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Abstract. The main result of the paper [4] was that only a 3-petal graph with even 
number of petals is planar. In this paper some variants of �-petal graphs are defined and 
the conditions of planarity of these graphs are studied. 
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1. Introduction 
The A petal graph�  is a simple connected (possibly infinite) graph with maximum 
degree three, minimum degree two, and such that the set of vertices of degree three 
induces a 2-regular graph �∆ (possibly disconnected)and the set of vertices of degree two 
induces a totally disconnected graph � [2]. If �∆  is disconnected, then each of its 
components is a cycle. The vertex set of � is given by � � �� � ��, where �� � ����, � �
0,1, … ,2� � 1 is the set of vertices of degree three, and �� � ����, � � 0,1, … , � � 1 is the 
set of vertices of degree two. For basic definitions and results on petal graphs, please 
refer [4]. 

In section 2 we define partial � -petal graph and present the necessary and 
sufficient condition for its planarity. In section 3 we define Petersen petal graph and 
present some results on this graph. 

A petal graph � of size   with petal sequence �!��is said to be a �-petal graph 
denoted� �  !",#  if every petal in �  is of size �  and$�!� , !�%�
 � 2, � � 0,1,2, … , � �
1with !&%� � !'.In a �-petal graph the petal size� is always odd.  

It can be easily verified that a �-petal graph � �  !",# is planar when ���
 �  1 
for any value of  as well as � . The graph !(  obtained from the Petersen graph by 
removing one of the vertices is a 3-petal graph !),*. The petal graph !( is a subdivision 
of +*,* and hence not a planar graph. In fact, when � , 3, a petal graph is not necessarily 
a planar graph. The number of petals � in a 3-petal graph decides the planarity of the 
graph. 
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Theorem 1. A �-petal graph � �  !",# (� - 1
 is planar if and only if (i) � � 3; (ii). �  
is an even integer. 
 
Proof: Let � � !",*  be a3 -petal graph with petal sequence �!��, � � 0,1,2, … , � � 1 , 
where � is even. The cycle �∆ divides the plane into two regions, the inner and the outer 
region. It is possible to draw the 

&
� alternate petals !', !�, … , !&.� of � in the inner region 

so that they do not cross the remaining 
&
�  petals !�, !*, … , !&.�  that are in the outer 

region. 
If either � - 3  or � is odd, then it is possible to represent �  as graph 

homeomorphic to +*,*  by partitioning the vertex set ����
  into three sets ��
���
 , 

��
���
and ��

*��
 such that each of ��
���
and ��

���
 have three non-adjacent vertices 

and ��
*��
has the remaining vertices. For complete proof, refer [4]. □ 

 
2. Partial p-petal graphs 
A petal graph � is said to be a partial petal graph if �∆ is disconnected. The partial petal 
graph �  is called a partial � -petal graph if every finite petal in �  is of size �  and 
$�!�, !�%�
 �  2 for any petal !�  in any component �∆/ .Two infinite petals !�  and !�  of 
!0�∆1 � �∆/2 form an infinite petal pair if their base points lie on the bases of two 
successive finite petals in both �∆1and �∆/. 
 
Theorem 2. Let � be a partial �-petal graph with � petals. Let  �∆3 , �∆4 , … , �∆5 be the 
components of � with ��, ��, … , �	 finite petals respectively. Let �67  denote the number 
of infinite petals in !��∆1 � �∆/
. The graph �  is planar if and only if the following 
conditions are satisfied: 

i. � � 3; 
ii. � is even; 
iii. The number of finite petals in �∆1 on a path joining two consecutive infinite 

petals !� 8 !��∆1 � �∆/
and !� 8 !��∆1 � �∆9
, (possibly �∆/ � �∆9 ) is either 

zero or odd, when there exists at least one component, except �∆1, connecting 
�∆/ and �∆9. 

Proof: Let � be a partial �-petal graph as given. From Theorem 1, any �-petal graph is 
planar if and only if � � 3 and � is an even integer. Hence it is sufficient to prove that � 
is planar if and only if condition (iii) is satisfied. Let us assume that condition (iii) holds 
true. Consider the infinite petals !� 8 !��∆1 � �∆/
and !� 8 !��∆1 � �∆9
. Let �6

� be the 

number of finite petals in a path on �∆1 joining !�and !�. From condition (iii), if �6
� : 0, 

then �6
� is odd. Now, draw in the inner region of �∆1, the finite petal to whose base edge 

the base point of !�  is incident, together with the ;&1
3

� <  alternate petals. Draw the 

remaining =&1
3

� >petals in the outer region of �∆1. This representation of �∆1 is obviously 

planar. Since �∆1 is an arbitrary component of �, we conclude that � is planar. 
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Conversely, let the partial � -petal graph �  be planar. Therefore, each component 
�∆1 , ? � 1,2, … , @ is also planar. From given conditions, � � 3 and each �� is even. The 
following cases arise: 

Case 1: There is only one pair of infinite petals in �∆1 : Let !� � �A���AB  and !� �
�C���CB be the infinite petal pair between �∆1  and �∆/  where �A and �C  are in �∆1 . Let 
�∆1

B  and �∆/
B  be the components obtained by identifying �� and �� to get a new vertex ���. 

