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Abstract. A fuzzy graph (f-graph) is a pair Go,(u) whereo is a fuzzy subset of a set S
andy is a fuzzy relation ow. A fuzzy graph H : 1, v) is called a partial fuzzy subgraph
of G: (o, ) if T (u) < o(u) for every u andv (u, v)< u(u, v) for everyuand v . In
particular we call a partial fuzzy subgraph H,:|) a fuzzy subgraph of G o ) if T

(u) =o(u) for every uin T * andv (u, v) =(u, v) for every arc (u, v) in*. A
connected f-graph G o ) is a fuzzy tree(f-tree) if it has a fuzzy spamngsubgraph F :
(o, v), which is a tree, where for all arcs (x, y) noH there exists a path from xtoy in F
whose strength is more thafx, y). A path P of length n is a sequence of ditnhodes
Uo, Uy, ..., 4 such thatu(u-;, u) > 0, i =1, 2, ..., n and the degree of membersiiia
weakest arc is defined as its strength.olfw, and re 3, then P is called a cycle and a
cycle P is called a fuzzy cycle(f-cycle) if it caims more than one weakest arc . The
strength of connectedness between two nodes x @deafined as the maximum of the
strengths of all paths between x and y and is @eoy CONN(X, ¥). An x —y path P is
called a strongest x — y path if its strength eg@DONN;(X, y). An f-graph G : @, p) is
connected if for every x,y ino ,CONN(X, y) > 0. In this paper, we offer a survey of
selected recent results on fuzzy graphs.
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1. Introduction
It is quite well known that graphs are simply madef relations. A graph is a convenient
way of representing information involving relatibiys between objects. The objects are
represented by vertices and relations by edgesn\Wisze is vagueness in the description
of the objects or in its relationships or in baths natural that we need to design a 'Fuzzy
Graph Model'.

We know that a graph [6] is a symmetric binarnatieh on a honempty set V.
Similarly, a fuzzy graph is a symmetric binary fuazlation on a fuzzy subset. The
concept of fuzzy sets and fuzzy relations was thioed by L.A.Zadeh in 1965 [1] and
further studied in [2]. It was Rosenfeld [5] whonsadered fuzzy relations on fuzzy sets
and developed the theory of fuzzy graphs in 19He oncepts of fuzzy trees, blocks,
bridges and cut nodes in fuzzy graph has beenestudi [5]. During the same time
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R.T.Yeh and S.Y. Bang [7] have also introducedawsiconnectedness concepts in fuzzy
graphs.

Yeh and Bang's [7] approach for the study of fugegphs were motivated by its
applicability to pattern classification and clugtgranalysis. They worked more with the
fuzzy matrix of a fuzzy graph, introduced concdjits vertex connectivity2(G) , edge
connectivityA(G) and established the fuzzy analogue of Whitendyésrtem. They also
proved that for any three real numbardy ¢ such thal0 < a b <, there exists a
fuzzy graphG with Q(G) = a, A(G) = banddG) =c. Techniques of fuzzy clustering
analysis can also be found in [7].

After the pioneering work of .Rosenfeld [5 ] andflR'eh and S.Y. Bang [7] in
1975, where some basic fuzzy graph theoretic cdacapd applications have been
indicated, several authors have been finding deegseits, and fuzzy analogues of many
other graph theoretic concepts. This include yuzees [7,28], fuzzy line graphs[13],
autmorphism of fuzzy graphs [9], fuzzy interval gha [14,15], cycles and cocycles of
fuzzy graphs [18] and also in [11,12,17,20,49].

The concepts of connectedness and acyclicity lewel® introduced for fuzzy
graphs [7] and several fuzzy tree definitions whate consistent with cut - level
representations were given in [7]. Introducing ttedion of fuzzy chordal graphs, W.
L.Craine [16] has obtained the fuzzy analogue efdharacterizations of interval graphs.
The notion of fuzzy graphs is generalized to fuaggergraphs also [3].

Bhattacharya [10] has extended the definitionsaafetricity and center based
on the metric in fuzzy graphs defined in [5], ahd inequality(G) < d(G) <2r(G) also
has been proved.

A. Somasundaram and S. Somasundaram [24] and FAaSmdaram [25]
introduced the concepts of domination and total idation in fuzzy graphs and
determined the domination number for several ctasdefuzzy graphs and obtained
bounds for the same. A Somasundaram [26] studieeraleoperations on fuzzy graphs
such as union, join, composition, cartesian prodamtl obtained their domination
parameters. Nair and Cheng [27] discussed the ptsed clique and fuzzy cliques in
fuzzy graphs. Various properties of fuzzy cliqued a characterization of fuzzy cliques
were also presented. Moderson and Yao [28] analgliféstent connectedness levels in
fuzzy graphs. The structural property of fuzzyténgraphs provided a tool that allowed
for the solution of operations research problemghé same paper the authors examined
the properties of various types of fuzzy cyclegzfutrees, fuzzy bridges, and fuzzy cut
nodes in fuzzy graphs. Nagoor Gani and Basheer AH&% examined the properties of
various types of degree, order and size of fuzaplgs and compared the relationship
between degree, order and size of fuzzy graphs.

