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Abstract. A production unit sponsors a number of programmes in different television 
channels. Aim of the unit is to spread the product related message to a maximum number 
of targeted viewers. However, to make the venture a successful one, a sufficient amount 
of budget must have to provide. So, this paper attempts to maximize number of viewers, 
while keeping cost of purchasing the programmes within a specified amount of budget. 
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1. Introduction 
In this paper our objective is placement of advertisements (or ads) in different television 
channels in such a way that the ad related message reach to the maximum number of 
viewers as well as the cost incurred in the process must be constrained by the capability 
of the production unit who is interested in successful marketing of the product. Hence, we 
have to maximize the number of viewers (termed as viewers’ count) and minimize total 
cost involved in this process. 

The implication of optimizing both the parameters is very much realistic. The 
production units promote their goods through advertisements that are broadcasted as 
commercial breaks in between programmes running throughout the day in different 
television channels. The motive of the production units is to reach out to as many 
customers as possible but they are bound to follow some planning and marketing 
constraints of which the total budget is one of the most important ones. The cost of 
procuring break points is liable to be optimized. With the help of the other parameter, i.e., 
viewers’ count, we are trying to approximate the popularity of programmes. This 
parameter is derived from television ratings published by various national and 
international rating systems or by some surveys. So, in this paper, we are keen to 
optimize both the parameters while keeping the total cost below some predefined budget. 



Sumana Bandyopadhyay and Rajat Kumar Pal 

98 

 

In this context we may reiterate the idea of multi-objective optimization. 
Incidentally, several algorithms are available in literature [1, 6] those like to maximize 
viewers’ count only. On the contrary, in this paper, we desire to optimize both the 
parameters, i.e., viewers’ count of programmes (giving this parameter the highest 
priority) followed by the cost required to purchase the break points. The graph theoretic 
formulation results a comparability graph from the problem domain. 

2. Preliminaries 
In this section we are going to make the reader familiar with some graph theoretic terms 
and invariants. For ease of the reader, we include some vital terms in the form of 
corollaries. 

Corollary 1. A clique consists of a maximum number of vertices present in a graph, each 
pair of which is connected by an edge in the given graph. Such a clique is usually a 
maximum clique as it helps to declare the clique number of a given graph. However, a 
maximal clique is also a clique wherein none of the remaining vertices of the graph could 
be included to make it larger. 

The graph obtained from the problem domain is a kind of perfect graph; more 
specifically, this graph is a comparability graph [5]. The edges of a comparability graph 
can always be transitively oriented [5]. Computation of maximum weighted k-clique of 
the comparability graph modeling the problem affords us the solution of the problem 
sought here. 
Corollary 2. A maximum weighted k-clique of a graph is a collection of k-disjoint 
maximal cliques that weigh the maximum overall possible k-disjoint maximal cliques in 
the graph. In general, the maximum weighted k-clique computation problem is NP-
complete [3], but when restricted to comparability graphs it becomes tractable [4]. 

3. Formulation of the problem 
Now, we are going to impose some constraints that should be followed by the graph 
theoretic formulation of the problem addressed herein. The constraints are listed below: 

1. The standard television ratings are available for a particular programme of any 
channel based on some surveys and national and/or international rating system. 
2. In general, programme slots are non-intersecting if their corresponding 
broadcasting time spans are also non-intersecting or non-overlapping. 
3. Programmes on different television channels begin at a specific time (here 
midnight). In case a programme overlaps the boundary, we may split it into two 
sub-slots; one that terminates at midnight and another that starts broadcasting at 
the midnight, both having the same viewers’ count and cost.  

According to the formalism, we have devised a scheme to optimize the ratio of 
the television rating and cost keeping budget as a constraint. The said ratio is used as 
weight on the vertices of the graph as obtained from the graph theoretic formulation of 
the problem. 

Next we like to show (with the help of a suitable instance) the graph theoretic 
formulation that clarifies how programme slots are laid on the real time line and using 
graph theoretic modeling how a comparability graph can be constructed from the 
instance. 
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Figure 1: (a) A set of programme slots on three different channels. IXK (P) represents the 
kth programme slot (or interval) on channel X and P represents the weight, which is the 
ratio of viewers’ count to the cost of purchasing ad breaks. (b) The comparability graph 
structure obtained for the set of intervals there in (a), which is oriented as the 
(chronological) programme slots occur from left to right in non-overlapping fashion. 

