
Annals of Pure and Applied Mathematics 
Vol. 6, No. 1, 2014, 57-69 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 7 May 2014 
www.researchmathsci.org 

 

57 

 

Annals of 

Symplectic Connections and Contact Geometry 
Md. Abu Hanif Sarkar1 and Md. Showkat Ali2 

1Department of Mathematics, Jagannath University, Dhaka-1100, Bangladesh 

2Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh 
Email: msa317@yahoo.com 

Received 17 March 2014; accepted 23 March 2014 

Abstract. Symplectic connection we mean a torsion free connection which is either the 
Levi-Civita connection of a Bochner-Kahler metric of arbitrary signature. On a given 
symplectic manifold, there are many symplectic connections, i.e. torsion free connections 
with respect to which the symplectic form is parallel. We present what is known about 
preferred connections (critical points of a variational principle). This note also includes a 
symplectomorphisms on the space of symplectic connections. We also discuss the 
Curvature tensor of a symplectic connection. 
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1. Introduction 
The goal of this paper is to provide a fast introduction to symplectic geometry. A 
symplectic form is a closed nondegenerate 2-form. A symplectic manifold is a manifold 
equipped with a symplectic form. Symplectic geometry is the geometry of symplectic 
manifolds. Symplectic manifolds are necessarily even-dimensional and orientable, since 
non-degeneracy says that the top exterior power of a symplectic form is a volume form. 
The closedness condition is a natural differential equation, which forces all symplectic 
manifolds to being locally indistinguishable. The list of questions on symplectic forms 
begins with those of existence and uniqueness on a given manifold. For specific 
symplectic manifolds, one would like to understand the geometry and the topology of 
special submanifolds, the dynamics of certain vector fields or systems of differential 
equations, the symmetries and extra structure, etc. 

Two centuries ago, symplectic geometry provided a language for classical 
mechanics. Through its recent huge development, it conquered an independent and rich 
territory, as a central branch of differential geometry and topology. To mention just a few 
key landmarks, one may say that symplectic geometry began to take its modern shape 
with the formulation of the Arnold conjectures in the 60’s and with the foundational work 
of Weinstein in the 70’s. Gromov in the 80’s gave the subject a whole new set of tools: 
pseudo-holomorphic curves. Gromov also first showed that important results from 
complex Kahler geometry remain true in the more general symplectic category and this 
direction was continued rather dramatically in the 90’s in the work of Donaldson on the 
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topology of symplectic manifolds and their symplectic submanifolds, and in the work of 
Taubes in the context of the Seiberg-Witten invariants.  

Symplectic geometry is significantly stimulated by important interactions with 
global analysis, mathematical physics, low-dimensional topology, dynamical systems, 
algebraic geometry, integrable systems, microlocal analysis, partial differential equations, 
representation theory, quantization, equivariant cohomology, geometric combinatorics, 
etc. 

As a curiosity note that two centuries ago the name symplectic geometry did not 
exist. If you consult a major English dictionary, you are likely to find that symplectic is 
the name for a bone in a fish’s head. However, the word symplectic in mathematics was 
coined by Weyl who substituted the Latin root in complex by the corresponding Greek 
root, in order to label the symplectic group. Weyl thus avoided that this group connote 
the complex numbers, and also spared us from much confusion that would have arisen, 
had the name remained the former one in honor of Abel: abelian linear group. 
 
2. Differential forms on manifolds 
Given a smooth manifold �, a smooth 1-form φ on � is a real-valued function on the set 
of all tangent vectors to � such that 

i.  Φ is linear on the tangent space ��� for each � � �. 
ii.  For any smooth vector field � on �, the function 	
�� �  � 
 � is smooth. 

  So for each � � �, the map  	�: ��� 
 � 
 is an element of the dual space 
�����. 
 

Wedge products and exterior derivatives are defined similarly as for �� . If �: � 
 � 
is a differentiable function, then we define the exterior derivative of � to be the 1-form �� with the property that for any � � �, � � ���, ���
��  � �
��. 