Bhutani and Rosenfeld [30] defined fuzzy end ndddszzy graphs and showed
that no node can be both a cut node and a fuzzynedd. The authors studied some
properties of fuzzy end nodes in fuzzy trees, dratacterized fuzzy cycles that have no
cut nodes or fuzzy end nodes. They introduced treapt of strong arcs and strong
paths in fuzzy graphs [31] and proved that a fuaigge is strong, but a strong arc need
not be a fuzzy bridge. Also the authors obtainetiaracterization of fuzzy trees in terms
of strong paths and proved some properties of gtanos in fuzzy trees. They introduced
[32] the concepts of closure, cover and basis &udiesd these properties in fuzzy trees.
In a connected fuzzy graph G, there is a stronf, @atd hence a geodesic between any
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two nodes u, and v of G. The length of a geodestovéen u and v is called the g-
distance dg(u, v). Using this concept of distaricés proved that the center of a fuzzy
tree consists of either a single node or two ngaiesd by a strong arc. A node is called
a median of (u, v,w) if it lies on geodesics betweeand v, v and w and w and u . Also it
is proved that in a fuzzy tree, every triple of esdhas a unique median, but the converse
is not true. Also in [33], two simple dissimilaritpeasures between fuzzy subsets of a
finite set S are defined.

Bhutani and Batton [34] studied the operationsuaz§ graphs under which M-
Strong property is preserved. Bhutani et al. [35tussed degrees of fuzzy end nodes
such as weak fuzzy end node, partial fuzzy end aodefull fuzzy end node and further
studied some properties of fuzzy end nodes and/faaznodes. Mordeson and Nair [36]
defined arc disjoint fuzzy graphs and studied sofrtaeir properties.

Aymeric Perchant and Isabella Bloch [37] introducedjeneric definition of
fuzzy morphism between graphs that includes clakgijcaph related definitions as
subcases such as graph and subgraph isomorphigmeBéal [38] presented a taxonomy
of fuzzy graphs that treats fuzziness in vertexstexice, edge existence, edge
connectivity and edge weight. Within that frame kdney formulated some standard
graph theoretic problems for fuzzy graphs usinquifiad approach distinguished by its
uniform application of guiding principles such he tonstruction of memberships grades
via the ranking of fuzzy numbers, the preservatbmembership grade normalization,
and the collapsing of fuzzy sets of graphs int@jugraphs. Bershtein and Dziouba [39]
introduced the bipartite degree of fuzzy graphs andgested an algorithm for the
maximal bipartite part construction. Assia Alaodd] extended the concepts of internal
stability, external stability, external dominatiand some of their combinations to fuzzy
graphs.

The concept of strong arc in maximum spanning t{dd$ and its applications in
cluster analysis and neural networks [42,60] wedtelied by Sameena and Sunitha.
Geodetic distance (g-distance) in fuzzy treesnsgtibegree of a node and g-self centered
fuzzy graphs were also studied by the same authd#2, 43]. Applications of fuzzy
graphs to database theory, to problem concernmgrhup structure and also to chemical
structures are found in literature [3,51].

2. Theory of fuzzy graphs — definitions and basicancepts
For basic concepts in fuzzy sets we refer [45,462]7and for concepts in graph theory
we refer [6,48, 50].

A fuzzy graph (f-graph) [5] is a pair G o,(1) whereo is a fuzzy subset of a set
S andu is a fuzzy relation ow. We assume that S is finite and nonemptig reflexive
and symmetric [5]. In all the examples is chosen suitably. Also, we denote the
underlying graph by G : (0", u_) whereo” = {u 0S :o(u) > 0} andyw = {(u, v) 0 SxS
: w(u, v) > 0}. A fuzzy graph H :1( ) is called a partial fuzzy subgraph of Go; () if T
(u) £ o(u) for every u andv (u, v)< p(u, v) for every u and v [4]. In particular we call
partial fuzzy subgraph H 1,(v) a fuzzy subgraph of G o(p ) if 1 (u) =o(u) for every
uin t*andu (u, v) =u(u, v) for every arc (u, v) in*. Now a fuzzy subgraph H 1
L) spans the fuzzy graph Ga,(u) if T = 0. A connected f-graph G o ) is a fuzzy
tree(f-tree) if it has a fuzzy spanning subgraph(&, v), which is a tree, where for all
arcs (x, y) not in F there exists a path from ¥ to F whose strength is more thax, y)
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[5]. Note that here F is a tree which containshallies of G and hence is a spanning tree
of G. Also note that F is the unique maximum spagrniee(MST) of G [21]. A path P of
length n is a sequence of distinct nodgswy ....... u such thatu(u-1, ) >0, i =1, 2,
...... , h and the degree of membership of a wealtess defined as its strength. sy,

and re 3, then P is called a cycle and a cycle P is dallefuzzy cycle(f-cycle) if it
contains more than one weakest arc [4]. The sthenfitconnectedness between two
nodes x and y is defined as the maximum of thengths of all paths between x and y
and is denoted by CONNG(X, y). An x — y path Pafled a strongest x — y path if its
strength equals CONNG(X, y) [5]. An f-graph Go; (1) is connected if for every x,y in
o ,CONNG(x, y) > 0. Through out this, we assume tRat connected. An arc of a f-
graph is called strong if its weight is at leastgasat as the connectedness of its end
nodes when it is deleted and an x-y path P is dalestrong path if P contains only
strong arcs [1]. An arc is called an f-bridge offGts removal reduces the strength of
connectedness between some pair of nodes in Gifg]larly an f-cutnode w is a node in
G whose removal from G reduces the strength of ectieainess between some pair of
nodes other than w. A complete fuzzy graph (CF@ni$-graph G :d, 1) such thaiu(x,

y) = o(x) Oo(y) for all x and y. The complement [22] of a fuzgsaphG : (g;u) is the

fuzzy graphG : (7, 1) whereg =g and i (u,v) =a(u) Co(v) - (u,v)for all u,
vinV. A fuzzy graptG is self complementary i6 =G.

