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Abstract. Some new distance concepts in weighted graphsarmluced in this article.
With respect to these distances, the concepts mieceand self centered graphs are
introduced and their properties are discussed. #&aalterization for these self centered
graphs using the max — max composition of the spoeding distance matrices is
obtained. Central properties of partial trees aartigd blocks are also discussed.
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1. Introduction and preliminaries
Graph theory has now become a major branch of epptiathematics and generally
regarded as a branch of Combinatorics. Graph theomywidely used tool for solving a
combinatorial problem in different areas such aengetry, algebra, number theory,
topology, optimization and computer science. Magtartant thing which is to be noted
is that, any real life problem which can be solgdany graph technique can only be
modelled by a weighted graph. Distance and cemtrcapts play an important role in
applications related with graphs and weighted gsaf®everal authors including Bondy
and Fan [1, 2, 3], Broersma, Zhang and Li [17], iBMathew and Sunitha [ 9, 10, 11,
12, 13, 14] introduced many connectivity concepismeighted graphs following the
works of Dirac [4] and Grotschel [5]. More relatedrks can be seen in [8, 15, 16].

In this article, we introduce three new distancecepts in weighted graphs.
These concepts are derived by using the notiorowhectivity in weighted graphs. In a
weighted graph model, for example, in an informmatietwork or in an electric circuit,
the reduction of flow between pairs of nods is maevant and may frequently occur
than the total disconnection of the entire netwfdtk11, 12]. Finding the center of a
graph is useful in facility location problems whehe goal is to minimize the distance to
the facility. For example, placing a hospital ateatral point reduces the longest distance
that the ambulance has to travel. This conceptiigT@mtivation. As weighted graphs are
generalized structures of graphs, the conceptsdated in this article also generalize the
classic ideas in graph theory.
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A weighted graplG: (V, E, W)is a graph in which every aecis assigned a non
negative numbew(e), called theneightof e [1]. Thedistancebetween two nodesand

vin G is defined and denoted bg(u, v) = min{ Zejpw(e)/ Pisau-v pathin G }

[1,6]. The eccentricity of a node u in G is defined and denoted by
e(u) =maxd(u, v)/ vis anyothernodeof G}[6]. The minimum and maximum

eccentricities of nodes are respectively calladius, r(G) and diameter, d(G)of the
graph [6]. A nodeu is calledcentral if e(u) = r(G) anddiameteralor pheripheralif e(u)
=d(G) [6]. G is calledself cateredf it is isomorphic with its center [6].

In a weighted grafk(V, E, W)the strength of a path P 5@ivieVoesVvs... Vv, is
defined and denoted I8(P) = min{w(g), w(e), w(e), ... , w(g)} [13]. Thestrength of
connectednedsetween a pair of nodesandvin G is defined and denoted IBONN;(u,
v) = max{S(P)/P is a u — v path in 3P]. A u — vpathP is called astrongest path S(P)
= CONNs(u, v)11]. A nodew is called apartial cut node (p- cut node)f G if there
exists a pair of nodas, vin G such thau # v# w andCONNs_(u, v) < CONN(u, v)
[12]. A graph withoutp- cut nodess called apartial block (p- block)[12]. It is also
proved in [12] that a node in a weighted grapls is ap- cut noddf and only ifw is an
internal node of every maximum spanning tree. Aneated weighted grapB:(V, E, W)
is called a partial trei# G has a spanning sub gragh(V, E’, W’) which is a tree, where
for all arcse = (u, v)of G which are not i, we haveCONN;(u, v) > w(e) [12]. An arc e
= (u, v) is calledi- strong if CONN ¢(u, V) < w(e) ang- strongif CONN; (U, v) > w(e)

. An arc is calledstrongif it is eithera— strong or B — strong [12]. The max — max
compositionof a square matrix with itself is again a squargrix of the same order
whose(i, j)th entry is given by g = max {max (¢, dvj), max (¢, b)), max (¢, ds)), ...,

max (G, chy) 71

2. a, p and strong distances
In this section, we give the definitions of thetdices along with examples.