A local basis for the space of 1 �forms on � can be described as before in terms 
of any local coordinate chart 
��, . . . , ���  on � , and it is possible to show that the 
coordinate-based notions of wedge product and exterior derivative are in fact independent 
of the choice of local coordinates and so are well-defined. 

More generally, suppose that ��, �� are smooth manifolds and that �: �� 
 �� 
is a differentiable map. For any � � ��, the differential ��(also denoted  �� ): ���� 
��
���� may be thought of as a vector-valued 1-form, because it is a linear map from 
���� to the vector space ��
����. There is an analogous map in the opposite direction 
for differential forms, called the pullback and denoted ��. It is defined as follows. 
 
Definition 1. If �: �� 
 �� is a differentiable map, then  

i. If �: �2 
 � is a differentiable function, then ���: �� 
 � is the 
function 
� � ��
��  �  
����
��. 

ii. If φ is a � �form on ��, then F�φ is the � �form on �� defined as 
follows: 

If �� , . . . , �� � ���� then 
(��φ)( �� , . . . , ��) � 	
� � 
���, . . . , ��
����. 
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In terms of local coordinates 
��, . . . , ��� on ��and 
 �, . . . ,  !� on ��, suppose that the 
map � is described by  " �  "
��, . . . , ���, 1 # $ # %. 
Then the differential �� at each point � � �� may be represented in this coordinate 
system by the matrix  

&' "
'�() 

The ��(’s are forms on ��, the � "’s are forms on ��, and the pullback map �� acts on 
the � "’s by  

� � 
� "�  � ∑ +,-
+�. ��(/� �(. 

The pullback map behaves as nicely as one could hope with respect to the various 
operations on differential forms, as described in the following theorem. 
 
Theorem 1. Let �: �� 
 �� be a differentiable map, and let 	, 0 be differential forms on ��. Then 

i.  ��
	 1 0�  �  ��	 1  ��0. 
ii.  ��
	 2 0�  �  ��	 2  ��0. 
iii.   ��
�	�  � �
 ��	�. 

  

3. Symplectic geometry 

3.1 Symplectic vector fields 
Throughout our discussion, 
���, 34�  will denote a symplectic vector space with 
standard symplectic form  34 � ���Λ� � 1 6 1 ���Λ� �. 

Recall that a symplectic form is a closed non-degenerate 2-form. 

Given a symplectic vector space 
7��, 3�, and a subspace8 9 7, one can define 
the orthogonal complement 8: by setting 8: � ;� � 7: 3
�, <� � 0, for all < � 8C.  
Since 3  is non-degenerate, the kernel of D: 7 
 7� by � E 3
�, . �|8G  will have 
kernel 8:. Hence we see that the �$%8 1 �$%8: � �$%7. Clearly 8 is a symplectic 
subspace of 7 when  3|8G is non-degenerate. This happens only when 8 H 8: � ;0C or 
by the dimension formula above, when7 � 8 I 8:. When 8 � 8:we say that 8 is 
Lagrangian and this happens when dim8=J. 

Proposition 1. Every symplectic vector space 
7, 3� is isomorphic to
���, 34�. 
Proof: Proof is by induction. We wish to construct a standard basis of 7. By doing so we 
can then define a linear map which throws the constructed standard basis onto the 
standard basis of ���. Since linear maps preserve symplectic forms, we will be done.  
To construct a standard basis, take an element K� L 0 � 7  and choose ��  such 
that  3
K�, ��� � 1 . One can easily do this as 3  is non-degenerate and linear. 
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If  3
K�, �� � M, then use �� � NO
P . Let 8 � Span;K�, ��C. Clearly 38 is non-degenerate 

and so 7 � 8T8: by above. 