3. Types of arcs in a fuzzy graph

Depending on the CONNG(x, y) of an arc (X, y) ifuazy graph G Sunil Mathew and
Sunitha [44] have defined the following three diffiet types of arcs. Note that
CONNG-(x,y)(X, y) is the strength of connectednestveen x and y in the fuzzy graph
obtained from G by deleting the arc (x, y).

Definition 3.1. An arc (x, y) in G is called - strong ifu(x, y) > CONNG-(x,y)(X, ¥)
Definition 3. 2. An arc (X, y) in G is calleq3 - strong ifu(x, y) = CONNG-(X,y)(X, ¥).
Definition 3.3. An arc (x, y) in G is called &- arc if u(x, y) < CONNG-(X,y)(X, y).

Remark 3.4.A strong arc is eithet- strong orS - strong by definition 3.1 and definition
3.2 respectively.

Definition 3.5. A J- arc (x, y) is called & - arc if u(x, y) > u(u, v) where (u, v) is a
weakest arc of G.

Definition 3.6. A path in an f-graph G :4 ) is called ana-strong path if all its arcs
are a - strong and is called & - strong path if all its arcs arg - strong.

Example 3.7.Let G : @, ) be witho™ = {u, v,w, x} andp(u, v) = 0.2 =u(x, u), u(v,w) =

1 =p(w, X), w(v, X) = 0.3. Here, (v,w) and (w, x) asestrong arcs, (u, v) and (X, u) $e
strong arcs and (v, x) is&arc. Also (v, x) is & - arc sincau(V, x) > u(u, v), where (u,
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V) is a weakest arc of G. Here P1 : x,w, v izastrong x — v path whereas P2 : x, u, v is
a [ - strong x — v path.

Note that in an f-graph G, the types of arcs cabeatetermined by simply examining
the arc weights; for, the membership value &faac can exceed membership values of
-strong and3- strong arcs. Also membership value d@3-astrong arc can exceed that of
ana - strong arc [44].

4. Cut nodes, bridges, bonds and cut bonds in fuzzyaphs

The notion of strength of connectedness plays rfiignt role in the structure of fuzzy
graphs. When a fuzzy bridge (fuzzy cutnode) [O#éins 4.1 and 4.2] is removed from a
fuzzy graph, the strength of connectedness betserme pair of nodes is reduced rather
than a disconnection as in the crisp case.

The notions of bridge and cutnode are extendéalziry graphs as follows [5,21,44,53].

Definition 4.1. An arc (u ,v) is a fuzzy bridge of G g;(x) if the deletion of (u, v)
reduces the strength of connectedness betweenponad nodes.

Equivalently,(u, v)is a fuzzy bridge if and only if there are nodesysuch that
(u, v) is an arc of every strongest ypath.

Definition 4.2. A node is a fuzzy cutnode of Gg, () if removal of it reduces the
strength of connectedness between some other foaddes.

Equivalently,w is a fuzzy cutnode if and only if there existv distinct fromw
such thatw is on every strongest— vpath.

Note that weakest arcs of cycles cannot be fuzidgbes [Theorem 4.4] and it
follows that if G is a fuzzy graph such th@t* is a cycle, then all arcs except the weakest
are fuzzy bridges. Moreover we have the followtimgorem.

Theorem 4.3.[21] Let G : (g, ) be a fuzzy graph and let (u, v) be a fuzzy briaigé.
Then Conag (u, v) = pu(u, v).

Theorem 4.4.[5] The following statements are equivalent for an @rcv) of a fuzzy

graph G : (g, p).
(1) (u,v) is afuzzy bridge
(2) (u,v) is not a weakest arc of any cycle in G.

Theorem 4.5.[21] Let G : (g, u) be a fuzzy graph such that its underlying cdsagph
G*is acycle. Then, a node is a fuzzy cutnode of and only if itis a common node of
two fuzzy bridges.

Theorem 4.6.[21] Let G : (g, u) be a fuzzy graph and let w be a common nodg of
least two fuzzy bridges, then w is a fuzzy cutnode.

Theorem 4.7.[21] If G : (g, p) is a fuzzy graph witly = S and |S| = p, then G has at
most p — 1 fuzzy bridges.

Lemma 4.8.[8] If G is a complete fuzzy graph, then CONNG(u, uj V).
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Lemma 4.9.[8] A complete fuzzy graph has no fuzzy cutnodes.

Theorem 4.10[21] If G is a fuzzy tree then G is not complete.
Theorem 4.11[23] A complete fuzzy graph has at most one fuzzy bridge

Proposition 4.12.[31] Every fuzzy bridge is strong, but a strong arc neetbe a fuzzy
bridge.