Definition 2.1. Let G: (V, E, W) be a connected weighted graphulLatd v be any two
nodes of G. Then the distance between the nodes u and v is definediandted by

(min Z w(e); if Pisany a — strong path between u and v
d uv) = eepP
o) 0 ifu=v
too ;if there exists no a — strong u — v path in G

Clearlyd, satisfies all the axioms of a metric as follows.
1.d,(u,v)=0 for all uandv

0,( ) Oif andonlyif u=v
a( ) ( )foralluandv
d, (

u,v)<d, (u, w)+d,(w,v) forll u,vandw.
Hence(V(G), dl) is a metric space.
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Definition 2.2. Let G: (V, E, W) be a connected weighted graphulLatd v be any two
nodes of G. Then th# distance between the nodes u and v is definedlandted by

minYcpw(e); if Pisany B — strong path between u and v
dﬁ(u,v)z 0 ;ifu=v
o ;if there exists no B — strong u — v path in G

Clearlyd; satisfies all the axioms of a metric as follows.
1.d,(u,v)=0 for all uandv
2. d[,,(u, v)=0if andonlyif u=v
3.d,(u,v)=d,(v, u) for all uandv
4. d[,,(u, V)< d[,(u, w) + d[,,(w, v) for Il u,vandw.
Hence(V(G), ¢) is a metric space.

Definition 2.3. Let G: (V, E, W) be a connected weighted graph.u_and v be any two
nodes of G. Then the strong distance between tdesno and v is defined and denoted

by
min Z w(e); if Pis any strong path between u and v

d u,v) = eepP
s(wv) 0 ;ifu=v

t o) ;1f there exists no strong u — v pathin G
Clearlyd; satisfies all the axioms of a metric as follows.
1.d.(u, v)=2 0 for all uandv
2.d_(u,v)=0if andonlyif u=v
S( ) ( )foralluandv
d.(u, v)<d(u, w) +d,(w,v) for Il u,vandw.
Hence(V(G), d;) is a metric space.

In the following example (figure 1), we find thaiese three distances are generally
different.

Example 2.1.

(=]
-]

2

Figure A:weighted graph
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Thea, g and strong distances between different pairs dea@re given below.
d,(a,b)=7, d,(a c) =15, d,(a,d)=ce, d,(b,c)=8, d,(bd)=c,
d,(c,d) =c.d,(a b) =, d;(a,c) =4, ds(a,d)=2, dg(,c)=w,
dg(b,d) =, dy(c,d)=2.d(a,b)=7, d.(a, c) =4, d.(a,d) =2
d,(b,c)=8, d (b, d)=9, d(c,d) =2.

3. Strong Center of a weighted graph
In this section, we introduce the concepts of etimty, radius, diameter and center with
respect to the distances which are defined in loe@section.

Definition 3.1. Thea- eccentricity of a node u in G is defined and deddy ¢gu) =
max{d,(u, v)/ \eV, 0< d,(u, v)< w}.

In the same manner tifie eccentricity and strong eccentricity are defibetbw.
ey(u) = max{dg(u, v)/ eV, 0= dy(u, v)<co}.
es(u) = max{d(u, v)/\eV, 0< d{u, v)<o}.

Definition 3.2. A node v is called the- eccentric node of u if,@1) = d,(u, v). The set of
all a- eccentric nodes of u is denoted by u

In the same manner, we can deffheccentric nodand thestrong eccentric node

Definition 3.3. Among thex- eccentricities of all the nodes of a graph , thi@imum is
called thea- radius of G. It is denoted by(G). That is ;(G) = min {e,(u) / ue V}.

Also thep- radius of Gis defined and denoted by(G) = min {g(u) / ve V} and the
strong radius of G is defined and denoted )= min {g(u) / e V}.

As the radius is the minimum eccentricity, the maxin eccentricity is called the
diameter of the graph.

Definition 3.4. Among thex- eccentricities of all the nodes of a graph, theximum is
called thea- diameter of G. It is denoted by(@). That is ¢G) = max {e(u) / Le V}.
Also theg-diameterof G is defined and denoted loy(G) = max {g(u) / ue V} and the
strong diameteof G is dy(G) = max {g(u) / e V}.

Definition 3.5. A node u of G is called- central if ¢(u) = r,(G), calleds- central if
€y(u) = ry4(G) and called strong central if@) = r{(G).

Definition 3.6. A node u is called- diameteral if g(u) = d,(G), calleds- diameteral if
€y(u) = dy(G) and called strong diameteral if(a) = dy(G).