Now by induction,  8: has a standard basis 
K�, ��, 6 , K�, ���. The combination of the 
two basis is the basis of 7, i.e., 3UK" , K(V � 3U�" , �(V � 0 and 3UK" , �(V � W"(.           ■ 

3.2. Symplectic Darboux’s Theorem 
Theorem 2. Every symplectic form 3 on �is locally diffeomorphic to the standard form 34 on ���. 
Proof: Let �X�  be a point on the manifold and consider a local chart 	  such that 	
�� � 0. Use this local chart to push 3 forward to a form 3Yon ���. We now need to 
show that 3Y is diffeomorphic to standard form 34 near 0. With the aid of the proposition 
mentioned above we can choose 	 in such a way that 3Y � 34 at the origin.  

Now define the 3Z using the stupid homotopy trick  3Z � 
1 � [�34 1 [3Y. 
Note that 3Z � 34 at 0 for all [. Since 34 is non-degenerate and non-degenerecy is an 
open condition, there exists a neighborhood \ of our original neighborhood such that 3Z 
is non-degenerate for points in \. Since 

]
]Z 3Z � 3Y � 3 it is closed on \ . Hence by 

Poincare’s lemma, there exists a one form ^  such that �^ � 3Y � 34 � ]
]Z 3Z . By 

subtracting the constant form ^
0� we may assume that _ � 0 at 0. From the equation ^ 1 `
aZ�3Z � 0 we know that the corresponding family of vector fields vanish at 0. 
Using Moser’s argument, let 	Z be the partially defined flow of aZ. However, in this case 	Z has 0 as a fixed point for all [. Hence by the general fixed point theorem, there exists a 
neighborhood 7 9 \  of 0  such that  	Z
��  for 0 # [ # 1  of points � � 7  remain 
inside \. Hence 	Z is defined on V and we have 	Z�
3Y� � 34.                                        ■ 

4. Contact geometry  
Recall that a contact manifold is a 2J 1 1 dimensional manifold with a contact one form b. A contact form is a 1-form such that bΛ �bΛ 6 �bcddeddf

� gZ"!hi
 

is the volume form. The standard contact form on ���j� is 

bk � ��� � 1 ��� � 1 6 1 ��� � 1 �l. 
For each � � �, let m� denote the kernel of the linear mapping b�: ��� 
 �,  

i.e., m� � nX p ��� qb�
a� � 0Gr. 
Since b  is no where vanishing, the dimension of m�  is 2J  for all � � �.  Let m �
s m� ��t be the contact distribution. For each � � �, complete a basis ;a�, a�, 6 , a��C 
of m into a basis ;a�, a�, 6 , a��, uC of  ��� . Therefore we get that the volume form 
applied to the basis gives  
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0 L bΛ
�b��
a�, a�, 6 , a��, u� 

                                                      � b
u�. 
�b��
a�, a�, 6 , a��� 

 Since b
a"� � 0. Hence 
�b��
a�, a�, 6 , a��� L 0 this means that the restriction of �b 
to m is a non-degenerate 2-form, i.e.,  �b is locally a symplectic form on m.  

Note that this means that m is oriented by restriction of  �b to it. It also means that the 
normal to m is oriented as well. Since b
u� L 0 and ̀
u��b � 0, we may normalize u. 
Hence we may assume                                                         `
u�b � 1 

`
u��b � 0. 

Furthermore, we have that this vector field satisfies  

`
u�vbΛ
�b��w � 
`
u�b�
�b�� � bΛ
`
u�b�
�b�� � 
�b�� 

Since bΛ
�b��: Γ
�� 
 Ω�z
M� is an isomorphism, there is exactly one vector field 
which satisfies the above conditions. Hence we have shown  

Theorem 3. There exists a unique vector field ξ such that  ι
ξ�α � 1 and    ι
ξ�dα � 0. 
This vector field is called the Reeb vector field or sometimes the characteristic vector 
field.                                                                                                                                     ■ 
 