Proposition 4.13.[31] An arc (x, y) of a fuzzy graph G is strong if amdyaf u(X, y) =
CONNG(X, ).

It follows from Lemma 4.8 and Proposition 4.13 thktarcs of a complete fuzzy
graph are strong.

Proposition 4.14.[31] Let G be connected and let x, y be any two nod€s iFhen there
exists a strong path from x to y.

Corollary 4.15.[31] If G is a nontrivial connected fuzzy graph thenrgvede of G has
at least one strong neighbor.

Proposition 4.16.[30] A cutnode has at least two strong neighbors.

In fuzzy graphs, it is observed that reduction tersggth of connectedness
between pair of nodes on removal of fuzzy bridgegetids on the particular choice of
nodes. This idea has been explored in terms of$and cut bonds [44,53,61, 63].

Definition 4.17. [53] An arc (x, y) is called a fuzzy bond if CONNG—(Xuy v) <
CONNG(u, v) for some pair of nodes u and v witteast one of them different from x
andy.

Proposition 4.18.[61] At least one of the end nodes of an f-bond isarrfede.

Remark 4.19.1n graphs, a minimal cut is a bond. Hence all bedgare bonds. But in
fuzzy graphs this is not true. For example, a cetepfuzzy graph can contain a fuzzy
bridge and this fuzzy bridge cannot be a fuzzy imek it has no fuzzy cut nodes..

Definition 4.20.[63] An arc (u, v) in a fuzzy graph is called a fuzziylmnd(f cut- bond)
if CONNG—(u,v)(X, y) < CONNG(), y) for some pairrajdes x, y in G such thatzxuz
v Zy.

Remark 4.21.All fuzzy cut-bonds are f-bonds and hence are fhadges. An arc is a
fuzzy bridge if and only if it ig-strong [44]. Thus both f-bonds and f- cut-bonds ar
special type ofr-strong arcs.

5. Fuzzy trees

Rosenfeld [5] has proved that if there exists aqueistrongest path joining any two
nodes inG thenG is a fuzzy tree and the converse does not holdin&sisp graph, it is
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not obvious from the drawing that a fuzzy graph fsizzy tree. The study of fuzzy trees
is explored in [5,7,21,28,44].

Definition 5.1. [21,41] A maximum spanning tree of a connected fuzzy g@aplio; u)
is a fuzzy spanning subgraph ;¥ ) such that its underlying crisp graph T* is &4,
and for which > v(u,v) is maximum.
u#v

Analogous to minimum spanning tree algorithm fasggraphs, an algorithm to
obtain a maximum spanning tree of a connected fgeagh is given in [10 ]. Note that
the strength of the uniquev path inT gives the strength of connectedness betwesamd
v for all u,v.

Theorem 5.2.[23] A node w is a fuzzy cutnode of a connected fuaphdb : (©; u) if
and only if w is an internal node of every maxingpanning tree of G.

Theorem 5.3[21] Let G : (o, #) be a connected fuzzy graph and let T be a mawimu
spanning tree of G. Then end nodes of T are nayfaztnodes.

Corollary 5.4. [21] Every fuzzy graph has at least two nodes which reve fuzzy
cutnodes of G.

Theorem 5.5.[23] An arc (u, v) is a fuzzy bridge of a connectedyfuzaph G : @, ) if
and only if (u, v) is in every maximum spanning néG.

Theorem 5.6.[41] An arc in a fuzzy graph G is strong if and onlit i§ an arc of at least
one maximum spanning tree of G.

Definition 5.7. [5] A connected f-graph G o 1) is a fuzzy tree(f-tree) if it has a fuzzy
spanning subgraph F & V) which is a tree, where for all arcs (X, y) notHrthere exists
a path from x to y in F whose strength is more th@any). Thus, for all arcs (X, y) which
are not in Fu(x, y) < CONN (X, y).

Note that here F is a tree which contains all naiféS and hence is a spanning
tree of G. If G is not connected and if the compisare fuzzy trees then, G is called a
fuzzy forest. Also note that
CONNg(X, y) = CONN: (%, y) if G is a fuzzy tree and F is the unique M& G.

Theorem 5.8.[21] A connected fuzzy graph is a fuzzy tree if and ibrifyhas a unique
maximum spanning tree.

Proposition 5.9.[5] If there is at most one strongest path betweentanynodes of G,
then G is a fuzzy forest.

Theorem 5.10[3] Let G : (g, 1) be a cycle. Then G ) is a fuzzy cycle if and
only if G : (g, ) is not a fuzzy tree.
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Theorem 5.11.[23] Let G : (g, u) be a connected fuzzy graph with no fuzzy cy€lesn
G is a fuzzy tree.

Proposition 5.12.[5] If G is a fuzzy tree, then the arcs of F are jhst fuzzy bridges of
G.

Theorem 5.13.[23] If G is a fuzzy tree then the removal of any flmiyge reduces the
strength of connectedness between its end nodeslaodetween some other pair of
nodes.

It follows from Theorem 5.13 that all fuzzy bridgas a fuzzy tree are fuzzy
bonds.

Theorem 5.14.[21] A connected fuzzy graph Gg; () is a fuzzy tree if and only if the
following are equivalent.