Definition 3.7. The subgraph induced by the set ofealcentral nodes is called the

center of G. It is denoted by (G)>. Analogously thes- center of G is the subgraph
induced by the set of gli- central nodes of G and is denoted by k&)>. Also the
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strong center of G is denoted as £G)> and is defined as the subgraph of G induced by
the set of all strong central nodes.

Using example 2.1, we illustrate all the aboverdgins
ea) =15, g(b)=8, e(c)=15 e(d)=wo,ea)=4, gb)=w, g()=4, e(d)=
2,e@=7 eb)=9, gc)=8, &d)=9,1(G)=8,1G)=2,1(G)=7,d(G) =15,
di(G) = 4, d(G) = 9.

b is thea- central nodedl is thef- central node and is the strong central node.
a andc are thea diameteral nodes. They afe diameteral also. The strong diameteral
nodes ard andd.

If we take the diameteral nodes instead of therabnbdes, we get the periphery
of the graph.

Definition 3.8. The subgraph induced by the set ofcaldiameteral nodes is called the
o- periphery of G. It is denoted by <{&)>. Analogously the- periphery of G is the
subgraph induced by the set of glldiameteral nodes of G, denoted by(®)>. Also
the strong periphery of G is denoted by®> and is defined as the subgraph induced
by the set of all strong diameteral nodes.

Definition 3.9. A node u is called- isolated if there is na- strong arc is incident on u,
[- isolated if there is ng- strong arc is incident on u and strong isolatéda strong arc
is incident on u.

Definition 3.10. An arc e = (Y V) is calleda- isolated if there is na- strong arc
adjacent with e. Similarly- isolated if there is ng- strong arc adjacent with e and
called strong isolated if there is no strong argaant with e.

From the last two definitions, we have the follogvipreposition.

Preposition 3.1.Let G: (V, E, W) be a weighted graph. If e = (ujsrane- isolated arc
in G, then gu) - g(v) = 0.
Proof: Sincee = (u, v)is a- isolated.e is adjacent with na- strong arcs. That meaass
the onlya- strong arc, which is incident anandv. While calculating the:- eccentricity
of u, the farthest node fromis v and vice — versa. Thug(u) = e(v) = w(e)and hence
e,(u) - g(v) = 0. This completes the proof.

It can easily be seen that, the above preposgiealid for bothg- isolatedand
strong isolated arcs.

Preposition 3.2.Let G: (V, E, W) be a connected weighted graph suahevery arc e in

G have weight w(e} k > 1. Then gu) > e(u) for every node u in G, where e(u) is the
eccentricity of u in the underlying graph of G.

Proof: Let G: (V, E, W)be a connected weighted graph such that eacheo&rt has
weightk > 1. Letu be any node o6. Letv be the farthest node ofin the underlying
graph ofG. We know that, between any pair of nodesndv of G, there exists a strong
path [12]. Nowe(u)is the number of arcs in the shortest path comgeatandyv in the
underlying graph o6. Buteyu) is the sum of the weights of all arcs in the skgirstrong
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path connectingi andv in G. Since each edgeis with weightw(e)> 1, it is Clear that
ey(u) > e(u).

The above preposition is trivial and valid for bettand g distances. As in the
classical concept of distance in graphs, we hagddifiowing inequalities. We omit their
proof as they are obvious.

Theorem 3.1.Let G: (V, E, W) be a connected weighted graph.nTie following
inequalities hold.

1. r(G)<d(G)<2r(G)

2. rﬂ(G)Sdﬂ(G)SZrﬂ(G)

3. 1{G) <d(G) <2r(G).

4. Self centered graphs

In this section, we present the idea of self cextgyraphs with respect to the distances
which are introduced in section 2. Here we presamhe necessary conditions and a
characterization of self centered graphs. Throughbis section,G is a connected
weighted graph.

Definition 4.1. G is calleda- self centered if G is isomorphic with €(G)>, G isp- self
centered if G is isomorphic with (5)>, and is called strong self centered if G is
isomorphic with <G(G)>.

The following theorem is true for bothand strong self centered graphs.

