetste of the level graphs.
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1. Introduction
We can consider a totally weighted graph (Both sa®l arcs are given weights) G as a

pair (o,u) whereg:V - O and #:VxV - [1. Also we denote the underlying
graph by G:(o',4'), where g'={ubdV,o()>0} and z*={(uy OVxV.
M(u,v) >0}[11]. If we have a weighted graph representing sarities and roads
connecting them, thems may be taken as the populations function andthe daily

exchange of population between the cities. In suamodel, connectivity plays a crucial
role. Similar problems arise in all types of netksidike communication, computer,
biological, etc. Depending on the strength of desef{population, size, capacity), we can
have different categories of vertices (A Class,ditly dam, etc). Also depending on the
rate of flow (data flow, transport, etc.) betweewotnodes, we can have different
categories of arcs (Broad band, national highwéy.,).eProducing a path between any
two nodes guarantee the connectedness of a netBartkin any network, the analysis by
different levels is very important. For examplegthexchange of people between two big
cities, less flow rate of data in a network of Rrgapacity, etc. Also it is relevant to
verify whether nodes of a given level are connebligdoads of sufficient higher level. If
higher category nodes are connected only by laageay arcs or vice versa, the design is
likely to be defective.

In this article we introduce some new connecticiycepts in weighted graphs. In a
weighted graph model, for example, in an informatietwork or electric circuit, the
reduction of flow between pairs of nodes is motevant and may frequently occur than
the total disruption of the flow or the disconnentiof the entire network [10,12]. This
concept is our motivation. As weighted graphs aeegalized structures of graphs, the
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concept introduced in this article also generalthesclassic connectivity concepts. Some
related works can be seenin [7,8,9].

A weighted graph G is a graph in which every aeds assigned a nonnegative number
w(e), called the weight of. A graph is said to be totally weighted if bathmode set and
arc set are weighted [8]. The set of all the neighb of a noder in G is denoted by
Ng(V) or simplyN(v), and its cardinality byg(v) or d(v)[4]. The weighted degree ofis
defined as dj(v) = Zw(v, X). When no confusion occurs, we denotg! (v)

XON (v)
byd"(v). The weight of a cycle is defined as the sum of wkdghts of its arcs. An
unweighted graph can be regarded as a weightedh gmaphich every are is assigned
weightw(e) = 1. Thus, in an unweighted gragh(v) = d(v) for every nodes, and the
weight of a cycle is simply the length of the cycken optimal cycle is a cycle which has
maximum weight [1].
Thestrength of a pathP of n edges, for 1<i < n, denoted bys(P ) is equal tas(P )

= min,_, {w(e)} [8]. The strength of connectedness of a pair of vertices,vIV(G),

denoted byCONNg(u, V), is defined a€ONNg(u, v) = {Max s(P ); P is au -v path inG}.
If uandv are in different components &, thenCONNg(u, v) = 0. Au-v path in a
weighted graph G is calledsirongest u-v path ifs(P ) = CONNg(u, v). An edge X, y) is
strong if its weight is at least equal to the strengtltafinectedness betwerandy in G.
[8] A connected weighted graph is callepaatial tree if G has a spanning sub graph
(V; E) which is a tree, where for all arcg\) of G which are not inF , we have

CONNG(X! y) > H(X, y)
Let G:(o,u) be a weighted graph, then for any two nodemndv of G, the 8 —

evaluation ofu andv is defined asf(u, v) ={a;a 00}, wherea is the strength of a
strong cycle passing through batlandv [14]. Max {a;a 08(u,v);u,vOo'} is defi-
ned as the cycle connectivity betweerandv in G and is denoted bg,,®. Cycle
connectivity of a grapk is defined a€C(G) = maxC;,;u,vOo }.

2. t-cuts and connectedness levels
Consider a totally weighted graph: (o, ), For t 1, the directt-cut of G or t-cut of

G, denoted by G'or (o',u') is the sub graph ofG with node set

o' ={x0OV/a(x)=t} and arc sety' ={(x,y)OV xV/u(x,y)=t}. Consider
Example 1.

Even though both the structures in figure 2 arestimae, the connectivity @&, is
more than that o6;. The strength of a path i@, is 8 where as that db; is 1. Now
consider another example (Figure 3).

All t-cutsG'of G, in (Figure 3) are connected fof] (48], but not inG,. Thus
G; shows some kind of connectedness which is noG4inMotivated by the above
examples, we have the following definition.

Definition 1. Let G be aweighted graph. Then the connectedness level of G is defined as
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C(G) =min{CONN, (x,y) /X, yOV,x# y}.

Examplel. (Figure 1)

5 5 5
|‘ h @
3 2 3 2 2 3
2

G G? G?

Figure 1. t-cuts of a graph

Now consider the following two graphs.

7

7

1 o 9 Y
G G

Figure 2: Different connectivity levels.

A

Figure 3: Connected-cuts.

Note that ifC(G) = 0, then onlyG is connected. Also i€(G) = t, thenG' will be
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connected.

Definition 2. Let G be a weighted graph. Then G is called weakly connected if there
exists some t-cut of G which is connected.