(1) (u, v) is a fuzzy bridge.

(2) CONNs(u, V) =u(u, v).

Theorem 5.15[21] If G is a fuzzy tree then internal nodes of F #wefuzzy cutnodes of
G.

Corollary 5.16. [21] A fuzzy cutnode of a fuzzy tree is the common obdeleast two
fuzzy bridges.

Proposition 5.17.[31] G is a fuzzy tree if and only if there is a unigt®ng path in G
between any two nodes of G.

Proposition 5.18.[31] In a fuzzy tree, a strong path between any two siodend v is a
path of maximum strength between u and v.

Definition 5.19. [30]A node z is called a fuzzy end node( f- end ndd®) .dg, u) if it
has exactly one strong neighbor in G.

The type of arcs and nodes in a fuzzy tree araestud [21,30,44,53,62] . The
following are the results based on this.
Theorem 5.20[30] Any non trivial fuzzy tree has at least two fuzay modes.

Theorem 5.21.[30] A cycle C is a fuzzy tree if and only if every nofi€ is either a
cutnode or a fuzzy end node.

Theorem 5.22[53] Let G : (g, 1) be an f-tree with d*] = 3. An arc (X, y) in G is an f-
bond if and only if (X, y) is an arc of the uniquaximum spanning tree F g V) of G.

Theorem 5.23.[53] Let G be an f-graph. Then G is an f-tree if andydhlkevery strong
arc of G is an f-bond of G.
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Theorem 5.24.[62] Let T be a tree. An arc (u, v) of T is a cutbonahidl only if u and v
are cutnodes of G.

Theorem 5.25.[62] Let G : (g, ) be an f-tree. An arc (u, v) of G is a fuzzy ouatbif
and only if u and v are f-cutnodes of G.

Corollary 5.26. [62] Let G : (g, u) be an f-tree withd*| = n and F its unique MST.
Then the number of fuzzy cutbonds of G is (n — Lwhere | is the number of pendant
arcs of F.

Theorem 5.27.[30] A cycle C is a fuzzy tree if and only if every nofl€ is either a
fuzzy cut node or a fuzzy end node.

6. Blocks in fuzzy graphs

The concept of block was introduced by A. Rosenfg]dand an excellent study on this
can be found in [23,61,63]. Even then extractiomlotks from a fuzzy graph is still an
open problem.

Definition 6.1. [5] A fuzzy graph is said to be a block (also called-rseparable) if it is
connected and has no fuzzy cutnodes.

Note that in a graph, a block cannot have bridges.in fuzzy graphs, a block
may have fuzzy bridges.

Theorem 6.2.[23] The following statements are equivalent for a ceotegk fuzzy graph
G: (g w.

1. Gis a block.

2. Any two nodes u and v such that (u, v) is notzayf bridge are joined by two internally
disjoint strongest paths.

3. For every three distinct nodes of G, there idrarggest path joining any two of them
not containing the third.

Definition 6.3.[60] A cycle C is called a strong cycle if all arcs o&f& strong.

Definition 6.4. [61] The strength of a cycle C in an f-graph is defiasdhe weight of a
weakest arc in C.

In graphs, any two nodes of a block belong to decgnd conversely [50]. In the
following theorem it is shown that, when we replageles by strong cycles in fuzzy
graphs, this condition is only necessary.

Theorem 6.5.[63] If G : (g, w) is a block then the following conditions hold asue
equivalent.

(i) Any two nodes of G lie on a common strong cycle

(i) Each node and a strong arc of G lie on a comratsong cycle.

(iii) Any two strong arcs of G lie on a common sfgaycle.

(iv) For any two given nodes and a strong arc ith@re exists a strong path joining the
nodes containing the arc.
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(v) For every three distinct nodes of G there egistng paths joining any two of them
containing the third.

(vi) For every three nodes of G there exist strpaths joining any two of them which
does not contain the third.

Definition 6.6. [61] A cycle C in an f-graph G is called a strongesbst cycle(SSC) if C
is the union of two strongest strong u — v pathsdeery pair of nodes u and v in C
except when (u, v) is an f-bridge of G in C.

Definition 6.7. [30] A cycle is called a locamin cycle if every nodehef cycle lies on a
weakest arc.

Theorem 6.8.[61] Let G : (0, w) be an f-graph such that G* is a cycle. Then the
following are equivalent.

() G is a block.

(i) G is an SSC.

(i) G is a locamin cycle.

Theorem 6.9.[61] If any two nodes of an f-graph G lie on common 38€h G is a
block.

Theorem 6.10.[23] If G is a block with atleast one fuzzy bridgertlremoval of any
fuzzy bridge reduces the strength of connectedimdgdetween its end nodes.

Definition 6.11.[30] A cycle is called multimin if it has more than ameakest arc.
Note that a fuzzy cycle is nothing but a multinyide.

Theorem 6.12[30] A cycle is multimin if and only if it is not a ayztree.
Theorem 6.13[30] A cycle is multimin if and only if it has no fuznd nodes.
Theorem 6.14[30] A multmin cycle is locamin if and only if it has foazy cutnodes.

Theorem 6.15 [61]If G is a block,then no f-bridge of G is an f-boofdG and the
converse is not true.