Odd symplectic geometry (more generally, odd Poisson geometry) or the 
geometry of odd brackets is the mathematical basis of the Batalin–Vilkovisky method [3, 
4, 5] in quantum field theory. Odd symplectic geometry possesses features connecting it 
with both classical (“even”) symplectic geometry and Riemannian geometry. In 
particular, odd Laplace operators arise naturally on an odd symplectic manifold, i.e., the 
second order differential operators whose principal symbol is the odd quadratic forms 
corresponding to the odd bracket [6]. The key difference from the Riemannian case is 
that the definition of an odd Laplace operator, in general, requires an extra piece of data 
besides the “metric”, namely, a choice of a volume form (even for a Laplacian acting on 
functions). This is due to the fundamental fact that on an odd symplectic manifold there is 
no invariant volume element [6]. However, as discovered by one of the authors, there is 
one isolated case where an odd Laplacian is defined canonically by the symplectic 

Structure without any extra data [8, 9, 10], it is an operator acting on densities of 
weight 1/2 (half-densities or semi-densities). This fact is not obvious, and there is no 
simple explanation. A known proof is based on an analysis of the canonical 
transformations of the odd bracket. In works [11, 13, 15] further phenomena related with 
odd Laplacians on odd Poisson manifolds were discovered, such as the existence of a 
natural ‘master’ groupoid acting on volume forms, its orbits corresponding to Laplacian 
on half-densities. The symplectic case is distinguished by the existence of a distinguished 
orbit, which gives the “canonical” Operator. 

In a very interesting recent paper [18] suggested a homological interpretation of 
the canonical odd Laplace operator on half-densities as one of the higher differentials in a 
certain natural spectral sequence associated with the odd symplectic structure. 
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In our paper we in particular discuss this interpretation and show that there is a simple but 
fundamental underlying fact from linear algebra, concerning the Berezinian of a 
canonical transformation for an odd symplectic bracket. It is the formula 
 
                                                  Ber } �  
�~[ }kk��                                                             (1) 
 
for J in the odd symplectic supergroup, where }kk is the even-even block. Hence the 
Berezinian is an entire rational function and, moreover, a complete square. There are 
many geometric facts related with formula (1), which can be found in the literature on 
odd brackets and the BV formalism. As for example, [17, 18, 6, 7, 8]. We want to draw 
attention to it as a simple identity for matrices. In view of it, half-densities on an odd 
symplectic manifold are ‘tensor’ objects, i.e., transforming according to a polynomial 
representation. They can be seen as virtual differential forms on a Lagrangian surface. 
When such a surface is fixed, they become (isomorphic to) actual forms. We see that in 
the space of differential forms on an ordinary manifold, there is a natural representation 
of the super group of canonical transformations of the odd bracket. We give a clear 
description of this action in classical terms. The invariance of the de Rham differential 
under such a super group, which is absolutely transparent, is equivalent to the existence 
of the canonical odd Laplacian, but expressed in a different language. 
 
Theorem 4. (Darboux’s theorem for Contact Manifolds): Every contact form α on M 
is locally diffeomorphic to the standard form α� on ��z. 
Proof [3]: Let b  be a contact form on � . Consider � � �  and 7  a neighborhood of 0 � ��� of the form 7 � 7k � 
��, ��, where 7k is a neighborhood of m�. The geodesic 
coordinates give a diffeomorphism of _  of 7  onto a neighborhood \  of �  in � . For 
each [ � 
��, ��, the restriction of �b to  _
7k � ;[C� is a closed 2-form of maximum 
rank. In particular, by Darboux’s symplectic theorem, we have a change of coordinates at � such that �b is a standard symplectic form, i.e., 

�b �7k � ;0C � � ��" � � " G 
Without loss of generality assume that this is �b�� form at � � �. 

Next we wish to show that in the neighborhood of �, �b|_
7k � ;[C�G has the same form. 

