Annals of Pure and Applied Mathematics Vol. 3, No. 2, 2013, 108-112 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 July 2013 www.researchmathsci.org

Annals of Pure and Applied <u>Mathematics</u>

On Glivenko Congruence of a 0-Distributive Nearlattice

A.S.A.Noor¹ and Md. Zaidur Rahman² ¹Department of ECE East West University, Dhaka E mail: <u>noor@ewubd.edu</u>

²Department of Mathematics Khulna University of Engineering & Technology E mail: <u>mzrahman1968@gmail.com</u>

Received 27 June 2013; accepted 15 July 2013

Abstract. In this paper the authors have studied the Glivenko congruence R in a 0-distributive nearlattice S defined by " $a \equiv b(R)$ if and only if $a \land x = 0$ is equivalent to $b \land x = 0$ for each $x \in S$ ". They have shown that the quotient nearlattice $\frac{S}{R}$ is weakly

complemented. Moreover, $\frac{S}{R}$ is distributive if and only if S is 0-distributive. They also proved that every Sectionally complemented nearlattice S in which every interval [0, x] is unicomplemented is SemiBoolean if and only if S is 0-distributive.

Keywords: 0-distributive nearlattice, Glivenko Congruence, Weakly complemented nearlattice, Semi Boolean nearlattice.

AMS Mathematics Subject classification (2010): 06A12, 06A99, 06B10

1. Introduction

J.C. Varlet [5] has given the definition of a 0-distributive lattice to generalize the notion of pseudocomplemented lattice. Then many authors including [1] and [3] studied the 0-distributive properties in lattices and meet semilattices. Recently, [6] have studied the 0-distributive nearlattices.

A *nearlattice* is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. This property is known as the *upper bound property*.

A nearlattice S is called *distributive* if for all $x, y, z \in S$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$, provided $y \vee z$ exists in S. For detailed literature on nearlattices, we refer the reader to consult [2] and [4]. On Glivenko Congruence of a 0-Distributive Nearlattice

A nearlattice S with 0 is called 0-distributive if for all $x, y, z \in S$ with $x \wedge y = 0 = x \wedge z$ and $y \vee z$ exists imply $x \wedge (y \vee z) = 0$.

For $A \subseteq S$, we denote $A^{\perp} = \{x \in S \mid x \land a = 0 \text{ for all } a \in A\}$. Clearly A^{\perp} is a down set. If S is 0- distributive then by[6], A^{\perp} is an ideal of S. Moreover, $A^{\perp} = \bigcap_{a \in A} \{\{a\}^{\perp}\}$. If A is an ideal, then obviously A^{\perp} is the pseudocomplement of A in I(S).

Define a relation R on a nearlattice with 0 by aRb if and only if $a \wedge x = 0$ is equivalent to $b \wedge x = 0$. In other words, $a \equiv b(R)$ if and only if $(a)^{\perp} = (b)^{\perp}$.

In this paper, we will study this binary relation in a 0-distributive nearlattice. We will show that R is a nearlattice congruence when S is 0-distributive. We call it as Glivenko congruence.

2. Some Results

Theorem 1. Let S be a nearlattice with 0. then the above relation R is a meet congruence. Moreover, when S is 0- distributive, then it is a nearlattice congruence.

Proof. Clearly R is an equivalence relation. Let $a \equiv b(R)$ and $t \in S$. Then $a \wedge x = 0$ if and only if $b \wedge x = 0$. Let $(a \wedge t) \wedge x = 0$ for some $x \in S$. Then $a \wedge (t \wedge x) = 0$ implies $b \wedge (t \wedge x) = 0$, and so $(b \wedge t) \wedge x = 0$. Similarly $(b \wedge t) \wedge x = 0$ implies $(a \wedge t) \wedge x = 0$. Therefore, $a \wedge t \equiv b \wedge t(R)$ and so R is a meet congruence. Now let $a \vee t$, $b \vee t$ exists and $a \equiv b(R)$. Then for any $x \in S$, $a \wedge x = 0$ if and only if $b \wedge x = 0$. Let $(a \vee t) \wedge x = 0$ for some $x \in S$. Then $a \wedge x = 0$ and $t \wedge x = 0$ which implies $b \wedge x = 0$ and $t \wedge x = 0$, and so $(b \vee t) \wedge x = 0$ as S is 0-distributive. Similarly $(b \vee t) \wedge x = 0$ for some $x \in S$ implies $(a \vee t) \wedge x = 0$. Therefore, R is a nearlattice congruence.