In Figure 1(a), we have taken an appropriate instance (ranging from 0 to 7 hours, 
in some duration of time scale) with programme slots running in different channels and 
Figure 1(b) shows the corresponding weighted comparability graph. While converting an 
instance into the equivalent graph structure, each vertex IXM represents the Mth 
programme interval of channel X (after midnight). Each vertex is weighted as explained 
previously. Edges are introduced between all such pairs of vertices IXM, IYN that represent 
non-intersecting time slots. For instance, the spans of I12, I32, or I13 are completely disjoint 
with respect to the span of interval I11. Edges are directed from an interval IXM to another 
interval IYN, if IXM terminates broadcasting before or exactly when IYN begins to broadcast. 
In the above example, edges have been introduced and oriented from the vertex 
analogous to I11 to the vertices matching to I12, I13, I22, and I32. No edges are introduced 
between intervals I11, I21, and I31, as the intervals have nonempty intersections in the 
spans of their broadcasting times; therefore, related vertices in the graph of Figure 1(b) 
are independent to each other. 

We can now propose an appropriate graph based definition for the programme 
interval associations. We call this graph a broadcasting graph. Let G be the graph 
structure that models the interval associations. Then G is a 2-tuple (V, E), where V 
represents a set of weighted vertices and E represents a set of directed edges between 
non-overlapping intervals modeled as vertices. Each vertex IXM ∈ V is weighted by WXM, 
where WXM is defined as follows: 

WXM = Television rating (or Viewers’ count) / Cost of purchasing breakpoints 
Also, an edge eXY is directed from IXM to IYN, if the programme M in channel X 

terminates on or before the beginning of programme N in channel Y, or vice versa. 
Sometimes, it may so happen that Y = X and N = M+1, where certainly Y and X are 
nonoverlapping to each other. 

Lemma 1. The broadcasting graph is a comparability graph [1]. 

In graph theoretical terms, the problem is stated in the form of following lemmas. 
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Lemma 2. The maximum weighted path based on the orientation from a vertex 
corresponding to a programme broadcasted earlier to a vertex corresponding to a 
programme broadcasted later induces a maximum weighted clique in a comparability 
graph [1]. 

Lemma 3. The maximum weighted k-clique computation of a comparability graph is 
polynomial time computable for any value of k [4]. 

4. Development of the algorithm MWkQ constrained by budget 
The algorithm described in this section aspires to compute the maximum weighted k-
clique of the broadcasting graph, constrained by a budget. The algorithm developed here 
is based on the graph traversal method depth first search (DFS) [2]. We call this modified 
DFS algorithm DFS-Variant. However, the algorithm maintains the corresponding path 
information, and cumulative ratio and cumulative cost of the path. Here a path denotes a 
sequence of vertices from one of the source vertices to one of the sink vertices that is 
reached by tracing the algorithm. The cumulative ratio means the sum of the weight 
ratios WXM of the vertices belonging to this path. Similarly, the cumulative cost is simply 
the sum of the cost of the vertices belonging to the path. While checking for inclusion of 
a new vertex within the path, an alternative path is rejected, if the following conditions as 
briefed below occur. 

(i) If the new path produces same / lower cumulative ratio and same / higher cumulative 
cost.  

(ii) If the new path produces higher cumulative ratio and higher cumulative cost but 
increase in cumulative ratio is sufficiently less than the increase in cumulative cost.  

(iii) If the new path produces lower cumulative ratio and cumulative cost but decrease in 
cumulative ratio is significantly high with respect to decrease in cumulative cost. 

The terms “sufficiently less” and “significantly high” can be formally defined by 
comparing to some threshold values. Threshold values are computed as functions of the 
available budget, average ratio, average cost, cumulative ratio, and cumulative cost at the 
current time instant. On the contrary, for inclusion as a better alternative (new) path our 
algorithm checks whether one of the following conditions occurs in practice. 

(i) If the new path produces same / higher cumulative ratio but lower / same 
cumulative cost. 

(ii) If the new path produces higher cumulative ratio and higher cumulative cost 
but increase in cumulative ratio is sufficiently higher than increase in cost and the 
cumulative cost is still under budget. 

(iii) If the new path produces lower cumulative ratio and cumulative cost but 
decrease in cumulative cost is much more with respect to decrease in cumulative 
ratio.  

