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Abstract. Symplectic connection we mean a torsion free cotimre which is either the
Levi-Civita connection of a Bochner-Kahler metrit arbitrary signature. On a given
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Curvature tensor of a symplectic connection
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1. Introduction

The goal of this paper is to provide a fast intithn to symplectic geometry. A
symplectic form is a closed nondegenerate 2-fornsydplectic manifold is a manifold
equipped with a symplectic form. Symplectic geomeésr the geometry of symplectic
manifolds. Symplectic manifolds are necessarilynedienensional and orientable, since
non-degeneracy says that the top exterior power syimplectic form is a volume form.
The closedness condition is a natural differerg@liation, which forces all symplectic
manifolds to being locally indistinguishable. Thist lof questions on symplectic forms
begins with those of existence and uniqueness agiven manifold. For specific
symplectic manifolds, one would like to understahd geometry and the topology of
special submanifolds, the dynamics of certain wefiglds or systems of differential
equations, the symmetries and extra structure, etc.

Two centuries ago, symplectic geometry providedaagliage for classical
mechanics. Through its recent huge developmerriuered an independent and rich
territory, as a central branch of differential gextim and topology. To mention just a few
key landmarks, one may say that symplectic geontstgan to take its modern shape
with the formulation of the Arnold conjectures het60’s and with the foundational work
of Weinstein in the 70’s. Gromov in the 80's gake subject a whole new set of tools:
pseudo-holomorphic curves. Gromov also first shoviledt important results from
complex Kahler geometry remain true in the moreegainsymplectic category and this
direction was continued rather dramatically in &@s in the work of Donaldson on the
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topology of symplectic manifolds and their sympiectubmanifolds, and in the work of
Taubes in the context of the Seiberg-Witten invasa

Symplectic geometry is significantly stimulated ioyportant interactions with
global analysis, mathematical physics, low-dimensictopology, dynamical systems,
algebraic geometry, integrable systems, microlaoalysis, partial differential equations,
representation theory, quantization, equivariaritooaology, geometric combinatorics,
etc.

As a curiosity note that two centuries ago the naymaplectic geometry did not
exist. If you consult a major English dictionarguyare likely to find that symplectic is
the name for a bone in a fish’'s head. Howeverwbed symplectic in mathematics was
coined by Weyl who substituted the Latin root imgdex by the corresponding Greek
root, in order to label the symplectic group. Wehilis avoided that this group connote
the complex numbers, and also spared us from mofusion that would have arisen,
had the name remained the former one in honor ef:Atbelian linear group.

2. Differential forms on manifolds
Given a smooth manifoltf, a smoothi-form ¢ onM is a real-valued function on the set
of all tangent vectors td such that

i. ® is linear on the tangent spakeV for eachxy € M.

ii. For any smooth vector field on M, the functionp(v) : M — R is smooth.

So for eaclx € M, the map
@ T, M > R

is an element of the dual spa@eM)*.

Wedge products and exterior derivatives are defisiedilarly as forR™. If
fiM->R
is a differentiable function, then we define theegwr derivative off to be thel-form
df with the property that foranye M,v € T, M, df,,(v) = v(f).

A local basis for the space df~forms onM can be described as before in terms
of any local coordinate chafk,,...,x,) onM, and it is possible to show that the
coordinate-based notions of wedge product andiekterivative are in fact independent
of the choice of local coordinates and so are defined.

More generally, suppose thdt, M, are smooth manifolds and th&atM; — M,
is a differentiable map. For amye M,, the differentiadF (also denoted*): T,,M; —
TryM, may be thought of as a vector-valuetbrm, because it is a linear map from
T M, to the vector spac®:,)M,. There is an analogous map in the opposite dnecti
for differential forms, called the pullback and desdF*. It is defined as follows.