Let u � ]
]Z be the Reeb flow in the neighborhood of �. Then u provides us with a partially 

defined flow of diffeomorphisms 	Z with 	k � $�. Again we have that 

�
�[ U	Z�
�b�V � 	Z�U���bV 

                                                                    � 	Z�U`
u���b 1 �
`
u��b�V � 	Z�
0� � 0 

 and therefore �b  does not depend on time. Hence  	Z�
�b|_
7k � ;[C�G� � �b �∑ ��" � � "  and therefore exists a neighborhood \Y 9 \ which has a local coordinate 
system such that  
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�b � � ��" � � " 

Notice that this gives us that  

� �b � � �" � "� � 0 

and by the Poincare lemma, there exists a function l  on \Y such that when  �b  is 
restricted to the field of hyper planes we have  

b � � �" � " � �l 

or 

b � � �" � " 1 �l 

Since b � 
�b�� L 0,  the functions are independent and hence make up the desired 
coordinate system on \Y.                                                                                                     ■ 

5. Symplectic connections and deformation quantization 
Symplectic connections are closely related to natural formal deformation quantizations at 
order 2. Flato, Lichnerowicz and Sternheimer introduced deformation quantization in [9]; 
quantization of a classical system is a way to pass from classical to quantum results and 
they “suggest that quantization be understood as a deformation of the structure of the 
algebra of classical observables rather than a radical change in the nature of the 
observables.” In that respect, they introduce a star product which is a formal deformation 
of the algebraic structure of the space of smooth functions on a symplectic (or more 
generally a Poisson) manifold; the associative structure given by the usual product of 
functions and the Lie structure given by the Poisson bracket are simultaneously 
deformed. 
 
Definition 2. A star product on a symplectic manifold 
�, 3� is a bilinear map 

��
�� � ��
��  
  ��
��vv�ww  
K, ��  
  K �N  � �� � ����
K, ��
��k

 
such that 


K �  ��  �  < �  K �  
� �  <� (when extended �vv�ww linearly); 

�k
K, �� �  K� ,   ��
K, ��  � ��
�, K�  �  ;K, �C; 
1 �  K �  K �  1 �  K. 
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If all the ��  are bidifferential operators; one speaks of a differential star product; if, 
furthermore, each ��  is of order #  � in each argument, one speaks of a natural star 
product. 

The link between symplectic connections and star products appear already in the 
seminal paper [3] where the authors observe that if there is a flat symplectic connection � 
on 
�, 3�, one can generalize the classical formula for Moyal star product �t defined on ��� with a constant symplectic 2-form. Fedosov, proved more generally that given any 
symplectic connection �, one can construct a star product (in [8] it was proposed that a 
triple 
�, 3, �� be known as a Fedosov manifold): 

Theorem 5. [1] Given a symplectic connection � and a sequence  � � ∑ ��3���/�  of 
closed 2 forms on a symplectic manifold 
�, 3�, one can build a star product ��, Ω on it. 
This is obtained by identifying the space ��
��vv�ww with a sub algebra of the algebra of 
sections of a bundle of associative algebras (called the Weyl bundle) on �. The sub 
algebra is the one of flat sections of the Weyl bundle, when this bundle is endowed with a 
flat connection whose construction is determined by the choices made of the connection 
on � and of the sequence of closed 2-forms on �. Reciprocally a natural star product 
determines a symplectic connection. This was first observed by Lichnerowicz for a 
restricted class of star products. 

Theorem 6. [2] A natural star product at order 2 determines a unique symplectic 
connection. 

6. Recollection of the canonical odd Laplacian 

In this section we review the construction of the odd Laplacian on half-densities due to 
[8]. See also [9, 10, 11]. 

Let M be a super manifold endowed with an odd symplectic structure, given by 
an odd 2-form ω. We shall refer to such super manifolds as odd symplectic manifolds. 
(We always skip the prefix ‘super-’ unless required to avoid confusion.) Later we shall 
discuss the more general case of an odd Poisson manifold. A brief definition of the odd 
Laplacian acting on half-densities on M follows. 