Theorem 4.1.Let G: (V, E, W) be a connected weighted graph ghah there exists
exactly onex- strong arc incident on every node and that a# # strong arcs are of
equal weight, then G i& self centered.
Proof. Given that all the nodes &f are incident with exactly one strong arc, and all
thea- strong arcs are of equal weight. That meaesif(u, v)is a- strong, then there will
be no othew- strong arcs incident amandv. Hencee,(u) = w(e) = g(v). By this same
argument we get this same equality for any othestrong arc. Thug,(u) = w(e) for
every nodau in G.

This proves thaf is o- self centered.

The next theorem is a characterization for theesntered graphs.

Theorem 4.2 A connected weighted graph G : (V, E, W)-iself centered if and only if
for any two nodes u and v of G such that u is-aaccentric node of v, then v should be
one of thex- eccentric nodes of u.
Proof: First assume tha& is a- self centered. Also assume thids ana- eccentric node
of v. That meang,(v) = d,(v, u).SinceG is a- self centered, all the nodes®@fwill be
having the same- eccentricity. Therefore,(u) = e,(v). From the above two equations,
we gete,(u) = d,(v, u) = d(u, v). Thuse,(u) = d,(u, v). This proves that is ana-
eccentric node af.

Conversely assume that tifis ana- eccentric node of, thenv should be one of
thea- eccentric nodes af’. That meansg,(u) = d,(u, v)ande,(v) = d,(v, U). But due to
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symmetry ofd,, we haved,(u, v) = d,(v, u). Thereforee,(u) = e,(v) for any two arbitrary
nodesu andv of G. Hence all the nodes @& have the same eccentricity and hend@
is o- self centered.

This completes the proof of the theorem.

In the same manner, we can prove this resujt fond strong self centered graphs.

5. The distance matrix and the max — max compositio

In this section, we present an easy check for ghted graplG to see whether it is-
self centered or not. This result can also be agfbr boths and strong self centered
graphs.

Definition 5.1. Let G: (V, E, W) be a connected weighted graph witiodes. The:-
distance matrix of G is defined and denoted agGIP= (d, ;) is the square matrix of
order n and ¢; = d,(v;, v). Note that thex- distance matrix is a symmetric matrix

Instead ofD,(G), we simply writeD, when there is no confusion regarding the
name of the weighted graph.

Analogously we can defing and strong distance matrices. In the following
example (figure 2), we give the three distance icedr

Example 5.1.

ghire 2:

Thea,  and strong distance matrices are given below.

0 8 o 15 0 o o o 0 8 11 14

8 0 o 7 o 0 3 6 8 0 3 6
D, = s Dﬁ = Ds =

o oo 0 o o 3 0 3 11 3 0 3

15 7 oo O o 6 3 0 14 6 3 O

Next we have a theorem regarding the eccentriciifesodes using the max — max
composition of the distance matrices.
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Theorem 5.1.Let G: (V, E, W) be a connected weighted graph.diagonal elements of
the max — max composition of the distance matrix of G with itself are the
eccentricities of the nodes of G.

Proof: LetD, = (d; ;) be thea- distance matrix o6. Thend, ;= d,(v, V). In the max —
max compositiorD,0D,, thei™ entry in the principal diagonal ; = max {max (¢, dy),
max (g, dy), max (¢s, ), ..., max (¢, d,;) }. But due to symmetry d,, we have ;
=max{d 1, d 2 d 3 ..., o} = max {d(vi, Vi), di(Vi, Vo), Au(Vi, V&), ..., BV, Vo)} = €4(V).

This completes the proof of the theorem.

Theorem 5.2. A connected weighted graph G: (V, E, Wy4iself centered if and only if
all the entries in the principal diagonal of the xra max composition of the- distance
matrix with itself are the same.

Proof: As proved intheorem 5.1 the principal diagonal entries in the max — max
composition of thex- distance matrix with itself are the eccentricities of the nodes. If
they are same, that meaagu) is the same for all in G, thenG is a- self centered.
Hence the proof is completed.

We illustrate the above theorem in the followingueples.

Example 5.2.

a b
. 4 ®
5

5
®
d 4 c

Figure 3:

Theo- distance matrix and the max — max compositiorgaren below.

5

D.0D, =

=~

I
o 8 8 ©
8 u1 o 8
8 o u 8
o 8 8 wul
o 8 8 i
8 u1 u1 8
8 un o1 8

(o0]
(o0]
5

Clearly all the diagonal elements of the composittme same and hen&kis o- self
centered.

34



Some Extremal Problems in Weighted Graphs

Example 5.3.

