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1. Introduction and preliminaries 
Graph theory has now become a major branch of applied mathematics and generally 
regarded as a branch of Combinatorics. Graph theory is a widely used tool for solving a 
combinatorial problem in different areas such as geometry, algebra, number theory, 
topology, optimization and computer science. Most important thing which is to be noted 
is that, any real life problem which can be solved by any graph technique can only be 
modelled by a weighted graph. Distance and center concepts play an important role in 
applications related with graphs and weighted graphs. Several authors including Bondy 
and Fan [1, 2, 3], Broersma, Zhang and Li [17], Sunil Mathew and Sunitha [ 9, 10, 11, 
12, 13, 14] introduced many connectivity concepts in weighted graphs following the 
works of Dirac [4] and Grotschel [5].  More related works can be seen in [8, 15, 16]. 

In this article, we introduce three new distance concepts in weighted graphs. 
These concepts are derived by using the notion of connectivity in weighted graphs. In a 
weighted graph model, for example, in an information network or in an electric circuit, 
the reduction of flow between pairs of nods is more relevant and may frequently occur 
than the total disconnection of the entire network [7, 11, 12]. Finding the center of a 
graph is useful in facility location problems where the goal is to minimize the distance to 
the facility. For example, placing a hospital at a central point reduces the longest distance 
that the ambulance has to travel. This concept is our motivation. As weighted graphs are 
generalized structures of graphs, the concepts introduced in this article also generalize the 
classic ideas in graph theory. 
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A weighted graph G: (V, E, W) is a graph in which every arc e is assigned a non 
negative number w(e), called the weight of e  [1]. The distance between two nodes u and 

v in G is defined and denoted by  { }∑ ∈
−=

Pe
GinpathvuaisPewvud /)(min),(  

[1,6]. The eccentricity of a node u in G is defined and denoted by 
{ }Gofnodeotheranyisvvudue /),(max)( = [6]. The minimum and maximum 

eccentricities of nodes are respectively called radius, r(G) and diameter, d(G) of the 
graph [6]. A node u is called central if e(u) = r(G) and diameteral or pheripheral if e(u) 
= d(G) [6]. G is called self catered if it is isomorphic with its center [6]. 
             In a weighted graph G:(V, E, W), the strength of a path P = v0e1v1e2v2e3v3...envn is 
defined  and denoted by S(P) = min{w(e1), w(e2), w(e3), ... , w(en)} [13]. The strength of 
connectedness between a pair of nodes u and v in  G is defined and denoted by CONNG(u, 
v) = max{S(P)/P is a u – v path in G}[12].  A u – v path P is called a strongest path S(P) 
= CONNG(u, v)[11]. A node w is called a partial cut node (p- cut node) of G if there 
exists a pair of nodes u, v in G such that u ≠ v ≠ w and CONNG-w(u, v) < CONNG(u, v) 
[12]. A graph without p- cut nodes is called a partial block (p- block) [12]. It is also 
proved in [12] that a node w in a weighted graph G is a p- cut node if and only if w is an 
internal node of every maximum spanning tree. A connected weighted graph G:(V, E, W) 
is called a partial tree if G has a spanning sub graph  F:(V, E’, W’) which is a tree, where 
for all arcs e = (u, v) of G which are not in F, we have CONNG(u, v) > w(e) [12]. An arc e 
= (u, v) is called α- strong if CONNG-e(u, v) < w(e) and β- strong if  CONNG-e(u, v) > w(e) 
. An arc is called strong if it is either α� ������  ��  	 � ������ 
12
. The max – max 
composition of a square matrix with itself is again a square matrix of the same order 
whose (i, j) th  entry is given by di,j = max {max (di,1, d1,j), max (di,2, d2,j), max (di,3, d3,j), ..., 
max (di,n, dn,j) }[7]. 

 
2. α, β and strong distances 
 In this section, we give the definitions of the distances along with  examples. 
 
Definition 2.1.  Let G: (V, E, W) be a connected weighted graph. Let u and v be any two 
nodes of G. Then the α- distance between the nodes u and v is defined and denoted by 

����, �� �
���
����� � ����; !"#  �$ % �� &�' ( � ������ )&�* +������ � &�� �

0                    ;  �$ � � �                                                                         ∞                    ; �$ �*��� �.���� �� ( � ������ � � � )&�* �� /  
0 

 
Clearly dα satisfies all the axioms of a metric as follows. 
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Hence (V(G), dα) is a metric space. 
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Definition 2.2.  Let G: (V, E, W) be a connected weighted graph. Let u and v be any two 
nodes of G. Then the β- distance between the nodes u and v is defined and denoted by 

�1��, �� � 2��� ∑ ����; !"#  �$ % �� &�' 	 � ������ )&�* +������ � &�� �0                    ;  �$ � � �                                                                         ∞                    ; �$ �*��� �.���� �� 	 � ������ � � � )&�* �� /  0
  

Clearly dβ satisfies all the axioms of a metric as follows. 
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Hence (V(G), dβ) is a metric space. 
 

