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Abstract. An initial value investigation of time-dependent flow of an incompressible 
conducting viscoelastic (Rivlin-Ericksen) fluid with small particles, in the presence of 
transverse magnetic field, through a channel with one wall is at rest and other oscillating 
with a with mean velocity, has been made. We have employed the separation of variable 
method and arrived at significant results. A comparison with the previous studies is 
incorporated along with the investigation of hydrodynamic and hydromagnetic flows. 
Effects of dust particles and other parameters appeared in the mathematical model of 
fluid flow are look into and presented with graphs.  
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1. Introduction 
Multiphase fluid system has numerous application in various natural processes; blood 
flow in arteries, dust in gas cooling systems, movement of inert solid particles in 
atmosphere, sand or other suspended particle in sea beaches are the most common 
examples of multiphase fluid systems. With the use of Legendra transfor- mation, 
Siddabasappa et. al. [1] solved a coupled partial differential equations arises in the flow 
of dusty viscous fluid. it is observed that as the number density of the dust particle 
increases the velocity of the dust phase de- creases. Flow of an Unsteady Conducting 
Dusty Fluid between a Non-torsional Oscillating Plate has been by Mahesha et. al. [2] in 
an anholonomic coordinate system. They found the analytical solution for the  velocity 
distribution of fluid and dust for different pressure gradients; also concluded that the 
effect of strength of magnetic field on the velocity at fixed time  is significant and 
substantially retarding influence on the fluid and dust both. A system, fluids with 
spherical dust particle embedded by two infinite parallel plates, rotating with a constant 
angular velocity in the presence of transverse magnetic field under the influence of 
periodic impulsive pressure gradient was the purview of research of Ghosh and Ghosh 
[3]. Along with many major findings they found that for all values of rotation, the 
magnitude of drag is increased by both the magnetic field and the particles while the 
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magnitude of the lateral stress is decreased by the magnetic field and increased by the 
particles.  In the subsequent study of flow of Oldroyed-B fluid through a channel in 
presence of magnetic field under the influence of impulsive sine pressure Ghosh and 
Sana [3] observed that the skin-friction on the lower plate is maximum for all values of 
the magnetic field M at the sine impulse peaks; however, the skin-friction on the upper 
plate at small values of M are negative. Moreover, the increasing values of the magnetic 
strength diminish the negative skin-friction on the upper plate. The above mentioned 
papers have the research objective of astrophysics.  
 Keeping view of the industrial application, we adopted the present problem for 
investigation. Vajravelu and Sastry [1] have investigated the effects of free convection 
within the boundary layer, in which they considered the free stream oscillation over the 
flat plate. In the subsequent study, Vajravelu [2] introduced a method of periodic solution 
for the flow of Newtonian fluid, in the presence of transverse magnetic field, bounded by 
two parallel plates. Mukhopadhya and Chaudhary [3] provides a brief note on the 
fluctuating flow of Oldroyd type viscoelastic fluid past an infinite flat plate. Ray et al [4] 
investigated the viscoelastic Oldroyd fluid flow problem by using the separation of 
variable method. Assuming the periodic pressure gradient, Bhatnagar [5] presented the 
solution for the flow of viscoelastic fluid (Rivlin-Ericksen constitutive laws) with the use 
of perturbation method. In the present paper we are solving the time dependent 
viscoelastic fluid (Rivlin-Ericksen model) flow governing equation along with the 
constitutive relation by introducing the Vajravelu [3] 's method of solution.   
 
2. Basic Equations 
The constitutive equation of an incompressible  viscoelastic fluid based on Rivlin-
Ericksen model[6] is  
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•where p  is the hydrostatic pressure and sφ  are polynomial functions of the traces of the 
various tensors occurring in the representations, matrices 1A  and 2A  are defined by 

ijjiij vvA ,,
)1( +=                             (2) 

ippjjpippijp
ij

ij vAvAAv
t

A
A ,

)1(
,

)1()1(
,

)1(
)2( +++

∂

∂
=              (3) 

pv  being velocity vector. Neglecting squares and products of 2A , we have 
2
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Here, 21 ,φφ   and 3φ  are co-efficient of viscosity, viscoelasticity and cross viscosity 
respectively. 

                                                           
 



Sushil Kumar Ghosh 

122 
 

In the foregoing analysis we shall discuss the oscillatory motion of a viscoelastic 
dusty fluid between two plates. The either one is at rest at 0.0=y  and the other is in 
simple harmonic motion defined by a well-known equation. 
The unsteady flow in dy ≤≤0  is governed by the coupled equations 
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The equations of continuity and momentum equations are 
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3. Formulation and Solutions 
We are considering here that the upper plates are oscillatory in motion with a constant 
mean velocity dU . It is assumed that the x -direction is parallel to the plate and on the 
lower plate and y normal to the plate. The magnetic field is applied along the transverse 
direction of the flow and perpendicular to the plates. Here induced magnetic field is 
neglected because the magnetic Reynolds number is small. As the Lorentz force acts 
along the x --axis, therefore the constitutive and the governing equation may be written as 
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The unsteady flow with boundary and initial conditions 
 