Consider a cover of M by Darboux charts, in which the symplectic form takes the 
canonical expression ω� ��"�u" . Here �" , u" are canonically conjugate variables of 
opposite parity. We assume that the �"  are even; hence the u", odd. Let D , for any kind 
of variables  , stand for the Berezin, volume element then half-densities on M locally 

look like ^ � �
�, u�U�
�, u�V�/�
. (Notice that we skip questions related with 

orientation.) We set 

                                             ∆σ� Ə
�i

Ə�-Ə�- U�
�, u�V�/�
 ,                                                    (2) 

 
in Darboux coordinates, and call ∆, the canonical odd Laplacian on half-densities 
 

The simplicity of formula (2) is very deceptive. The expression 
Ə

Ə�-
Ə�
Ə�- was originally 

suggested by Batalin and Vilkovisky, and is the famous ‘BV operator’. However, the 
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trouble is that it is not well-defined on functions (actually, on any objects) unless we fix a 
volume form, which should therefore enter the definition. The geometrically invariant 
construction for functions, using a volume form, was first given in [6].There is no 
canonical volume form on an odd symplectic manifold (unlike even symplectic 
manifolds, enjoying the Liouville form). In particular,the coordinate volume form �
�, u� 
for Darboux coordinates is not preserved by the (canonical) coordinate transformations 
(see later). Hence the invariance of the operator ∆ given by (2) is a deep geometric fact. 

As we showed in [11], on any odd Poisson, in particular, odd symplectic, 
manifold there is a natural master groupoid of ‘changes of volume forms’ _ E ~i_ 
satisfying the master equation ��~i/� � 0 (note 1/2 in the exponent; without it there 
would be no groupoid). Here �� is the odd Laplacian on functions with respect to the 
given volume form _. It is defined by ��� � �$���� , where �� is the Hamiltonian vector 
field corresponding to f. (See [6]; note also [14] for another approach.) In a similar way 
one can define the odd Laplacian on any densities — again, depending on a chosen 
volume form. Now, half-densities are distinguished from densities of other weights 
precisely by the fact that for them the corresponding odd Laplacian would depend only 
on the orbit of a volume form with respect to the action of the above groupoid [11]. It 
turns out that on an odd symplectic manifold, all Darboux coordinate volume forms 
belong to the same orbit of the master groupoid. We can regard it as a ‘preferred orbit’; 
hence, in the absence of an invariant volume form, the odd Laplacian on half-densities 
defined by an arbitrary Darboux coordinate volume form is invariant. It is just (2). 
    
7. Homological interpretation of the odd Laplacian 
Now we are going to approach ∆ on half-densities from a very different angle. 

Let �
�� be the space of all pseudo differential forms on � , i.e., functions 
on ���. (As usual, � stands for the parity reversion function on vector spaces, vector 
bundles, etc.) In coordinates such functions have the form � �  �
�, u, ��, �u�, where the 
differentials of coordinates are commuting variables of parity opposite to that of the 
respective coordinate. In our case ��" are odd and �u" are even. We do not assume that 
functions �
�, u, ��, �u� are polynomial in �u" . Of course they are (Grassmann) 
polynomial in��", because these variables are odd. 

Consider the odd symplectic form ω. Since 3� = 0, multiplication by 3 can be 
considered as a differential. Define the operator D = d + ω, where d is the de Rham 
differential. Since �3  = 0, it follows that ��  = 0 and we have a ‘double 
complex’.
�
��, � � 3 1 ��.  

The reader should bear in mind that since 3 �  �   for some even1-form θ, 
which is true globally, we have � � ~¡¢�~¢  and the multiplication by the 
inhomogeneous differential form ~¢  sets an isomorphism between the complexes 
�
��, ��and 
�
��, ��  . It follows that £
�
��, ��  is isomorphic to£
�
��, �� , 
which is just the de Rham cohomology of the underlying manifold �k. (Note that the 
isomorphism ~¢ preserves only parity, but not ¤ -grading, even if we restrict it to 
differential forms on M, i.e., polynomials in ��, �u. � 

The operator D = d + ω was introduced in [18]. The idea was to consider the 
spectral sequence for 
�
��, �� regarded as a double complex. We shall follow it in a 
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form best suiting our purposes and which is slightly different from [18]. (In particular, we 
do not assume grading in the space of forms.) 