Definition 1. If F: M; — M, is a differentiable map, then
i. If f: M2 — R is a differentiable function, therf: M; — R is the
function(F = f)(x) = (foF)(x).
ii. If ¢ is ap —form onM,, then ko is thep —form onM; defined as
follows:
If vy,...,v, € T,M; then

(F*o)(vy,...,vp) = @(F * (v1),..., F*(vp)).
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In terms of local coordinatés?,...,x™) onM;and(y?,...,y™) onM,, suppose that the
mapF is described by
yi=yix,...,x™),1<i<m.
Then the differentiadlF at each point € M; may be represented in this coordinate
system by the matrix
ay'
5]

Thedx/’s are forms orM;, thedy'’s are forms orM,, and the pullback map* acts on
thedy''s by

Fx (dy') = S, 2% dx),
The pullback map behaves as nicely as one could With respect to the various

operations on differential forms, as describedanfollowing theorem.

Theorem 1.LetF: M; —» M, be a differentiable map, and gty be differential forms on
M,. Then

i. F'(p+n) =Feo+ Fn.

i. F*(pAn) = F*oA F™n.

i. F*(dp) =d(F*).

3. Symplectic geometry

3.1 Symplectic vector fields
Throughout our discussior{R?",w,) will denote a symplectic vector space with
standard symplectic form

w, = dx Ady; + -+ + dx, Ady,.

Recall that a symplectic form is a closed non-degate 2-form.

Given a symplectic vector spa@é?", w), and a subspaié c V, one can define
the orthogonal complemelt® by setting® = {v € V: w(v,w) = 0, forallw € W}.

Since w is non-degenerate, the kernel bfV - V* by v - w(v,.)|[W will have
kernelW®. Hence we see that tdémW + dimW® = dimV. ClearlyW is a symplectic
subspace df when w|W is non-degenerate. This happens only witen W = {0} or
by the dimension formula above, wites W @ W®. WhenW = W®we say thatV is
Lagrangian and this happens when dirm.

Proposition 1. Every symplectic vector spa€g, w) is isomorphic toR?", w,).

Proof: Proof is by induction. We wish to construct a dgend basis of . By doing so we
can then define a linear map which throws the coostd standard basis onto the
standard basis @®?". Since linear maps preserve symplectic forms, Wieoa done.

To construct a standard basis, take an elemgnt 0 € V and choosev; such
that w(u,,v1) =1. One can easily do this as is non-degenerate and linear.

59



Md. Abu Hanif Sarkar and Md. Showkat Ali

If w(uy,v) = A, then usey; = % LetW = Span{u,,v,}. ClearlywW is non-degenerate
and so/ = W@®W® by above.

Now by induction, W® has a standard basis,, v, -+, u,, v,). The combination of the
two basis is the basis ¥f i.e.,w(u;,u;) = w(v;,v;) = 0 andw(u;, v;) = &;. n

3.2.Symplectic Darboux’'s Theorem

Theorem 2.Every symplectic fornw on Mis locally diffeomorphic to the standard form
w, ONR?",

Proof: Let peM be a point on the manifold and consider a locarich such that
@(p) = 0. Use this local chart to pushforward to a formw’on R?". We now need to
show thatw’ is diffeomorphic to standard formy, near 0. With the aid of the proposition
mentioned above we can chogs& such a way that’ = w,, at the origin.

Now define thew, using the stupid homotopy tricko, = (1 — t)w, + tw'.

Note thatw, = w, at 0 for allt. Sincew, is non-degenerate and non-degenerecy is an
open condition, there exists a neighborh@odf our original neighborhood such that

is non-degenerate for points h Since%a)t =w' —w it is closed orJ. Hence by

. , . d
Poincare’s lemma, there exists a one farnsuch thatde = 0’ — w, = Wt By

subtracting the constant fore{0) we may assume that= 0 at0. From the equation
o+ 1(X)w: = 0 we know that the corresponding family of vectalds vanish ab.
Using Moser’s argument, let; be the partially defined flow df;. However, in this case
¢; has0 as a fixed point for all. Hence by the general fixed point theorem, theigtea
neighborhoodV c U of 0 such that ¢.(x) for 0 <t <1 of pointsx € V remain
insideU. Henceyp, is defined on V and we hayg (w') = w,. [

4. Contact geometry
Recall that a contact manifold i2a + 1 dimensional manifold with a contact one form
a. A contact form is d-form such that

aldal - da

n Ltimes

is the volume form. The standard contact fornR3f** is
ay = x1dy; + x,dy, + -+ x,dy, + dz.
For eaclp € M, letD,, denote the kernel of the linear mapping T,M - R,
e, D, = {XeT,M |a,(X) = 0}.