The paths �A����C and �AB����CB are finite petals in �∆1
B  and �∆/

B  respectively.  Clearly, 
each of these components is planar. Hence, the number of finite petals other than �A����C 
in �∆1

B  is odd. Similarly, the number of finite petals other than �AB����CB in �∆/
B is also odd. 

Case 2: There are more than one pair of infinite petals in �∆1: Let !� , !� 8 !��∆/ � �∆1
 
with centers �� and ��. Let !A, !C 8 !��∆1 � �∆9
 with centers �Aand �C. Identify the pairs 

of vertices ��&��, and �A&�C to get ��� and �AC respectively. 

Case 2a:  There exists no component of �∆except �∆1, connecting G∆E and G∆F: Let the 

number of finite petals on the path between the consecutive infinite petals !� and !� be 
�6

�. If �6
� is odd, then it is possible to draw the finite petal that has the base point of !� in 

the inner region of �∆1 together with the ;&1
3

� < alternate petals. Draw the remaining =&1
3

� > 
petals in the outer region of �∆1; If �6

� is even, then �∆/ and that part of � connected to 
�∆/ can be drawn in the inner region of �∆G to preserve the planarity of �. 

Case 2b:  There exists at least one component of �∆ except �∆1, connecting G∆E and G∆F: 

In this case it is not possible to draw �∆/ (or �∆9) and that part of � connected to �∆/ (or 

�∆9) in the inner region of �∆1 as described in case 2a to preserve the planarity of �, thus 

ruling out the possibility of �6
� being even.□ 

 
3. Petersen petal graphs 
Coxeter [1] introduced a family of graphs generalizing the Petersen graph in 1950. 
Watkins [5] denoted these graphs as �� , ?
 and named them the generalized Petersen 
graphs. A generalized Petersen graph!� , ?
  with parameters   and ? , 1 H ? H  �
1, ? H  "

�, is a graph on 2  vertices ��, 0 H � H 1 and I�, 0 H � H  � 1, with 3  edges 

����J�, I�I�J6 and ��I�, where all calculations have to be performed modulo  . These 
edges are called ring edges, chordal edges and spokes respectively. The graph !�5,2
 is 
the Petersen graph. 

A petal graph � is called a ���, ��, … , �	
-petal graph if �� petals of � are of size 
�� , � � 1,2, … @ , such that ∑ �� � �	� , and is denoted by � � !",�#3,#4,…,#5
 . A 
���, ��, … , �	
 -petal graph �  is said to be a Petersen petal graph, denoted � �
!(",�#3,#4,…,#5
 if � is isomorphic to a graph that can be obtained from the generalized 
Petersen graph !� , ?
 either by subdivision of some of its edges or deletion of some of 
its vertices. For basic definitions and the following results, refer [3]. 
The following graphs are Petersen petal graphs: 

a) !),*, the 3-petal graph with 3 petals; 
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b) !)7,*, the 3-petal graph with 3$ petals, $ , 2; 
c) !)7,�*,)
, the �3, 9
-petal graph with 3$ petals, $ , 3 
d) Any planar 3-petal graph. 

The graphs specified in result a) is not planar; b) is not planar when $  is odd; d) is 
obviously planar. Theorem 3 will help to identify which of the graphs specified in the 
result c) are planar.We define the following: 

Two petals of a petal graph are said to be intersecting petals if their bases have 
some common edges in �∆. A ���, ��, … , �	
-petal graph, where �� N �� N O N �	 , is 
said to be overlapping if the base of a petal of size �� lies on the base of a petal of size 
��%�. Hence, we have ��.� �  �� P 2. A overlapping ���, ��, … , �	
-petal graph is said to 
be a neighborhood ���, ��, … , �	
-petal graph if none of the petals in the graph are 
intersecting. A overlapping ���, ��, … , �	
-petal graph is denoted as a �	-petal graph if 
�� � &

	 for all �. 
Any neighborhood ���, ��, … , �	
-petal graph is obviously planar.  
 