0=u              at    0=y                                                                                           (10)            
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We choose the unsteady upper plate velocity is oscillatory and its mathematical form is as 
follows 
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Our aim is to find a periodic solution of the following form 
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We now introduce the following non-dimensional quantities 
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                     T =0,    for non- dusty fluid; 
                          =1,      for dusty fluids;              
 
The solution of the differential eqn. may be written as follows 
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The shear stress  of the viscoelastic fluid can be represented as     
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In the case of a periodic solution that shear stress may takes the following form 
'

1)1( FiKωτ +=  
Here,  to assume Newtonian fluid we introduce ,0.1=L  0.0=T , 0.01 =T , 0.0=K  
and in case of Rivlin-Erickson fluid 0.0≠K  and others are same as former. 
 
4. Discussion 
The problem considered for investigation can be reduced to Rivlin-Erickson and 
Newtonian fluid if we introduce the value of T to 1 and 0 respectively. In the subsequent 
analysis we shall compare the present results with previous studies and also with different 
fluids appeared in this investigation. Fig. 1 is the representation of the magnitude of 
unsteady velocity gradient with ξ  for various couple of parameter values. Graphs 
corresponding to A and B are meant for Newtonian fluid obtained by Vejravalue [2] for 
M=0.0 and 0.2 respectively at the instant t=0.0.  Rivlin-Erickson (K=0.8) fluid shows that 
for higher values ofω , velocity gradient is constant at every point on the channel 
thickness (graphs C and D).  On contrary the effect of magnetic field on the dusty fluid 
adopted in the present investigation is not significant.  
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The parameter values taken in the graphs A ( 0.0=M and B ( 0.2=M  ) are 0.1=L  , 

0.1=T  , 6.01 =T , 8.0=K , 0.6=ω , 0.0=t  and for  C ( 8.0=K )  and D 
( 1.0=K ) are 5.0=L ,  0.1=T , 6.01 =T , 0.6,0.0,0.2 === ωtM .  A comparison 
between B and C as well as C and D put forward an important idea that the Stokes 
resistance 0k  and viscoelastic parameter K both increase the magnitude of the velocity 
gradient with their decreasing values. And this character is expected because loss of K. E. 
decrease with the decreasing values of 0k  and K . The distribution of skin friction 
amplitude with frequency parameter ω  for various M  has been represented in fig.2. 
Figure shows that the Newtonian fluid has nearly the same frictional forces on the plate 

0.0=y  when 15>ω  at 0.30=t  graphs  A ( 0.0=M ) and B ( 0.10=M  ) together 
with a rectilinear configuration.  In contrast, graphs C ( 0.0=M ) and D ( 0.10=M ) are 
nonlinear and have a fluctuation in 30 << ω ; but these two take the same configuration 
while ω  increase steadily as Newtonian case.  It is to be mentioned that the viscoelastic 
parameter introduces some resistance and that creates more frictional force on 0.0=y  
and that is because of orientation and elastic response of fluid particle structure. The 
Hartmann numbers create a resistance to the flow and varies linearly in magnitude with  

              

Fig. 1: Profile of the magnitude of 
fluctuating velocity gradient 

Fig. 2: Profile of the magnitude of 
fluctuating velocity gradient 

Fig. 3: Shear stress distribution 
on the lower plate 

Fig. 4: Shear stress distribution of 
the dusty fluid on the lower plate 
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In a comparison  between B and D 5.0=L , 0.1=T , 0.11 =T , 8.0=K , 0.0=t , 
0.10=M  we may conclude that for the values of 5>M  shear stress increase rapidly 

with M  while L  decrease in a considerable magnitude. 
       The profiles of the phase advance | τφ | with ω  for both Newtonian and Rivlin-
Erickson fluid have been presented in fig.5.  In the presence of magnetic field, the phase 
angles gradually increase to 040  and then asymptotically proceed towards 042  with the 
increasingω . In contrast, for the Rivlin-Erickson fluid, phase angles fluctuate within 

5.20 << ω  and then took the similar shape as for Newtonian fluid; but magnitude 
increases considerably.  It is interesting to note that an external force which can perturb 
the upper plate reduce the phase angle as well as wall shear stress for the Rivlin-Erickson 
fluids.   

                  
                  
On the other hand, Fig. 6 ( 0.10,8.0,0.1 === tKT ) that shows the phase angle for 
dusty fluids put forward the idea of asymptotic convergence of | τφ | to 085  which has 
resemblance with the Newtonian fluid in configurations. The particular values assumed in 
the formation of graphs are A  
( 0.2=M ), B ( 0.10=M ) when 5.0,0.1 1 == TL ) and C ( 5.0,5.0 1 == TL ), D 
( 0.1,5.0 1 == TL ) when 0.10=M .  Therefore, the study of generalized dusty fluid 
imply that the dust particle creates a linear change of shear stress as well as phase angle 
to Newtonian fluids; but for small ω  it is more prominent in non dusty  viscoelastic 
fluids. 
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