Sincea is no where vanishing, the dimension R is 2n for allp € M. Let D =
Upem Dy, be the contact distribution. For egele M, complete a basis(;, X, -+, Xp}
of D into a basigX;,X,,-, Xp,, &} of T,M. Therefore we get that the volume form
applied to the basis gives
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0 i (ZA(d(Z)n(Xl,XZ, b ’XZTU f)

= a(§). (da)* (X1, Xz, -+, Xzn)

Sincea(X;) = 0. Hence(da)™ (X4, X5, -+, X5,) # 0 this means that the restrictiondif
to D is a non-degenerate 2-form, i.eq is locally a symplectic form ob.

Note that this means thAtis oriented by restriction ofla to it. It also means that the
normal toD is oriented as well. Sineg(¢) + 0 andu(é)da = 0, we may normalizé.
Hence we may assume (Ha=1

t(§)da = 0.
Furthermore, we have that this vector field sassfi
u(§[aA(da)"] = ((§a)(da)" — aA((§)a)(da)™ = (da)™

SinceaA(da)™: T(M) - Q?*(M) is an isomorphism, there is exactly one vectoid fie
which satisfies the above conditions. Hence we Ishosvn

Theorem 3.There exists a unique vector figdduch thatu(&)a = 1 and (§)da = 0.
This vector field is called the Reeb vector fieldsmmetimes the characteristic vector
field. ]

Odd symplectic geometry (more generally, odd Poisggometry) or the
geometry of odd brackets is the mathematical hdise Batalin—Vilkovisky method [3,
4, 5] in quantum field theory. Odd symplectic getnpgossesses features connecting it
with both classical (“even”) symplectic geometrydamRiemannian geometry. In
particular,odd Laplace operators arise naturally on an odd symplectic manifold.,, itke
second order differential operators whose princgahbol is the odd quadratic forms
corresponding to the odd bracket [6]. The key diffiee from the Riemannian case is
that the definition of an odd Laplace operatorgémeral, requires an extra piece of data
besides the “metric”, namely, a choice of a voluoren (even for a Laplacian acting on
functions). This is due to the fundamental fact hrman odd symplectic manifold there is
no invariant volume element [6]. However, as disred by one of the authors, there is
one isolated case where an odd Laplacian is defiaednically by the symplectic

Structure without any extra data [8, 9, 10], iarsoperator acting on densities of
weight 1/2 (half-densities or semi-densities). Tfast is not obvious, and there is no
simple explanation. A known proof is based on aralysis of the canonical
transformations of the odd bracket. In works [13,, 15] further phenomena related with
odd Laplacians on odd Poisson manifolds were desemy such as the existence of a
natural ‘master’ groupoid acting on volume fornis, drbits corresponding to Laplacian
on half-densities. The symplectic case is distisiged by the existence of a distinguished
orbit, which gives the “canonical” Operator.

In a very interesting recent paper [18] suggestedraological interpretation of
the canonical odd Laplace operator on half-demsséigeone of the higher differentials in a
certain natural spectral sequence associated kétbdd symplectic structure.
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In our paper we in particular discuss this intetggien and show that there is a simple but
fundamental underlying fact from linear algebra,ne@rning the Berezinian of a
canonical transformation for an odd symplectic kedclt is the formula

e = (det Joo)? D

for J in the odd symplectic supergroup, whgjgis the even-even block. Hence the
Berezinian is an entire rational function and, mwex, a complete square. There are
many geometric facts related with formula (1), vwhitan be found in the literature on

odd brackets and the BV formalism. As for examfé&, 18, 6, 7, 8]. We want to draw

attention to it as a simple identity for matricés.view of it, half-densities on an odd

symplectic manifold are ‘tensor’ objects, i.e.,nsforming according to a polynomial

representation. They can be seen as virtual diffeeforms on a Lagrangian surface.