Theorem 3. A �	-petal graph � is planar if and only if � is even. 
Proof:When � is even, each �� is also even and it is possible to draw one set of alternate 
petals in the inner region and the other set in the outer region of �∆. 

When �  is odd, we can prove that the �	 -petal graph is homeomorphic to +*,* . 
Partition the vertex set ����
 into three sets ��

���
, ��
���
 and ��

*��
such that ��
���
 �

��', ��	, ���&.	
�  and ��
���
 � ��#5 , ��&.�, ��	.��  and ��

*��
 has the remaining 
vertices. We can represent � as a graph homeomorphic to +*,*using the following steps: 

• Take the cycle �'�#5��	��&.����&.	
��	.� containing the vertices of �����
 �
�����
; 

• Connect the pairs of vertices ��', ��&.�
, 0�#5 , ���&.	
2, ���	, ��	.�
; 
• Subdivide the edges ��', ��	.�
  with the vertices ��, ��, … , ��	.� ; 0��	, �#52 

with the vertices ��	%�, ��	%�, … , �#5.� ; 0�#5 , ���&.	
2  with the vertices 
�#5%�, �#5%�, … , ���&.	
.�  and 0���&.	
, ��&.�2  with the vertices 
���&.	
, ���&.	
%�, … , ��&.�. 

• Connect all adjacent vertices in this representation so that adjacency is preserved. 

�is homeomorphic to +*,* and hence the result is proved. □ 
 
Theorem 4. Let � be a non-neighborhood, non-overlapping ���, ��, … , �	
-petal graph. 
Let ��

B be the number of petals of size �� on the base of a petal of size �	in �∆. Then � is 
planar if and only if  

i. �� � 3; 
ii. ��

B  is odd; 
iii. @ � 2 and 
iv. ��is even. 

Proof: Let G be a non-neighborhood, non-overlapping ���, ��, … , �	
-petal graph that 
satisfies the above conditions. Then it is possible to draw the petal graph such that one set 
of alternating petals of size �	 (that is ��) are in the inner region of �∆ and the remaining 
set of petals in the outer region. It is also possible to draw the petals of size �� in the 
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regions bounded by �∆  and petals of size �	  alternately such that no petals are 
intersecting. 

Theorem 1 demands conditions (i) and (iv). If conditions (ii) and (iv) do not hold, 
then we can prove that the petal graph is homeomorphic to +*,*.We assume that @ is at 
least three. Then, there is at least one more set of petals of size �� such that �� N �� N
�	. Let !�

B, !�
B , … be the sequence of ��-petals. Let �� be the base point of the ��-petal !�

B. 
Partition the vertex set ����
 of the base points of � on �∆ in to three subsets ��

���
, 
��

���
 and ��
*��
such that ��

���
 � ���, �#4%�, ��#4�, ��
���
 � ��*, �#4%�, ��#4%�� and 

��
*��
has the remaining vertices. We can represent �  as a graph homeomorphic to 

+*,*using the following steps: 
• Take the cycle ���*�#4%��#4%���#4��#4%� containing the vertices of �����
 �

��
���
; 

• Connect the pairs of vertices 0��, �#4%�2, 0�#4%�, ��#4%�2, 0��#4 , �*2; 
• Subdivide the edge 0��#4 , �*2 with the vertices on a path from �*#4to ��&.#4%*. 
• Plot all the other vertices and connect all the adjacent vertices in this 

representation so that adjacency is preserved. 
�is homeomorphic to +*,* and hence @ must be two. 
Now we prove that if ��

B  is not odd, then� cannot be planar. 
Let !�

BB, !�
BB, … be the sequence of 3-petals. Let �� be the base point of the 3-petal !�

BB. 
When ��

B  is even, then it is possible to partition the vertex set ����
 of the base points of 
�  on �∆  in to three subsets ��

���
 , ��
���
  and ��

*��
such that ��
���
 � ���, �Q, �R�, 

��
���
 � ��*, �S, �T� and ��

*��
has the remaining vertices. We can represent �  as a 
graph homeomorphic to +*,*using the following steps: 

• Take the cycle ���*�Q�S�R�T containing the vertices of ��
���
 � ��

���
; 
• Connect the pairs of vertices ���, �S
, ��Q, �T
, ��R, �*
; 
• Subdivide the edge ��R, �*
 with the vertices on a path from �R%#5to ��&.#5%*. 
• Plot all the other vertices and connect all the adjacent vertices in this 

representation so that adjacency is preserved. 

�is homeomorphic to +*,* and hence the result is proved. □ 
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