7. Connectivity parameters in fuzzy graphs

Yeh and Bang [7] introduced two connectivity partaneof a fuzzy graph namely vertex
connectivity Q) and edge connectivity\]. Both these concepts are related with sets
disconnecting the fuzzy graph. But in fuzzy grapbisly the reduction of strength of
connectedness between some pair of nodes is réléaml Mathew and Sunitha [53,61]
have generalized these definitions using the eotscof strong arcs.

Definition 7.1. [7] A disconnection of a fuzzy graph Gg; («) is a vertex set D whose

removal results in a disconnected or a single vegeph. The weight of D is defined to
be 2, p {min u(v, u) |u(v, u) z0}.
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Definition 7.2. [7] The vertex connectivity of a fuzzy graph G, dentied (G), is
defined to be the minimum weight of a disconnedtidb.

Definition 7.3.[7] Let G be a fuzzy graph and{W-} be a partition of its vertex set. The
set of edges joining vertices of &hd vertices of ¥is called a cut- set of G, denoted by
(V1, Vo) relative to the partition {Y, V,}. The weight of the cut-set (\W,) is defined ag

u (u, v) where aNV; and VV,.

Definition 7.4.[7] Let G be a fuzzy graph. The edge connectivity déidted byl (G) is
defined to be the minimum weight of cut-sets of G.

The relations between vertex connectivity, edgeneactivity and minimum
degree is given as follows.

Theorem7.5 [7] Let G be a connected f-graph, thenG) = 4 (G) £ AG).

Theorem 7.6.[7] For any three real numbers a, b and ¢ such that & <b <c, there
exists an f-graph G witk? (G) = a,4 (G) = b andd (G) = c.

Sunil Mathew and M S Sunitha introduced [53] twevr@dnnectivity parameters
in a fuzzy graph namely, fuzzy node connectivity &nd fuzzy arc connectivitx/) and
the fuzzy analogue of Whitney’'s theorem is obtained

Definition 7.7. [53] Let G : (0, 1) be a connected f-graph. A set of nodes X7y ...,
Vit is said to be a fuzzy node cut (FNC) if eithH@ONNs_x(X, y) < CONN(X, y) for
some pair of nodes x,4/ ¢* such that both x, ¥v, fori=1, 2, .....mor G — X is trivial.

If there arem nodes in X, then X is called anrFNC. Clearly a 1-FNC is a
singleton set X = {u}, where u is an f-cutnode.

In [31], it is shown that there exists at least etteng arc incident on every node
of a nontrivial connected fuzzy graph. Motivated this, following definitions can be
found in [53,61].

Definition 7.8. [53] Let X be a fuzzy node cut in G. The strong weifjit, @lenoted by
s(X), is defined as(X) = Y es u(x,y), whereu(x, y) is the minimum of the weights of
strong arcs incident on x.

Definition 7.9. [53] The fuzzy node connectivity of a connected fuzgyhg@ is defined
as the minimum strong weight of fuzzy node cut ¢ifis denoted by(G).

Definition 7.10.[53] Let G : @, 1) be an f-graph. A set of strong arcs E 3,{e, ....}
with e = (u;, ¥), i = 1, 2, ..., nis said to be a fuzzy arc cbAC) if CONN_g(X, y) <
CONNs(x, y) for some pair of nodes x,/ye ~ with at least one of x and y is different
from bothyand vy, i=1, 2, ....n. or G - E is disconnected.

Definition 7.11. [53] The strong weight of a fuzzy arc cut E is definedSa(E) =
ZeiEEH(ei)'
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Definition 7.12. [53] The fuzzy arc connectivity (G) of a connected fuzzy graph G is
defined as the minimum strong weight of fuzzy ats of G.

In a tree with at least three nodegG) =k’ (G) = 1. This is due to the fact that
all arcs in a tree are strong with strength onesandee have the fuzzy analogue,

Theorem 7.13[53] Inan f-tree G : 6, 1), k(G)=k'(G) = % y: x ydo here
(x, y) is a strong arc in G.

Bhutani and Rosenfeld[31] introduced the concefftstmng arcs and strong
paths in fuzzy graphs. These concepts motivatezhrekers to reformulate some of the
concepts into fuzzy graph theory more effectiveébameena and Sunitha [41] have
defined the strong degree ds(v) of a node in amty The concept of strong degree is
relevant in fuzzy graph applications especiallylyems related with flows as the flow
through arcs, which are not strong, can be redicethirough a different strongest path.
Bhutani and Rosenfeld [31] have shown the exist@rice strong path between any two
nodes of a fuzzy graph. Thus there exists at @aststrong arc incident at each node of a
nontrivial connected f-graph.

Definition 7.14.[60] Let G : (g, u) be a fuzzy graph. The strong degree of a node v i
defined as the sum of membership values of alhgtawcs incident at v and it is denoted
by d(v). Also, the minimum strong degree of GB§G) = Min {d(Vv)| v/ o* } and
maximum strong degree of G4s(G) = Max {d(v), v // c*}.

Theorem 7.15[53] (Fuzzy analogue of Whitney’s Theorem)n a connected f-graph G
Lo u), k(G) < k'(G) < 65(6).