When such a surface is fixed, they become (isonmorgh actual forms. We see that in

the space of differential forms on an ordinary rfadi there is a natural representation
of the super group of canonical transformationghef odd bracket. We give a clear
description of this action in classical terms. Theariance of the de Rham differential

under such a super group, which is absolutely pamst, is equivalent to the existence
of the canonical odd Laplacian, but expresseddiffarent language.

Theorem 4. (Darboux’s theorem for Contact Manifold$: Every contact forna onM

is locally diffeomorphic to the standard forg onR?™,

Proof [3]: Leta be a contact form oM. Considerm € M andV a neighborhood of

0 € T,M of the formV =V, x (—¢,¢), wherel, is a neighborhood @,,. The geodesic
coordinates give a diffeomorphism pfof V onto a neighborhood of p in M. For
eacht € (—¢,¢), the restriction ofla to p(V, X {t}) is a closed 2-form of maximum
rank. In particular, by Darboux’'s symplectic thearave have a change of coordinates at
p such thatla is a standard symplectic form, i.e.,

da |VO x {0} = del- X dy;
Without loss of generality assume that thiddss form atp € M.

Next we wish to show that in the neighborhoog.ada|p(V, X {t}) has the same form.
Leté = % be the Reeb flow in the neighborhoodofThené provides us with a partially
defined flow of diffeomorphismg; with ¢, = id. Again we have that

d
T (p;(da)) = ¢;(Leda)

= ¢; (1®)dda + d((&)da)) = ¢ (0) =0

and thereforeda does not depend on time. Hence;(dalp(V, X {t})) = da =
Y. dx; X dy; and therefore exists a neighborhdédc U which has a local coordinate
system such that
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da = del- X dy;

Notice that this gives us that

d(a—indyi)=0

and by the Poincare lemma, there exists a functiom U’'such that whenda is
restricted to the field of hyper planes we have

a—le-dyi =dz

or

a=indyi+dz

Sincea X (da)™ # 0, the functions are independent and hence make epdésired
coordinate system dit’. n

5. Symplectic connections and deformation quantizain

Symplectic connections are closely related to mdtiarmal deformation quantizations at
order 2. Flato, Lichnerowicz and Sternheimer inimetl deformation quantization in [9];

guantization of a classical system is a way to frass classical to quantum results and
they “suggest that quantization be understood defarmation of the structure of the
algebra of classical observables rather than acahdihange in the nature of the
observables.” In that respect, they introduce astaduct which is a formal deformation

of the algebraic structure of the space of smoatittions on a symplectic (or more
generally a Poisson) manifold; the associativecttine given by the usual product of
functions and the Lie structure given by the Paisdmacket are simultaneously
deformed.

Definition 2. A star product on a symplectic manif@li, ) is a bilinear map

Co(M) X CoM) = CRMDIV] (W) = %, vi= > v C ()

720

such that

(u*xv) *w = ux* (v *w)(when extende®[[v]] linearly);
Colu,v) = uwv, C(w,v) — Ci(v,u) = {u,v}

l*xu=ux*x1=u
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If all the C, are bidfferential operators; one speaks of &edéntial star product; if,
furthermore, eacld, is of order< r in each argument, one speaks of a natural star
product.