Figure 4.

Thea- distance matrix and the max — max compositiorgaren below.

Da =

8 8 o
8 8 8

0 00
0 2 D,0OD, = 2.
2 0 2

e

II\)I\JS

Clearly all diagonal
a- self centered.

lements in the compositiom aot same, and hence the graph is not

Remark 5.1. From the above two examples it is clear that, &igddslock may or may
not beo- self center.

6. The center of p-trees and p-blocks
In this section, we give a discussion about thdraénodes of partial trees and partial
blocks.

In the following theoremy- central nodes of partial trees are characterized.

Theorem 6.1.If a node of a partial tree ig- central, then it is a common node of at least
two a- strong arcs.

Proof: Let G: (V, E, W)be a partial tree. TheB has ngs- strong arcs. We know that
between any two nodes of a connected weighted d¢eatiiiere exists a strong path [12].
As G is independent ofg- strong arcs, there exists anstrong path between any two
nodes ofG. Let u be ana- central node ofs. We want to prove that two or moee
strong arcs are incident onlf possible suppose the contrary. Let there betgxanea-
strong arc, namelg incident oru. Therefore any- strong path betweemand any other
node ofG will contain the ar@. This proves thag,(u) > r,(G), which is a contradiction
to the fact that is a- central. Therefore our assumption is wrong. Tihesproof of the
theorem is completed.

Remark 6.1. If uis a common node of at least twostrong arcs, thenis a partial cut

node ofG [12]. So from the above theorem it is clear tifat,nodeu of a partial tre&s is
o- central, then it is a partial cut node®f
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Remark 6.2. As partial trees are free frof strong arcsgy(u) = O for every nodeu.
Hence the equalitg(u) = e;(u) + e,(u) is trivially true in all partial trees.

The next theorem is about thecenter of partial blocks.

Theorem 6.2.Thea- center of a partial bloct contains albk- strong arcs with minimum
weight.
Proof: Suppose thak: (V, E, W)is a partial block. Therefoi® has no partial cut nodes.
We know that, if a noda in a connected weighted graph is common to mae tmen-
strong arcs, then it is a partial cut node [12].G\&s free from partial cut nodes, at most
onea- strong arc can be incident on every nodé&ofThus thes- eccentricity,e, of a
nodeu is the weight of the- strong arc incident oun.

So thea- radius ofG, that isr,(G) is the weight of the smallest strong arc.
Hence then- center ofG, < C,(G) > contains all a- strong arcs of5 with minimum
weight. This completes the proof of the theorem.

The next theorem helps us to find the number oheoted components in tlae
center of a partial block.

Theorem 6.3.Let G: (V, E, W)be a partial block. If there exists a path contgnall «-
strong arcs o6 with minimum weight alternatively, thenC,(G) > will be connected.
Proof: By the previous theorenx, C,(G) > consists of alla- strong arcs ofG with
minimum weight. Also in a partial block, not moteh onex- strong arc can be incident
on any node. So if there akenumber ofa- strong arcs present i@ with minimum
weight, all these arcs will be ik C,(G) >, moreover they are not adjacent also. Hence if
we can find a path containing a#f strong arcs with minimum weight alternativeky
C.(G) > will be connected. Thus the proof is completed.

Theorem 6.4.1f a connected weighted grapgh: (V, E, W)is a partial block with k

? .
Proof: Suppose thab :(V, E, W)is a partial block. The has no partial cut nodes. Let

v

k be the number af- strong arcs . We have to prove that&— . If possible suppose

2
V|

number ofa- strong arcs. Thek<

Vi

the contrary. Let k>7. Then there will be at Iea%tk —EJ number of nodes with
more than one- strong arc incident on them. Clearly these nadegartial cut nodes of
G, a contradiction to the fact thé@t is free from partial cut nodes. So our assumpison
wrong. This proves the theorem.

7. Conclusion

In this article, three new distances in weightedpys are introduced. As reduction in
strength between two nodes is more important tht tisconnection of the graph, the
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authors made use of the connectivity concepts fimidg the distances. A special focus

on

self centered graphs can be seen as they atedappdely. The max — max

composition, which is presented in section 5 isywaseful in characterizing the three
types of self centered graphs. Studies and chaizatiens for both partial trees and
partial blocks are also made.
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