Although there is no Z-grading present, single or double, one can still develop 
the machinery of spectral sequences as follows. 
We define linear relations (see [15]) on Ω (M): 
                '° � ;
b, ¥� � �
�� � �
��: 3b � ¥C, '� � ;
b, ¥� � �
�� � �
�� �  ¦b�, … , b� � �
�� �  3b � 0,�b 1 3b� � 0, … , �b�¡� 1 3b�¡� � 0, �b�¡� 1 3b� � ¥C 
for all � �  1, 2, 3, .. . We also set'¡� � ;
b, 0�C. We have subspaces Ker '� , Def  '� 
(the domain of definition), Ind '�  (the indeterminacy), and Im '�  in �
��, and by a 
direct check 
                                                    Im '� 9 Ker'�, 
                                                      Def  '� = Ker '�¡�, 
                                                       Ind  '� = Im '�¡�. 
That is, we have a sequence of differential relations on (M), defining a spectral sequence 
(Er, dr) where 

                                      ©� � ª«¬+­®O
¯°+­®O � ±«² +­

¯z³ +­ 
and the homomorphism dr : Er → Er  is induced by '� in the obvious way. (In fact, 
differential relations like this is the shortest way of defining spectral sequences, see [13]) 
Clearly ©°  �  �
��. The relation '° is simply the graph of the linear map �° �  �
��  
  �
��, �°b �  3b. What is ©�? 
 

Theorem 7. The space ©� can be naturally identified with the space of half-densities on 

M. 

A proof consists of two independent steps. First, we find the cohomology of d0 

using algebra. Second, we identify the result with a geometrical object. The first part goes 

as follows. 

The operator �4 � 3 is a Koszul type differential, since in an arbitrary Darboux 

chart ω� ��"�u" . Introduce a ¤-grading by the degreein the odd variables ��" . The 

operator �4 increases the degree by one. (This grading is not preserved by changes of 

coordinates). From general theory it follows that the cohomology should be concentrated 

in the“maximal degree”. Indeed, suppose that dim � �  J|J  and consider the linear 

operator H on pseudodifferential forms defined as follows. 

For ^ �  ^
�, u, ��, �u�, 

£^
�, u, ��, �u� � ´ �[ [�¡� '�^
'��"'�u"


�, u, [¡���, [ �u�,�
k

 

— notice the similarity with the ∆-operator. The operator H is well defined on all forms 
of degree less than n in ��" and on forms of ‘top’ degree if they vanish at �u" = 0. (In 
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both cases there will be no problem with division by t.) For forms on which H makes 
sense one can check 
that 
 £�4 1 �4£�^ � ^  

In particular, if a form σ is �4-closed and of degree less than n in ��", then σ = �4£b. The same applies for a top degree form taking anon-zero value at �u" � 0. Hence 
the �4-cohomology “sits on” pseudo differential forms of degree n in ��" that do not 
depend on    �u": ^ � �
�, u� v��� … ���w. 

No non-zero form of this appearance can be cohomologous to zero: indeed, any �4-exact form, �4µ � 3µ, vanishes at �u" = 0.  
Hence, each �4 -cohomology class has a unique representative in a given Darboux 
coordinate system �" ,  u" . It is obtained by taking an arbitrary form from the class, 
extracting its component of degree n in ��" and evaluating at �u" = 0. By applying this to 
the class of ���, … , ���, we immediately arrive at the following Lemma. 
 
Lemma 1. Elements of the cohomology space ©� � £
�
��, 3�  are represented in 
Darboux coordinates as classes ^ � �
�, u�v��� … ���w 
where under a change of Darboux coordinates 

�" � �"U�", u"V, 
u" � u"U�" , u"V 

the class v��� … ���w transforms as follows: 

v��� … ���w � �~[}kk. ¶���′ … ���′·. 
Here }kk � +�

+�′′ is the even-even block of the Jacobi matrix � +
�,��
+
�′,�′� . 