The link between symplectic connections and stadycts appear already in the
seminal paper [3] where the authors observe thheit is a flat symplectic connectién
on (M, w), one can generalize the classical formula for Mayat produck,, defined on
R?™ with a constant symplectic 2-form. Fedosov, proweate generally that given any
symplectic connectiold, one can construct a star product (in [8] it wegppsed that a
triple (M, w, V) be known as a Fedosov manifold):

Theorem 5. [1] Given a symplectic connectidhand a sequence = Y7, v¥w), of
closed 2 forms on a symplectic manif@d, w), one can build a star produgt, Q on it.
This is obtained by identifying the spa€®&(M)[[v]] with a sub algebra of the algebra of
sections of a bundle of associative algebras @alhe Weyl bundle) oM. The sub
algebra is the one of flat sections of the Weyldlenwhen this bundle is endowed with a
flat connection whose construction is determinedhsychoices made of the connection
onM and of the sequence of closed 2-formsvbrReciprocally a natural star product
determines a symplectic connection. This was filsserved by Lichnerowicz for a
restricted class of star products.

Theorem 6. [2] A natural star product at order 2 determinesirique symplectic
connection.

6. Recollection of the canonical odd Laplacian

In this section we review the construction of thil d.aplacian on half-densities due to
[8]. See also [9, 10, 11].

Let M be a super manifold endowed with an odd symplesttiecture, given by
an odd 2-formw. We shall refer to such super manifolds as oddpsgotic manifolds.
(We always skip the prefix ‘super-" unless requitedavoid confusion.) Later we shall
discuss the more general case of an odd Poissoifioldar brief definition of the odd
Laplacian acting on half-densities Whfollows.

Consider a cover d¥l by Darboux charts, in which the symplectic forketathe
canonical expressiom = dx!d¢;. Herex!, ¢ are canonically conjugate variables of
opposite parity. We assume that #are even; hence te odd. Let Dy, for any kind
of variablesgy, stand for the Berezin, volume element then halfsities onM locally

look Iikea=s(x,f)(D(x,E))1/2. (Notice that we skip questions related with
orientation.) We set
o%s 1/2

Ac:= EyrT (Dx8&)"", (2)

in Darboux coordinates, and call the canonical odd Laplacian on half-densities

The simplicity of formula (2) is very deceptive. é’fexpressiog%g—g was originally
suggested by Batalin and Vilkovisky, and is the dams ‘BV operator’. However, the
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trouble is that it is not well-defined on functiofatually, on any objects) unless we fix a
volume form, which should therefore enter the defin. The geometrically invariant
construction for functions, using a volume form,swirst given in [6].There is no
canonical volume form on an odd symplectic manifglehlike even symplectic
manifolds, enjoying the Liouville form). In partilew,the coordinate volume form(x, &)
for Darboux coordinates is not preserved by thedna&al) coordinate transformations
(see later). Hence the invariance of the operatgiven by (2) is a deep geometric fact.
As we showed in [11], on any odd Poisson, in paldic odd symplectic,
manifold there is a naturahaster groupoid of ‘changes of volume formg — e®p
satisfying the master equatitzjlr;,es/2 =0 (note 1/2 in the exponent; without it there
would be no groupoid). Heu, is the odd Laplacian on functions with respecthte
given volume fornp. It is defined by, f = div,x; wherex; is the Hamiltonian vector
field corresponding té. (See [6]; note also [14] for another approach.a Ilsimilar way
one can define the odd Laplacian on any densitiegagain, depending on a chosen
volume form. Now, half-densities are distinguishiedm densities of other weights
precisely by the fact that for them the correspogdidd Laplacian would depend only
on the orbit of a volume form with respect to tletian of the above groupoid [11]. It
turns out that on an odd symplectic manifold, alirfibux coordinate volume forms
belong to the same orbit of the master groupoid.caferegard it as a ‘preferred orbit’;
hence, in the absence of an invariant volume fah®m,odd Laplacian on half-densities
defined by an arbitrary Darboux coordinate volumis invariant. It is just (2).

7. Homological interpretation of the odd Laplacian
Now we are going to approaghon half-densities from a very different angle.