7.1. Menger’'s Theorem for fuzzy graphs
The concept of the strongest path plays a cruolalin fuzzy graph theory. In classical
graph theory, all paths in a graph are strongest wistrength value of one. In [ 64],
Sunil Mathew and M S Sunitha, introduced Mengelhieotem for fuzzy graphs and
discuss the concepts of strength reducing sets-amanected fuzzy graphs.

In graph theory, a u - v separating set S of ndaslescollection of nodes in G
whose removal disconnects the graph G and u amdondp to different components of G
- S[50]. Similarly a u - v separating set of arcs is dedinSince the reduction in strength
is more important and frequent in graphs and nétsyahe concept of strength reducing
sets of nodes and arcs are defined as follows.

Definition 7.16. [64] Let u and v be any two nodes in a fuzzy graph & g)such that
the arc (u, v) is not strong. A set’B0* of nodes is said to be a u - v strength reducing
set of nodes if CONW. s (u, v) < CONN (u, v) where G - S is the fuzzy subgraph of G
obtained by removing all nodes in S.

Definition 7.17.[64] A set of arcs E/u* is said to be a u - v strength reducing set of

arcs if CONNg . g (U, v) < CONNg (u, v), where G - E is the fuzzy subgraph of G
obtained by removing all arcs in E.
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Definition 7.18.[64] A u - v strength reducing set of nodes (arcs) witlements is said
to be a minimum u - v strength reducing set of addecs) if there exist no u - v strength
reducing set of nodes (arcs) with less than n etdsné\ minimum u - v strength reducing
set of nodes is denoted by(\g v) and a minimum u - v strength reducing sedros is
denoted by Eu, v).

Theorem 7.19.[64] Let G : (g, 1) be a connected fuzzy graph and u, v any two niodes
G such that (u, v) is not strong. Then a set Soder in G is a u - v strength reducing set
if and only if every strongest path from u to vtadms at least one node of S.

Generalization of the node version of Menger’s tegois given in the following
theorem.

Theorem 7.20.[64] Let G : (g, u) be a fuzzy graph. For any two nodes u4/w@* such
that (u, v) is not strong, the maximum number tdrimally disjoint strongest u - v paths
in G is equal to the number of nodes in a minimal/strength reducing set.

Generalization of the arc version of Menger’s tleeoris given in the following
theorem.

Theorem 7.21[64] Let G : (g, 1) be a connected fuzzy graph and let & &*. Then the
maximum number of arc disjoint strongest u - v pathG is equal to the number of arcs
in a minimum (with respect to the number of arcsyistrength reducing set.

In [64] the concepts of t-connected fuzzy graphd &arc connected fuzzy
graphs are discussed and characterized usingridmgest paths.

8. Distance in fuzzy graphs

Now in fuzzy graph there are at least four metaiggiven below.
p-distance [5]

2. g-distance [32]

3. d-distance [3]

4. ss-distance [60].

=

Definition 8.1.[5] They- distance ¢(u, v) is the smallegt-length of any u - v path,
: 1

where the y - length of a path P : iy, ........... , Wis ((P) = Z—
im H(U,,U)

If n=0, then define/(P)=0.

Definition 8.2.[3] Letu be a fuzzy relation on S . Then tide- distance is defined as
ds (X, y) =1 - CONN (X, y).

Definition 8.3.[32] A strong path P from x to y is an x - y geodddtiedre is no shorter
strong path from x to y and the length of an xgepdesic is defined as the geodesic
distance from x to y denoted hydy).

The existence of a strongest x — y path and agtron y path between any two
nodes in a connected fuzzy graph has been proMede. it is established that there is a
strongest strong path (ss-path) between any twesioda connected fuzzy graph [60].
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An x — y path P in a fuzzy graph G is called arsgest strong path (ss - path) if P is a
strongest x — y path as well as strong x — y paimy connected fuzzy graph G has at
least one maximum spanning tree T. Now for any soglg/ in G, an x —y path P in T is
strongest and contains only strong arcs.

Theorem 8.4.[60] Let X, y be any two nodes in a connected fuzzyhg@&pThen there
exists a strongest strong path from x to y.

Note that every strong arc (x, y) is a strongestyxpath and hence we have
Theorem 8.5.[60] An arc (X, y) is strongest strong if and onlyfifisistrong.

Definition 8.6. [60] For any two vertices u , v ,the ss-distangéudv) in a fuzzy graph
G: (o, p) is the reciprocal of the connectivity betweemd &.

1
d.(u,v)= CONN; (u,v)
0, if u=v

if uzv

Note that if G :q, p) is disconnected and two vertices (say) u and G @fre not
connected by a path, then COjN, v) = 0 and g(u, v) = by the definition.

The following concepts are defined for all typedistances in a fuzzy graph G.

The eccentricitye(v) of a nodev is the distance to a node farthest from v. Tthus
r(G) is the minimum eccentricity of the nodes and tremeterd(G) is the maximum
eccentricity. A node is a central node #(v) = r(G) and(C(G)) = H : (7, V), the fuzzy
subgraph of G : (g, #) induced by the central nodes®fis called the center db. A

connected fuzzy graph is self centeredCi{fG)) is isomorphic toG.

Theorem 8.7.[19] A connected fuzzy graph Ga; () is u - self centered if CONiu, V)

= (u, v) forallu, vinV and r(G) = Lwhere,u(u, V) is least.
u,v

Corollary 8.8. [19] A complete fuzzy graph ig - self centered and(G) = i

o(u)

where o(u) is least.