By [6], we know that a nearlattice S with 0 is 0-distributive if and only if the lattice of *ideals I*(S) is pseudocomplemented. Thus we have the following result.

Corollary 2. If I(S) is pseudocomplemented, then R is a nearlattice congruence . •

A nearlattice S with 0 is called *Weakly complemented* if for any pair of distinct elements a, b of S, there exists an element c disjoint from one of these elements but not from the other.

Theorem 3. *S* is weakly complemented if and only if *R* is an equality relation and hence is a nearlattice congruence.

Proof. Suppose S is weakly complemented. Let suppose $a \neq b$. Then there exists c such that $a \wedge c = 0$ but $b \wedge c \neq 0$ (or vice versa). This implies $a \neq b(R)$, a contradiction. Hence a = b. Therefore, R is an equality relation and so R is a nearlattice congruence.

Suppose R is an equality relation. We need to prove S is weakly complemented. Let $a, b \in S$ and $a \neq b$. Then $a \not\equiv b(R)$. This implies there exists $c \in S$ such that $a \wedge c = 0$ but $b \wedge c \neq 0$ (or vice versa). Hence S is weakly complemented.

In the following nearlattice S, R is a nearlattice congruence. Here the classes are $\{0\},\{a\},\{b\},\{1\}$ {c,d,e}. But S is neither 0-distributive nor weakly complemented.

Theorem 4. For any nearlattice S, the quotient lattice $\frac{S}{R}$ is weakly complemented. Furthermore, a nearlattice S with 0 is 0-distributive if and only if $\frac{S}{R}$ is a distributive nearlattice and R is a nearlattice congruence.

Proof. Let A and B be two classes in $\frac{S}{R}$ such that A< B. Then there exists $a \in A$ and $b \in B$ such that a< b in S. So, by the definition of R there is an element $c \in S$, such that $a \wedge c = 0$ but $b \wedge c \neq 0$. Suppose $x \in [0]$. Then $x \equiv 0(R)$. Then $0 \wedge x = 0$ implies $x \wedge x = x = 0$. So $[0] = \{0\}$. This implies $A \wedge C = [a] \wedge [c] = \{0\}$ but $B \wedge C \neq \{0\}$. Hence $\frac{S}{R}$ is weakly complemented.

Now let S be a nearlattice for which R is a nearlattice congruence and $\frac{S}{R}$ is distributive. Let $a, b, c \in S$ with $a \wedge b = 0 = a \wedge c$ such that $b \vee c$ exists. Then $[a] \wedge ([b] \vee [c]) = ([a] \wedge [b]) \vee ([a] \wedge [c]) = [0] \vee [0] = [0]$. This implies $[a \wedge (b \vee c)] = [0]$. Since $[0] = \{0\}$, so $a \wedge (b \vee c) = 0$. Hence S is 0-distributive. On Glivenko Congruence of a 0-Distributive Nearlattice

Conversely, let S be 0-distributive. Then by Theorem1, R is a nearlattice congruence. Let $[a], [b], [c] \in \frac{S}{R}$. We need to prove $[a] \land ([b] \lor [c]) = ([a] \land [b]) \lor ([a] \land [c])$ provided $[b] \lor [c]$ exists. Suppose $[b] \lor [c] = [d]$. Then $[b] = [b] \land [d] = [b \land d]$, $c = [c] \land [d] = [c \land d]$, and so $[b] \lor [c] = [(b \land d) \lor (c \land d)]$. So we need to prove that $[a \land ((b \land d) \lor (c \land d))] = [(a \land b \land d) \lor (a \land c \land d)]$. Let $a \land ((b \land d) \lor (c \land d)) \land x = 0$. Since $(a \land b \land d) \lor (a \land c \land d) \land x = 0$. On the other hand, if $((a \land b \land d) \lor (a \land c \land d)) \land x = 0$, then $a \land b \land d \land x = 0 = a \land c \land d \land x$ and by 0-distributivity of S, $a \land ((b \land d) \lor (c \land d)) \land x = 0$. Thus $a \land ((b \land d) \lor (c \land d)) = (a \land (b \land d)) \lor (a \land (c \land d))(R)$ and hence $[a] \land ([b] \lor [c]) = ([a] \land [b]) \lor ([a] \land [c])$.

Corollary 5. If a 0-distributive nearlattice S is weakly complemented then S is distributive.