Let 2(M) be the space of all pseudo differential formsipni.e., functions
onIITM. (As usual]l stands for the parity reversion function on vedpaces, vector
bundles, etc.) In coordinates such functions haeddrms = s(x, ¢, dx, d¢), where the
differentials of coordinates are commuting variabtd parity opposite to that of the
respective coordinate. In our cabe are odd andé; are even. We do not assume that
functions s(x, &, dx,dé¢) are polynomial ind¢; . Of course they are (Grassmann)
polynomial inix;, because these variables are odd.

Consider the odd symplectic form Sincew? = 0, multiplication byw can be
considered as a differential. Define the operator B + », whered is the de Rham
differential. Sincedw = 0, it follows thatD? = 0 and we have a ‘double
complexX'(Q(M),D = w + d).

The reader should bear in mind that since= d6 for some evenl-forn®,
which is true globally, we haveD =e %de’ and the multiplication by the
inhomogeneous differential forra® sets an isomorphism between the complexes
(Q(M),D)and (2(M),d) . It follows thatH(Q(M),D) is isomorphic téi(2(M),d),
which is just the de Rham cohomology of the undeglynanifoldM,. (Note that the
isomorphisme? preserves only parity, but nat-grading, even if we restrict it to
differential forms orM, i.e., polynomials inlx, d¢.)

The operator D = + @ was introduced in [18]. The idea was to consither t
spectral sequence f@2(M), D) regarded as a double complex. We shall follow it
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form best suiting our purposes and which is sligtifferent from [18]. (In particular, we
do not assume grading in the space of forms.)
Although there is no Z-grading present, single oulde, one can still develop
the machinery of spectral sequences as follows.
We define linear relations (see [15]) @n(M):
d-:={(a,B) € 2(M) x Q(M): wa = B},
0 ={(a,B) € QM) x QM) : a4, ... ,a. € QM) : wa =0,
da +wa; =0,..,da,_, + wa,_4 =0,da,_; + wa, = B}
for allr = 1,2,3,... We also sét_; = {(a,0)}. We have subspaces Kar, Def d,
(the domain of definition), Ind, (the indeterminacy), and 1@, in 2(M), and by a
direct check
Ima, cKero,,

Def a9, = Ker 0,_1,

Ind 0, = Imad,_;.
That is, we have a sequence of differential retetion (M), defining a spectral sequence
(Er, dr) where
._ Kerd,_, _ Defd,
Er = o, ~ Tndo,
and the homomorphismdr : Er — Er is induced by, in the obvious way. (In fact,
differential relations like this is the shortestywa defining spectral sequences, see [13])
ClearlyE. = Q(M). The relatiord. is simply the graph of the linear map

do: QM) -» Q(M),d-a = wa. What isE;?

Theorem 7.The spacé, can be naturally identified with the space of fthsities on
M.

A proof consists of two independent steps. Firstfing the cohomology of dO
using algebra. Second, we identify the result witteometrical object. The first part goes
as follows.

The operatotl, = w is a Koszul type differential, since in an arbigr@arboux
chart o= dx'd¢;. Introduce az-grading by the degreein the odd variablas. The
operatord, increases the degree by one. (This grading is redepved by changes of
coordinates). From general theory it follows the tohomology should be concentrated
in the"maximal degree”. Indeed, suppose that 8im= n|n and consider the linear
operatoH on pseudodifferential forms defined as follows.

Foro = o(x,§,dx,dé§),

1 2

%0
— n-1 . -1
HO'(X, El dxl df) : L dt t adxladfi (‘xl E!t dxlt df):

— notice the similarity with theé--operator. The operatét is well defined on all forms
of degree less than n dhx' and on forms of ‘top’ degree if they vanishddt = 0. (In
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both cases there will be no problem with divisigntl) For forms on which H makes
sense one can check
that

(Hd, +d,H)o =0

In particular, if a formo isd,-closed and of degree less thain dx!, thenc =
d,Ha. The same applies for a top degree form takingnaeoo value atié; = 0. Hence
thed,-cohomology “sits on” pseudo differential forms @égreen in dx! that do not
depend on

dé;:o =s(x, &) [dx! ...dx™].