As a consequence, there exists self centered fgaph of radius c for each

real
numberc > 0. Also, for any two real numbegs bsuch thaD < a< b <2a there exists
a fuzzy graplG such thatr (G) =aandd (G) = b.

An obvious necessary condition for a fuzzy grapdhbe u - self centered is that
each node is eccentric. The construction of a furaphG such thatC(G)) =H is
carried out in [19].
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Theorem 8.9.[19] Let H = (J/,,u/) be a fuzzy graph. Then there exist a fuzzy g@aph

(o, ) such that for thes - centre of G (C(G)) is isomorphic to H. Also r(G) =d and
d(G) = 2d.

Theorem8.10.[19] LetH : (0'/, ,u/) be a fuzzy tree with diameter d. Then there®zais
fuzzy tree G :d, 1) such that thes- centre of G (C(G)) is isomorphic to H.

Theorem 8.11[43,60] A connected fuzzy graph G that is a fuzzy cydesisif centered.

Theorem 8.12.[43,60] A necessary condition for a fuzzy graph G to beelfcentered
fuzzy graph is that each node of G is g-eccentric.

Theorem 8.13.[43,60] A connected fuzzy graph G such that G* is compte-self
centered, if each arc in G is strong. Furthg{@) = 1. Note that the converse need not be
true.

Corollary 8.14.[43,60] A complete fuzzy graph is g-self centered g(@)r= 1.

Theorem 8.15.[43,60]Let H: (¢/, 11’ ) be a fuzzy graph. Then there exists a connected

fuzzy graph G :&; £) such that the g — center of G is isomorphic to Al$o (G) = 2
and ¢(G) = 4.

Theorem 8.16.[42,60] Let G: (g, 1) be a fuzzy tree and Tog( V) be the maximum
spanning tree of G. Then for each node v ing&)én G is the same ag(e) in T.

Corollary 8.17. [42,60]Let G be a fuzzy tree and T be the maximum spanrgagf G.
Then the g - center of G is isomorphic to thecgnter of T.

Corollary 8.18.[42,60]Let G be a fuzzy tree and T be the maximum spatr@agf G.
Then G and T have same set of g-eccentric nodes.

Theorem 8.19.[42,60] Let G be a fuzzy tree. Then v is a g-eccentric rdd® if and
only if v is a g-peripheral node of G.

Next, with respect to thé - distance and ss — distance it is establishacetrery
connected fuzzy graph Ga,(u) is self centered [60].

9. Complement of a fuzzy graph
The study of complement of a fuzzy graph G is mad¢22]. The properties of G and

its complementG such as the automorphism group ®fand G are identical is
established. Distinct from crisp theory, it is alsloserved that a node can be a fuzzy
cutnode of botlG and G .

If G=G , then G is called a self complementary fuzzy graph and pedeent

necessary and sufficient conditions for a fuzzypbr& to be self complementary are
obtained.
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Theorem 9.1.[22] Let G : (g, 1) be a selfcomplementary fuzzy graph. Then
1
> Huv) =23 (o(u) Do(v)).

u#zv u#v

Theorem 9.2.[22] Let G (g, 1) be a fuzzy graph. If
,u(u,v) = %(a(u) DJ(V))D u,vV, then Gis self complementary.

Operations on fuzzy graphs such as union, joirtesemn product, composition have
been studied with respect to the complement arabkstted that complement of the
union of two fuzzy graphs is the join of their cdempents and complement of the join of
two fuzzy graphs is the union of their complem¢agy.

10. Other types of fuzzy graphs

Shannon and Atanassov, Akram, Ramakrishna, Samant Pal have studied about
other types of fuzzy graphs such as vague fuzzphgrabipolar fuzzy graphs, interval
valued fuzzy graphs, intutionistic fuzzy graphszzy k-competition graphs and p-
competition fuzzy graphs etc. in [565 — 59] and @b — 71].

A vague set, as well as an intuitionistic fuzzy isea further generalization of a
fuzzy set. In the literature, the notions of intuiistic fuzzy sets and vague sets are
regarded as equivalent, in the sense that aniortistic fuzzy set is isomorphic to a
vague set.

In a fuzzy set each element is associated withirt-palue selected from the unit
interval [0,1], which is termed the grade of mensb@gr in the set. Instead of using point-
based membership as in fuzzy sets, interval-basedb®rship is used in a vague set. The
interval based membership in vague sets is moreessipe in capturing vagueness of
data.

11. Conclusion

The study of fuzzy graphs made in this reportaisffom being complete . We sincerely
hope that the wide ranging applications of gragoii and the interdisciplinary nature of
fuzzy set theory, if properly blended together dophve a way for a substantial growth
of fuzzy graph theory. Research on the theory akzyusets has been witnessing an
exponential growth; both within mathematics andtsnapplications. This ranges from
traditional mathematical subjects like logic, tampl, algebra, analysis etc. to pattern
recognition, information theory, artificial intediénce, operations research, neural
networks, planning etc. Consequently, fuzzy sebty has emerged as a potential area
of interdisciplinary research. We hope that thewghoof fuzzy graph theory will be
further accelerated by the development of fuzziwsate and fuzzy hardware.
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