The same logic (or threshold values) as stated above is applied for determining 
when increase in cumulative ratio is “sufficiently higher” or decrease in cumulative cost 
is “much more”. 
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While executing the algorithm, we maintain the vertices in the current path under 
consideration in a specific list called the Path List (PL). To implement our approach, the 
entries of Path List are vertices ordered primarily by the associated costs in decreasing 
order, and secondly by the associated ratios in increasing order. Suppose there are n 
vertices in the current path list, PL1 = {v1, v2, ..., vn} . Also, suppose the inclusion of a new 
vertex vn+1 arises one of the situations for rejection or simply the cumulative cost of the 
path goes above the budget. The cumulative ratio of the path also increases. Let this 
intermediate path configuration be denoted by PL2 = {v1, v2, ..., vn, vn+1}.  

Now, in such a situation, we pick up the first vertex v1 from PL2 removing which 
from the path may ultimately result in the cumulative cost to go below (or equal to) the 
budget. The removal of v1 also decrements the overall cumulative ratio. Let this new 
configuration of the path list be denoted by PL3 = {v2, v3, ..., vn, vn+1} . Now, if PL3 has 
cumulative ratio still greater than PL1, then this path is accepted as the newly generated 
path. The removal of vertices from the ordered Path List can be continued as long as the 
cumulative ratio of the resulting path is higher than the cumulative ratio of PL1 and the 
cumulative cost of the newly generated paths remain within the available budget. If a 
path configuration PL′ exists such that the cumulative ratio of PL′ is greater than the 
cumulative ratio of PL1 and the cumulative cost of PL′ is less than the available budget, 
then the modified (or new) Path List is accepted to reflect the change in the path, i.e., PL 
= PL′.  

Following the logic of DFS, the algorithm ultimately backtracks to the source 
vertex from where it started traversing and computes a maximum or near to the maximum 
weighted path from that source vertex. The same method is applied for each of the source 
vertices. At the end, a path with the maximum weight is obtained by simple comparison 
of the paths starting from different source vertices. By tracing out a path, actually a 
maximum or near to the maximum weighted clique of the broadcasting graph is being 
computed. 

Suppose, after one iteration of the algorithm, the path being outputted has 
cumulative cost sufficiently less than the budget, i.e., there exist(s) other path(s) within 
the broadcasting graph whose cumulative cost is less than or equal to the remaining 
budget. Then the same algorithm can be applied repetitively on the (remaining) graph. In 
such a case, the vertices in the clique computed in the previous iteration are deleted 
(along with their adjacent edges) from the original graph. Thus, the same algorithm can 
be iterated a fixed k number of times for complete utilization of the budget. According to 
Gavril, the maximum weighted k-clique can be computed successively by applying the 
maximum weighted clique computation algorithm on a comparability graph for k times 
[4]. Although being constrained by budget (as a practical issue) we have deviated from 
the pure maximum weighted k-clique computation of comparability graphs, and applied 
some greedy logic. 

In some cases, after completion of a fixed k number of iterations of the algorithm, 
a very small amount of the budget may still remain unutilized. Here, no further clique 
may be computable, using our algorithm, whose cumulative cost is less than or equal to 
the remaining budget. To cope with the situation, we use a greedy approach. Once the 
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maximum weighted k-cliques have been removed (in succession) from the original graph, 
we sort the remaining vertices (programme slots) in decreasing order of their weight 
ratios WXM. We pick the first vertex with the highest weight ratio whose additional cost 
does not result in the cumulative cost to exceed the proposed budget. This process may be 
repeated until the budget is totally utilized or the remaining budget is not sufficient to 
purchase any of the existing (remaining) programme slots. 

5. The computational complexities of algorithm MWkQ constrained by budget 
One can observe that algorithm MWkQ constrained by budget primarily uses the graph 
traversal method Depth First Search (DFS) with some extra operations that keep the path 
found out (or clique computed) to be within the budget while maximizing cumulative 
ratio [2]. Therefore, we may claim that the complexities (both time and space) of 
algorithm MWkQ constrained by budget are O(n+e), where n is the number of vertices 
and e is the number of edges of the comparability graph instantiated. 

6. Experimental results 
We have implemented the algorithm, developed in Section 4, and produced a huge 
amount of data in support of our invention. Instances are generated (pseudo-randomly) 
for different number of channels, ranging from 40 to 200. For each channel number 20 
instances have been generated and an average value is received as an acceptable data. 
Here we have taken into consideration from 12:00 at noon to 4:00 PM, where mostly 
housewives, old men or those having night duty watch television. We have summed up 
the experimental results made by us in Table 1. In this paper, we have strived to optimize 
two parameters, i.e., maximizing the cumulative viewers’ count and minimizing the 
cumulative cost. But ultimately we have outputted the viewers’ count in place of the ratio 
as production units are interested in the number of viewers. 