Proof. If S is weakly complemented. Then by Theorem3, R is an equality relation and so by above theorem $S \cong \frac{S}{R}$ implies S is distributive. •

A nearlattice S with 0 is called *Sectionally complemented* if the intervals [0,x] are complemented for each $x \in S$. A nearlattice which is sectionally complemented and distributive is called a *Semi Boolean nearlattice*.

Corollary 6. If a 0-distributive nearlattice S is sectionally complemented and weakly complemented, then S is semi Boolean. •

Corollary 7 Suppose S is sectionally complemented and in every interval [0,x], every element has a unique relative complement. Then S is semi Boolean if and only if it is 0-distributive.

Proof. Let S be 0-distributive and for every $x \in S$, the interval [0,x] is unicomplemented. Let $x, y \in S$ with $x \neq y$. If they are comparable, without loss of generality, suppose x < y. Then $0 \le x < y$. Then there exists a unique $t \in [0, y]$ such that $t \land x = 0$ and $t \lor x = y$. Thus $t \land x = 0$ but $t \land y = t \neq 0$. If x, y are not comparable, then $0 \le x \land y < x$ and $0 \le x \land y < y$. Then there exists $s, t \in S$ such that $x \land y \land s = 0$, $(x \land y) \lor s = x$, $x \land y \land t = 0$ and $(x \land y) \lor t = y$. Now $s \land t \le x \land y$ implies $s \land t \le x \land y \land s = 0$, which implies $s \land t = 0$.

and $s \wedge x \wedge y = 0$ implies $0 = s \wedge ((x \wedge y) \vee t) = s \wedge y$ as S is 0-distributive, but $s \wedge x \neq 0$. Therefore, S is weakly complemented and so by above corollary S is semi Boolean. Since the reverse implication always holds in a Semi-Boolean nearlattice, this completes the proof. \bullet

We conclude the paper with the following result

Theorem 8. Let *S* be a nearlattice with 0. Then the following conditions are equivalent. (i) *S* is 0-distributive.

(ii) (0] is the kernel of some homomorphism of S onto a distributive nearlattice with 0.

(iii) (0] is the kernel of a homomorphism of S onto a 0-distributive nearlattice.

Proof: $(i) \Rightarrow (ii)$. Suppose S is 0-distributive. Then by Theorem 1, the binary relation R define by $x \equiv y(R)$ if and only if $(x]^{\perp} = (y]^{\perp}$ is a congruence on S. Moreover by Theorem 4, $\frac{S}{R}$ is a distributive nearlattice. Clearly the map $a \rightarrow [a]R$ is a homomorphism. Now let $a \equiv 0(R)$. Then $0 \land a = 0$ implies $a = a \land a = 0$. Here [0]R contains only 0 of S.

 $(ii) \Rightarrow (iii)$ is obvious as every distributive nearlattice with 0 is 0-distributive.

 $(iii) \Rightarrow (i)$ Let θ be a congruence on S for which (0] is the zero element of the 0distributive nearlattice $\frac{S}{\theta}$. Suppose $x, y, z \in S$ with $x \land y = 0 = x \land z$ and $y \lor z$ exists. Then $[x]\theta \land [y]\theta = [x \land y]\theta = [0]\theta = [x \land z]\theta = [x]\theta \land [z]\theta$. Hence by 0distributivity of $\frac{S}{\theta}[x]\theta \land ([y]\theta \lor [z]\theta) = [0]\theta$, and so $[x \land (y \lor z)]\theta = [0]\theta$. This implies $x \land (y \lor z) \in (0]$ and so $x \land (y \lor z) = 0$. Therefore, S is 0-distributive.

REFERENCES

- 1. P.Balasubramani and P.V. Venkatanarasimhan, Characterizations of the 0-Distributive Lattice *Indian J. Pure Appl. Math.*, 32(3) (2001), 315-324.
- W.H. Cornish and A.S.A. Noor, Standard elements in a nearlattice, *Bull. Austral Math.Soc.*, 26(2) (1982), 185-213.
- 3. Y.S. Pawar and N.K. Thakare, 0-Distributive semilattices, *Canad*. *Math. Bull.*, vol- 21(4) (1978), 469-475.
- M.B. Rahman, A study on distributive nearlattices, Ph.D Thesis, Rajshahi University, Bangladesh (1994).
- 5. J.C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull.Soc. Sci. Liege*, 37 (1968), 149-158.

On Glivenko Congruence of a 0-Distributive Nearlattice

6. Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, 0-distributive Nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012), 177-184.