In the previous exampl&; is weakly connected. Clearly every connected weith
graph G is weakly connected. But converse is n@ t5; in previous example is weakly
connected but not connected.)

Given a graplt, thecyclomatic number of G is defined asn- n+ p where n, m and p
denote the number of vertices, number of edgesnamntber of connected components
respectively. Using this we have a new definitisrfalows.

Definition 3. [9] Let G be a weighted graph with n vertices, m edges and p connected
components. The cyclomatic function ¢/(G,t):0 — N O{0},t00is defined by

(G, 1) = cyclomatic number of G'= m' —n' + p',wheren', n, p' denotes the number
of vertices strong edges and connected components of G'.

Example 2: Consider the following weighted graph (Figure 4hviwo components, 5
vertices and 5 edges.

7 3

6 5 4

G
Figure 4. Cyclomatic number of a disconnected graph

Here for anyt (- ,2), h(G,t)=m'-n'+p'=4-5+2=1 Fort=2.1,
h(G,21) =3-5+3=1etc.

Now we shall discuss some of the elementary prigseof the cyclomatic function
Y (G,t), First we have a trivial proposition.

Proposition 1. For any totally weighted graggh, andt (0, ¢(G,t)=0..

Also note thah is a piecewise constant function with finitely mpagnmps. In the next
theorem, we show thatis a non increasing function.

Theorem 1. Let G be a totally weighted graph and tgt OO such thatt >t . Then
Y(G,t) < (G,t). Thatisy is non increasing in t.
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Proof: We havem' <m' implies m' =m' —k,, k,0Z and k, 20. Also n' <n"
implies m' =m'’ - k,, k,0Z and k, 20. The number of connected components of
G'may increase, decrease or remains samé¢ @sges over[]. Thus for t>t,

p' = p" ks, for somek, 00 andk, = 0.

Thus  @(G,t)=(m" —k,)-(n" —k,)+ (p' —k)= ¢(G,t )+ (k, —k, —k;)=

l/J(G,tI ) + k. We shall prove that k > 0 is impossible. Kf <0 there is nothing to
prove. So we prove the following cases.

Casel. k, =0.

This case implies that the vertex set does notgedromG' to G'. Thus k; <0,
because components cannot decrease by edge suppreBsus —K, <k;, which
implies k< 0.

Case2. k, >0.

We denoteh, the number of eliminated connected component@blf.. Obviously
k<h and k, <h . Let h=k, —s; sO0{012,...,k,}. From the definition ofs,
k, = sand thusk =k, -k, —k, <k, —k; + s—k, which impliesk<s-k, <0.

Next we have a definition.

Definition 4.  The cyclomatic kernel of a weighted graph is defined as
K,(G) ={t00;¢(G,t) =0}.

In other words, K_(G) is the set of all real numbers such tfEtis a forest. In the
previous examplep[JK,(G). Using this kernel, we have a measure for the acycl
nature of the graph.

Definition 5. The strong acyclic level of a weighted grapls is defined as
S, (G) =inf{t;t 0K, (G)} and which is same as the cycle connectivity ofwiegghted

graphG. i.e. S, (G) = CC(G). It will help to measure the number of strong cgdle a

given graplG.
The following theorem can be easily proved from #t®ve definition and by
using the properties of cycle connectivity.

Theorem 3. LetG: (o, ) be aweighted graph, th@has no cycles if and only if
t >CC(G).
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Proof: LetG:(o,u) be a connected weighted graph such®das no cycles in it.
Let CC(G) be the cycle connectivity d& such thatC,,° < t for everyu,vOV. For

otherwise suppose that there exist a cycle in G@selstrength is more than or equal

to t. which will be remain irG'. which is a contradiction. Conversely, suppG&%G) be
the cycle connectivity o such thalCC(G) < t, to proveG' has no cycles. Assume that
G' has a cycle (sayf. Then strength of the cyclg(s(C)) is more than or equal tp
thereforeCC(G) = s(C) > t, again a contradiction. This completes the proof.

Now we can introduce a definition using cyabmgectivity.

Definition 6. A weighted graplG: (o, 1) is said to be fully strong acyclic if and only if
CC(G)=0.

Clearly a weighted graph is fully acyclic if andlyif it is a partial forest. Let
Gy, Gy, ..., G, be the components &, then for eacles;, i= 1,2,...,n is a partial tree. Then
by the theorem 2.7 in [15;C(G)=0.

Definition 7. A weighted graphG: (o, x) is strong acyclic by t-cuts if there exist a
tUJ0O such that, has no cycles.

Proposition 2. Every strongly acyclic graph is strong acyclictbguts.
Proof: Let G: (o, ) be any strongly acyclic weighted graph, ti@®(G) = 0 and hence

C..° = 0 for every pair of nodes i@. That isG will be strong acyclic by t-cuts.

3. Concluding remarks

Connectivity concepts are the key in graph clusterand network problems. The
classical parameters are dealing with the discdiorecf the graph. In practical

applications the reduction in the flow is more freqt than the disconnection. The
authors made an attempt to generalize the conitgatoncepts in weighted graphs. Also
one of the major theorems in Graph theory due titie is generalized.
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