Definition 2.3. Let G: (V, E, W) be a connected weighted graph. Let u and v be any two 
nodes of G. Then the strong distance between the nodes u and v is defined and denoted 
by 

�4��, �� �
���
�� ��� � ����; !"#  �$ % �� &�'  ������ )&�* +������ � &�� �

 0                       ;   �$ � � �                                                                   ∞                    ; �$ �*��� �.���� �� ������ � � � )&�* �� /  
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Clearly ds satisfies all the axioms of a metric as follows. 
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Hence (V(G), ds) is a metric space. 

 
In the following example (figure 1), we find that these three distances are generally 
different. 

 
Example 2.1. 

                                     
                                        Figure 1: A weighted graph 
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The α, β and strong distances between different pairs of nodes are given below. 
,7),( =badα   15),( =cadα ,  ,),( ∞=dadα  8),( =cbdα , ∞=),( dbdα , 

∞=),( dcdα . ,),( ∞=badβ   4),( =cadβ ,  ,2),( =dadβ  ∞=),( cbdβ , 

∞=),( dbdβ , 2),( =dcdβ . ,7),( =bads   4),( =cads ,  ,2),( =dads  

8),( =cbds , 9),( =dbds , 2),( =dcds . 

 
3. Strong Center of a weighted graph 
In this section, we introduce the concepts of eccentricity, radius, diameter and center with 
respect to the distances which are defined in the above section.  

 
Definition 3.1.  The α- eccentricity of a node u in G is defined and denoted by eα(u) = 
max{dα(u, v)/ v"V, 0 ≤ dα(u, v) ≤ ∞}. 

 
In the same manner the β- eccentricity and strong eccentricity are defined below. 

eβ(u) = max{dβ(u, v)/ v"V, 0 ≤ dβ(u, v) ≤ ∞}. 
es(u) = max{ds(u, v)/ v"V, 0 ≤ ds(u, v) ≤ ∞}. 
 

Definition 3.2.  A node v is called the α- eccentric node of u if eα(u) = dα(u, v). The set of 
all α- eccentric nodes of u is denoted by uα

*.  
 

In the same manner, we can define β- eccentric node and the strong eccentric node.  
 

Definition 3.3. Among  the α- eccentricities of all the nodes of a graph , the minimum  is 
called the α- radius of G. It is denoted by rα(G). That is rα(G) = min {eα(u) / u" V}. 
Also the β- radius of G is defined and denoted by rβ(G) = min {eβ(u) / u" V} and the 
strong radius of G is defined and denoted by rs(G) = min {es(u) / u" V}. 

 
As the radius is the minimum eccentricity, the maximum eccentricity is called the 

diameter of the graph. 
 

Definition 3.4.  Among the α- eccentricities of all the nodes of a graph, the maximum is 
called the α- diameter of G. It is denoted by dα(G). That is  dα(G) = max {eα(u) / u" V}.  
Also the β-diameter of G is defined and denoted by dβ(G) = max {eβ(u) / u" V} and the 
strong diameter of G is ds(G) = max {es(u)  / u" V}. 

 
Definition 3.5.  A node u of G is called α- central if eα(u) = rα(G), called β- central if 
eβ(u) = rβ(G) and called strong central if es(u) = rs(G). 

 
Definition 3.6.  A node u is called α- diameteral if eα(u) = dα(G), called β- diameteral if 
eβ(u) = dβ(G) and called strong diameteral if es(u) = ds(G). 

 
Definition 3.7.  The subgraph induced by the set of all α- central nodes is called the α- 
center of G. It is denoted by <Cα(G)>. Analogously the β- center of G is the subgraph 
induced by the set of all β- central nodes of G and is denoted by <Cβ(G)>. Also the 
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strong center of G is denoted as <Cs(G)> and is defined as the subgraph of G induced by 
the set of all strong central nodes. 
 