                           . 
To better appreciate the statement, notice that 

                                                ��" � ��"′ +�-
+�-′ 1  �u" +�-

+�-′
 . 

 
Hence 

              v��� … ���w �  v���′ … ���′w. �~[ �+�-
+�-′� +terms containing  �u" .                                                                    

Passing to cohomology is equivalent to discarding these lower orders terms. 
 
What kind of geometrical object is this? 
 
Lemma 2. Objects of the form ̂ � �
�, u�v��� … ���w, in Darboux coordinates, with 
the transformation law given in Lemma 7.1 can be identified with half-densities on M. 
This is the crucial claim. There is a simple but fundamental fact from linear algebra 
behind Lemma 7.2, which will be proved in the next section. 
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The transformation law for v��� … ���w can be obtained from the formal “law” 

v��"w  �  v ��"w +�-
+�-′′ . Unfortunately, it does not define a geometric object, because it does 

not obey the co cycle condition. In a way, it is only a ‘virtual’ transformation law, which 
will make sense only if an extra structure is imposed on M. 

Now as we have the space ©�, let us check the differential �� on it. It is induced 
by the differential relation '� on �
��. Take an element ^ � �
�, u�v��� … ���w � ©�, 
take its representative ^ � �
�, u�v��� … ���w and consider ¥ �  �
�� such that�b 1 3b� �  ¥, forb� � �
�� . We will have v¥w � ��b  for the classv¥w in ©�. Notice that 

�b �  �u" +i
+�-  v��� … ���w and it will vanish at �u" � 0, therefore it is an ω-exact form, 

according to our previous analysis. Thus �� �  0 identically and ©�  �  ©� 
Consider �� on ©�  �  ©� �  £
�
��, 3� . By definition, ��  maps the class ^ � �
�, u�v��� … ���w, with a local representative ^ � �
�, u�v��� … ���w, to the class 

of ¥ �  �
��  such that �b 1  3b� �  0, �b�  1  3b� �  ¥, for some b� and b� . We 
may set  b�= �£�b , where £ is the homotopy operator defined above, and ¥ ��  � b� � ��£�b. Directly: 

£�b � £ ¸�u"  '�
'u"  v��� … ���w¹ � �
�1�"jiº '�

'u"  v��� … ���» w 
 and                                     ¥ � ��£�b

� �� �
�1�"¡�jiº '�
'u"  v��� … ��¼ …» ���w                                       

� ���( '
'�( �
�1�"jiº '�

'u"  v��� … ��¼ …» ���w 
                       + lower order terms in �� � � Ə

�i
Ə�-Ə�- v��� … ���w 1 lower order terms 

in �� . 
 
Hence in ©� we get: 

          ��^ �  ��
�
�, u�v��� … ���w� �  � Ə
�i

Ə�-Ə�- v��� … ���w  �  �∆^ , 

which is quite remarkable. What about the space ©3 and the differential �3 and so on? 
It is not hard to notice that the cohomology of the ∆ operator on half-densities on 

M is isomorphic to the de Rham cohomology of the underlying ordinary manifold �k (we 
shall say more about this later). Locally the cohomology vanishes except for constants: ^ �  ¾�J�[. v��� … ���w. Thus, �¿ �  0, and ©À  �  ©¿; the same continues for �À  � 0, ©Á �  ©À  �  ©¿, and so on. We arrive at the following theorem. 
  
Theorem 8. With the identification of the space ©�  �  £
�
��, 3� , 3 ) with half-
densities on M, the differential ��vanishes and the next differential �� coincides up to a 
sign with the canonical odd Laplacian. The spectral sequence 
 ©� ,  ��� degenerates at the 
term ©¿, which is the cohomology of the operator ∆. 
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