No non-zero form of this appearance can be cohagoo® to zero: indeed, any
d,-exact formd,r = wt, vanishes afé; =0
Hence, eachl,-cohomology class has a unique representative givan Darboux
coordinate system?, &;. It is obtained by taking an arbitrary form fromet class,

extracting its component of degreén dx! and evaluating até; = 0. By applying this to
the class ofix?, ..., dx™, we immediately arrive at the following Lemma.

Lemma 1. Elements of the cohomology spaEg= H(2(M),w) are represented in
Darboux coordinates as classes

o =s(x,&)[dx!..dx"]
where under a change of Darboux coordinates
xb=xi(x &),
& =&(xL&)
the clasgdx! ... dx™] transforms as follows:
[dx!...dx™] = det]yo. [dx1 "]
B(x $)

Herejy, = : is the even-even block of the Jacobi matrla( G

To better appreciate the statement, notice that
" 9xt
dxt = dx‘ -+ dgﬂ af

Hence

[dx!...dx™] = [dx" ..dx"]. det( ) +terms containingdé; .
Passing to cohomology is equivalent to dlscardmag;e lower orders terms.

What kind of geometrical object is this?
Lemma 2. Objects of the forne = s(x, &)[dx? ...dx™], in Darboux coordinates, with
the transformation law given in Lemnidel can be identified with half-densities th

This is the crucial claim. There is a simple buhdamental fact from linear algebra
behind Lemma 7.2, which will be proved in the neattion.

67



Md. Abu Hanif Sarkar and Md. Showkat Ali

The transformation law fddx?! ...dx™] can be obtained from the formal “law”
[dx;] = [dx; ]a . Unfortunately, it does not define a geometrifgot) because it does
xt

not obey the co cycle condition. In a way, it idyom ‘virtual’ transformation law, which
will make sense only if an extra structure is imggbenM.

Now as we have the spakg let us check the differentidl, on it. It is induced
by the differential relatiod, on{)(M). Take an elememnt = s(x, &)[dx! ...dx"] € E;,
take its representative = s(x, &)[dx! ...dx™] and considep € 2(M) such thada +
a)a1 B, foroc1 € N(M) . We will have[ﬁ] = d,a for the clagg’] in E;. Notice that

= d¢; E[dx ..dx™] and it will vanish atl§; = 0, therefore it is am-exact form,

according to our previous analysis. Thlys= 0 identically ande, = E;

Considerd, onE, = E; = H(Q(M),w) . By definition, d, maps the class
o = s(x,&)[dx* ...dx™], with a local representative= s(x, &)[dx! ...dx™], to the class
of f € (M) such thada + wa; = 0,da; + wa, = B, for somex; anda,. We
may seta;= —Hda , whereH is the homotopy operator defined above, gné d a; =
—dHda. Directly:

ds
Hda = H(dfi 5 lax’ ) 2( 1)l+s [dxT . dx"]
i
and
B = —dHda
. d —
- -1+ _~~ 1 1 n
dZ( DIt [dx It dx™]
= —de—Z( )l+s X dx"]
+ lower order termsdr = — aji;f' [dx' ...dx"] + lower order terms
indx .

Hence inE; we get:
dyo = dy(s(x,&)[dxt ...dx™]) = la{ [dx!...dx"] = —Ao,

which is quite remarkable. What about the sgégand the differentiadl3 and so on?

It is not hard to notice that the cohomology of sAheperator on half-densities on
M is isomorphic to the de Rham cohomology of theenlythg ordinary manifoldv, (we
shall say more about this later). Locally the coblmgy vanishes except for constants:
o = const.[dx'..dx™]. Thus,d; = 0, andE, = E5; the same continues fdy, =
0,Es = E, = E;, and so on. We arrive at the following theorem.

Theorem 8. With the identification of the spadg = H(R(M),w), w) with half-
densities orM, the differentiald, vanishes and the next differentigl coincides up to a
sign with the canonical odd Laplacian. The spectegjuencé E,, d,.) degenerates at the
termkE;, which is the cohomology of the operafor
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