Using example 2.1, we illustrate all the above definitions 
eα(a) = 15,   eα(b) = 8,   eα(c) = 15,   eα(d) = ∞, eβ(a) = 4,   eβ(b) = ∞,   eβ(c) = 4,   eβ(d) = 
2, es(a) = 7,   es(b) = 9,   es(c) = 8,   es(d) = 9, rα(G) = 8, rβ(G) = 2, rs(G) = 7, dα(G) = 15, 
dβ(G) = 4, ds(G) = 9. 

 b is the α- central node, d is the β- central  node and a is the strong central node. 
a and c are the α diameteral nodes. They are β- diameteral also. The strong diameteral 
nodes are b and d. 

If we take the diameteral nodes instead of the central nodes, we get the periphery 
of the graph. 

 
Definition 3.8.  The subgraph induced by the set of all α- diameteral nodes is called the  
α- periphery of G. It is denoted by <Pα(G)>. Analogously the β- periphery of G is the 
subgraph induced by the set of all β- diameteral nodes of G, denoted by <Pβ(G)>. Also 
the strong periphery of G is denoted by <Ps(G)> and is defined as the subgraph induced 
by the set of all strong diameteral nodes. 
 
Definition 3.9.  A node u is called α- isolated if there is no α- strong arc is incident on u, 
β- isolated if there is no β- strong arc is incident on u and strong isolated if no strong arc 
is incident on u. 
 
Definition 3.10.  An arc e = (u, v) is called α- isolated if there is no α- strong arc 
adjacent with e. Similarly β- isolated if there is no β- strong arc adjacent with e and 
called strong isolated if there is no strong arc adjacent with e. 
From the last two definitions, we have the following preposition. 
 
Preposition 3.1. Let G: (V, E, W) be a weighted graph. If e = (u, v) is an α- isolated arc 
in G, then eα(u) - eα(v) = 0. 
Proof:  Since e = (u, v) is α- isolated, e is adjacent with no α- strong arcs. That means e is 
the only α- strong arc, which is incident on u and v. While calculating the α- eccentricity 
of u, the farthest node from u is v and vice – versa. Thus eα(u) = eα(v) = w(e) and hence 
eα(u) - eα(v) = 0. This completes the proof. 

 It can easily be seen that, the above preposition is valid for both β- isolated and 
strong isolated arcs. 
 
Preposition 3.2. Let G: (V, E, W) be a connected weighted graph such that every arc e in 
G have weight w(e) ≥ k ≥ 1. Then es(u) ≥ e(u) for every node u in G, where e(u) is the 
eccentricity of u in the underlying graph of G. 
Proof: Let G: (V, E, W) be a connected weighted graph such that each of the arc has 
weight k ≥ 1. Let u be any node of G. Let v be the farthest node of u in the underlying 
graph of G. We know that, between any pair of nodes u and v of G, there exists a strong 
path [12]. Now e(u) is the number of arcs in the shortest path connecting u and v in the 
underlying graph of G. But es(u) is the sum of the weights of all arcs in the shortest strong 
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path connecting u and v in G. Since each edge e is with weight w(e) ≥ 1, it is Clear that 
es(u) ≥ e(u).   

The above preposition is trivial and valid for both α and β distances. As in the 
classical concept of distance in graphs, we have the following inequalities. We omit their 
proof as they are obvious.  
 
Theorem 3.1. Let G: (V, E, W) be a connected weighted graph. Then the following 
inequalities hold. 

1. rα(G) ≤ dα(G) ≤ 2rα(G) 
2. rβ(G) ≤ dβ(G) ≤ 2rβ(G) 
3. rs(G) ≤ ds(G) ≤ 2rs(G). 

 
4. Self centered graphs 
In this section, we present the idea of self centered graphs with respect to the distances 
which are introduced in section 2. Here we present some necessary conditions and a 
characterization of self centered graphs. Throughout this section, G is a connected 
weighted graph. 
 
Definition 4.1.  G is called α- self centered if G is isomorphic with <Cα(G)>, G is β- self 
centered if G is isomorphic with <Cβ(G)>, and is called strong self centered if G is 
isomorphic with <Cs(G)>.  

 
The following theorem is true for both β and strong self centered graphs. 
 

Theorem 4.1. Let G: (V, E, W) be a connected weighted graph such that there exists 
exactly one α- strong arc incident on every node and that all the α- strong arcs are of 
equal weight, then G is α- self centered.  
Proof:  Given that all the nodes of G are incident with exactly one α- strong arc, and all 
the α- strong arcs are of equal weight. That means if e = (u, v) is α- strong, then there will 
be no other α- strong arcs incident on u and v. Hence eα(u) = w(e) = eα(v). By this same 
argument we get this same equality for any other α- strong arc. Thus eα(u) = w(e) for 
every node u in G. 