 
 

 

 

 

 

 

 

 
 

Figure 2: Performance of MWkQ for different parallel sessions versus number of 
television channels for broadcasting programmes during an afternoon session from 12:00 
at noon onwards for four hours. 

Here, the number of channels is plotted along x-axis (as shown in Figure 2), and 
the probable maximum weighted k-clique is plotted along y-axis. We have plotted the 
curves for various values of k that means the number of parallel sessions that can be fitted 

Number of  
Channels 

Budget Viewers’ Count, Cost 
Number of Parallel Sessions Number of Parallel Sessions 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 

40 73.900 73.900 75.210 82.670 86.000 87.000 94.000 
199.70, 
34.550 

346.48, 
50.950 

428.56, 
60.470 

484.59, 
67.330 

543.59, 
76.780 

649.28, 
86.800 

748.41, 
89.000 

60 70.150 74.240 76.125 79.140 84.265 86.400 87.000 
223.20,  
36.350 

303.15, 
47.240 

468.49, 
59.125 

513.50, 
68.670 

641.37, 
77.750 

723.02, 
84.500 

836.00,   
87.000 

80 66.500 66.500 70.750 75.800 81.600 84.000 88.000 
250.40, 
35.950 

380.47, 
49.000 

492.63, 
59.680 

568.23, 
69.180 

714.61, 
77.800 

776.20, 
82.000 

817.20, 
88.000 

100 68.900 70.210 76.000 77.840 89.600 89.600 - 
251.30,   
38.500 

402.90, 
51.950 

536.77, 
64.470 

617.16, 
72.076 

738.80,   
85.200 

804.60, 
89.500 

- 

125 72.550 72.550 76.650 84.570 89.270 93.000 - 
251.60,    
35.500 

392.62, 
48.400 

520.84, 
60.710 

566.41, 
69.130 

641.90, 
78.550 

850.00, 
88.500 

- 

150 68.850 68.850 71.590 78.080 84.140 92.500 92.500 
265.40,  
36.150 

420.25,  
49.050 

540.20, 
58.294 

620.10, 
68.750 

698.90, 
78.750 

895.00, 
81.500 

897.00, 
88.000 

175 66.900 66.900 69.440 76.080 79.830 82.670 - 
274.55, 
33.850 

433.35, 
47.550 

557.19, 
58.900 

661.08, 
67.920 

717.67, 
73.670 

808.00,    
82.000 

- 

200 66.650 67.800 70.800 73.300 81.000 88.000 88.000 
278.20,       
38.000 

453.56, 
50.900 

576.89, 
60.900 

621.20,   
67.300 

655.74, 
71.670 

664.74, 
74.000 

724.32, 
81.000 
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Table 1: Implemented results showing the performance of MWkQ for an afternoon 
session during 12:00 at noon through 4:00 PM. 
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within the budget. However, an increase in number of parallel sessions increases with the 
number of channels. In Figure 2, the plots for k = 1, 2, or 3 have nearly equal spacing. 
But when the value of k increases above 3, more and more individual instances get 
terminated. It should be remembered that the values used in the tables or curve plotting 
are actually average values. So for larger values of k, curves are mostly near to each other 
and for sufficiently large values of number of channels, they nearly try to converge to 
some small range of values (see Figure 2). For small number of channels, there may 
create some spurious data generating sudden rise of the corresponding curve. But as the 
channel number increases, the curves turn to be nearly saturated. However, we have 
generated 20 instances for each of the channel numbers. If the number of generated 
instances is increased, then the corresponding average values may produce smoother 
curves, we hope. 

7. Conclusion and future work 
Production units launch and promote their items through electronic or print media. There 
are different parameters for both types of media that when properly set can result in 
effective advertisement of the product. Production units have a very vague idea about 
these parameters. Ad agencies take this responsibility and provide production units with a 
variety of solutions. Each of these solutions bears a cost and, depending on their budget, 
production units may select the scheme of their choice. The cost of each solution is 
governed by the parameters which decide the efficiency of the advertising media. There 
are various approaches available in literature regarding the selection of ad slots 
(commercial breaks) within programme slots, but this paper is unique in the sense that the 
totality of the problem has been taken care of. Our approach has great market value and it 
targets two different entities, viz., ad agencies and production units, of the advertisement 
industry. 
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