This proves that G is α- self centered. 
 

The next theorem is a characterization for these self centered graphs. 
 

Theorem 4.2. A connected weighted graph G : (V, E, W) is α- self centered if and only if 
for any two nodes u and v of G such that u is an α- eccentric node of v, then v should be 
one of the α- eccentric nodes  of u. 
Proof:  First assume that G is α- self centered. Also assume that u is an α- eccentric node 
of v. That means eα(v) = dα(v, u). Since G is α- self centered, all the nodes of G will be 
having the same α- eccentricity. Therefore eα(u) = eα(v). From the above two equations, 
we get eα(u) = dα(v, u) = dα(u, v). Thus eα(u) = dα(u, v). This proves that v is an α- 
eccentric node of u. 

Conversely assume that “if u is an α- eccentric node of v, then v should be one of 
the α- eccentric nodes of u” . That means eα(u) = dα(u, v) and eα(v) = dα(v, u). But due to 



Some Extremal Problems in Weighted Graphs 

33 

 

symmetry of dα, we have dα(u, v) = dα(v, u). Therefore eα(u) = eα(v) for any two arbitrary 
nodes u and v of G. Hence all the nodes of G have the same α- eccentricity and hence G 
is α- self centered. 

This completes the proof of the theorem. 
 

In the same manner, we can prove this result for β and strong self centered graphs. 
 

5. The distance matrix and the max – max composition 
In this section, we present an easy check for a weighted graph G to see whether it is α- 
self centered or not. This result can also be applied for both β and strong self centered 
graphs. 

 
Definition 5.1.  Let G: (V, E, W) be a connected weighted graph with n nodes. The α- 
distance matrix of G is defined and denoted as  Dα(G) = (di, j) is the square matrix of 
order n and di, j = dα(vi, vj). Note that the α- distance matrix is a symmetric matrix.  

Instead of Dα(G), we simply write Dα when there is no confusion regarding the 
name of the weighted graph. 

Analogously we can define β and strong distance matrices. In the following 
example (figure 2), we give the three distance matrices. 

 
Example 5.1. 

                               
                                                 Figure 2: 
 

The α, β and strong distance matrices are given below. 
 
 

Dα = 



















∞
∞∞∞

∞
∞

0715

0

708

1580

 ,  Dβ =  



















∞
∞
∞

∞∞∞

036

303

630

0

  

Ds = 



















03614

30311

6308

141180

 
 

Next we have a theorem regarding the eccentricities of nodes using the max – max 
composition of the distance matrices. 
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Theorem 5.1. Let G: (V, E, W) be a connected weighted graph. The diagonal elements of 
the max – max composition of the α- distance matrix of G with itself are the α- 
eccentricities of the nodes of G. 
Proof:  Let Dα = (di, j) be the α- distance matrix of G. Then di, j = dα(vi, vj). In the max – 
max composition Dα0Dα, the ith entry in the principal diagonal di, i = max {max (di,1, d1,i),  
max (di,2, d2i), max (di,3, d3,i), ..., max (di,n, dn,i) }. But due to symmetry of Dα,  we have di, i 
= max {di, 1, di, 2, di, 3, ..., di, n} = max {dα(vi, v1), dα(vi, v2), dα(vi, v3), ..., dα(vi, vn)} = eα(vi). 

This completes the proof of the theorem. 
 

Theorem 5.2.  A connected weighted graph G: (V, E, W) is α- self centered if and only if 
all the entries in the principal diagonal of the max – max composition of the- distance 
matrix with itself are the same. 
Proof:  As proved in theorem 5.1, the principal diagonal entries in the max – max 
composition of the α- distance matrix with itself are the α- eccentricities of the nodes. If 
they are same, that means eα(u) is the same for all u in G, then G is α- self centered. 
Hence the proof is completed. 

 
We illustrate the above theorem in the following examples. 

 
Example 5.2. 

                                   
                                                Figure 3: 
 

The α- distance matrix and the max – max composition are given below. 
 

Dα = 



















∞∞
∞∞
∞∞

∞∞

05

05

50

50

    Dα0Dα  = 



















∞∞
∞∞
∞∞

∞∞

55

55

55

55

 
 

Clearly all the diagonal elements of the composition are same and hence G is α- self 
centered. 
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Example 5.3. 
 

                              
                                                   Figure 4: 
 

The α- distance matrix and the max – max composition are given below. 
 

Dα =    

















∞
∞

∞∞

02

20

0

             

Dα0Dα  = 

















∞
∞

∞∞∞

22

22 .  

Clearly all diagonal elements in the composition are not same, and hence the graph is not 
α- self centered. 
 
 Remark 5.1.  From the above two examples it is clear that, a partial block may or may 
not be α- self center. 
 
6. The center of p-trees and p-blocks 
In this section, we give a discussion about the central nodes of partial trees and partial 
blocks. 

 In the following theorem, α- central nodes of partial trees are characterized. 
 

Theorem 6.1. If a node of a partial tree is α- central, then it is a common node of at least 
two α- strong arcs. 
Proof: Let G: (V, E, W) be a partial tree. Then G has no β- strong arcs. We know that 
between any two nodes of a connected weighted graph G, there exists a strong path [12]. 
As G is independent of  β- strong arcs, there exists an α- strong path between any two 
nodes of G. Let u be an α- central node of G. We want to prove that two or  more α- 
strong arcs are incident on u. If possible suppose the contrary. Let there be exactly one α- 
strong arc, namely e  incident on u. Therefore any α- strong path between u and any other 
node of G will contain the arc e. This proves that eα(u) > rα(G), which is a contradiction 
to the fact that u is α- central.  Therefore our assumption is wrong. Thus the proof of the 
theorem is completed. 

 
Remark 6.1.  If u is a common node of at least two α- strong arcs, then u is a partial cut 
node of G [12]. So from the above theorem it is clear that, if a node u of a partial tree G is 
α- central, then it is a partial cut node of G. 
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Remark 6.2.  As partial trees are free from β- strong arcs, eβ(u) = 0 for every node u. 
Hence the equality es(u) = eβ(u) + eα(u) is trivially true in all partial trees. 

  
The next theorem is about the α- center of partial blocks. 

 
Theorem 6.2. The α- center of a partial block G contains all α- strong arcs with minimum 
weight. 
Proof: Suppose that G: (V, E, W) is a partial block. Therefore G has no partial cut nodes. 
We know that, if a node u in a connected weighted graph is common to more than one α- 
strong arcs, then it is a partial cut node [12]. As G is free from partial cut nodes, at most 
one α- strong arc can be incident on every node of G. Thus the α- eccentricity, eα of a 
node u is the weight of the α- strong arc incident on u. 

So the α- radius of G, that is rα(G) is the weight of the smallest α- strong arc. 
Hence the α- center of G, < Cα(G) > contains all  α- strong arcs of G with minimum 
weight. This completes the proof of the theorem.  

The next theorem helps us to find the number of connected components in the α- 
center of a partial block. 

 
Theorem 6.3. Let G: (V, E, W) be a partial block. If there exists a path containing  all  α- 
strong arcs of G with minimum weight alternatively, then < Cα(G) > will be connected. 
Proof: By the previous theorem, < Cα(G) > consists of all α- strong arcs of G with 
minimum weight. Also in a partial block, not more than one α- strong arc can be incident 
on any node. So if there are k number of α- strong arcs present in G with minimum 
weight, all these arcs will be in < Cα(G) >, moreover they are not adjacent also. Hence if 
we can find a path containing all α- strong arcs with minimum weight alternatively, < 
Cα(G) > will be connected. Thus the proof is completed.  

 
Theorem 6.4. If a connected weighted graph G: (V, E, W) is a partial block with k 

number of α- strong arcs. Then k ≤
2

V
. 

Proof: Suppose that G :( V, E, W) is a partial block. Then G has no partial cut nodes.  Let 

k be the number of α- strong arcs in G. We have to prove that k ≤
2

V
. If possible suppose 

the contrary. Let k >
2

V
. Then  there will be at least 








−

2

V
k number of nodes with 

more than one α- strong arc incident on them. Clearly these nodes are partial cut nodes of 
G, a contradiction to the fact that G is free from partial cut nodes. So our assumption is 
wrong. This proves the theorem. 
 
7. Conclusion 
In this article, three new distances in weighted graphs are introduced. As reduction in 
strength between two nodes is more important than total disconnection of the graph, the 
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authors made use of the connectivity concepts in defining the distances. A special focus 
on self centered graphs can be seen as they are applied widely. The max – max 
composition, which is presented in section 5 is very useful in characterizing the three 
types of self centered graphs. Studies and characterizations for both partial trees and 
partial blocks are also made. 
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