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Abstract. A method for the two person non-zero sum game whose payoffs are represented 
by interval data has been investigated. In this paper a new method for solving bimatrix 
game with triangular fuzzy numbers using LCP has been applied. The obtained solution 
of this FLCP is the solution of the given fuzzy bimatrix game. 
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1. Preliminaries 
Game theory has played an important role in the field of decision making theory such as 
economics, management, operation research etc. When we apply the game theory to 
model some practical problems which we encounter in real situation; we have to know 
the values of payoffs exactly. However, it is difficult to know the exact values of payoffs 
and we could only know the values of payoff approximately. Hence we investigate two-
person games with imprecise data represented by interval data.  
 
1.1. Two person games 
Consider a game where in each play of the game, player I picks one out of possible set of 
his m choices and independently player II picks one out of a possible set of his n choices. 
In a play, if player I has picked his choice i and player II has picked his choice j, then 
player I loses an amount ija * dollars and player II loses an amount ijb * dollars where A 

= ( ija ) and B = ( ijb ) are given loss matrices. If ija + ijb = 0, ∀ i, j, the game is known as 
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zero- sum game. In this case it is possible to develop the concept of an optimum strategy 
for playing the game using Von-Neumann’s Minimax theorem.  

Games that are not zero-sum games are called non-zero-sum games or bimatrix 
games. In bimatrix games it is difficult to define an optimum strategy. However, in this 
case, an equilibrium pair of strategies can be defined and problem of computing an 
equilibrium pair of strategies can be transformed into a Linear Complementarity Problem. 
 
1.2. Interval arithmetic 
While modeling certain problems in the physical sciences and engineering, it is often 
observed that the parameters of the problem are not known precisely but rather lie in an 
interval. In the past, such situations have been handled by the application of interval 
arithmetic (Moore [7]) which allows mathematical computations (operations) to be 
performed on intervals and obtain meaningful estimates of desired quantities also in 
terms of intervals.  

In this context, a closed interval in R is also called an interval of confidence as it 
limits the uncertainty of data to an interval. Let A = [ ]1 2,a a and B =[ ]1 2,b b  be two 
closed intervals in R. Then we have the following definitions: 
 
Definition 1.1. If [ ]1 2,x a a∈ ,  [ ]1 2,y b b∈  be two intervals in R, then 

(i) A+B =  [ ]1 1 2 2,a b a b+ +  

(ii) A-B =   [ ]1 2 2 1,a b a b− −  

(iii) The image of A, denoted by [ ]1 2 2 1[ , ] ,A a a a a= = − − . 

(iv) A *B =   [ ]1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2min( , , , ), max( , , , )a b a b a b a b a b a b a b a b  

(v) k*A =  [ ]1 2,ka ka  

(vi) The inverse of A, denoted by [ ] 11
1 2

2 1

1 1, ,A a a
a a

−− ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 

provided [ ]1 20 ,a a∉  
(vii)  The division of two numbers is given by  

              A\B = 1 1 2 2 1 1 2 2

2 1 2 1 2 1 2 1

min( , , , ), max( , , , )a a a a a a a a
b b b b b b b b

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
1.3. Fuzzy numbers and their representation  
There are many life situation , in areas like decision making and optimization where 
rather than dealing with crisp real numbers and crisp intervals one has to deal with 
“approximate” numbers or intervals of type “number that are close to a given real 
number” or “numbers that are around a given interval of real number”. The purpose of 
this section is to understand that how such fuzzy statements can be conceptualized by 
certain “appropriate” fuzzy sets in R to be termed as fuzzy numbers. 
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 For the motivation to define a fuzzy number, let us consider the fuzzy statement, 
“numbers that are close to a given real number r”. Since the real number r is certainly 
close to r itself, any fuzzy set A in R which tries to represent the property that ( ) 1.A rµ =
i.e. A must be a normal fuzzy set. Also, just prescribing an interval around r is not 
enough. The intervals should be considered at varying levels (0,1]α∈  to have the proper 

gradation i.e. the α-cuts of A must be closed intervals of the type[ , ]L Ra aα α . Further, to 

carry out interval arithmetic as described in the previous section, the intervals[ , ]L Ra aα α  
for α€ (0, 1] must be of finite length and for that one needs that the support of A is 
bounded. Therefore it makes sense to define a fuzzy number as follows. 

 
Definition 1.2. A fuzzy set A in R is called a fuzzy number if it satisfies the following 
conditions: 

(i) A is normal, 
(ii) Aα is a closed interval for every α€(0,1], 
(iii)  The support of A is bounded. 

 
The theorem presented below gives a complete characterization of a fuzzy number. 
 
Theorem1.1. Let A be a fuzzy set in R .Then A is a fuzzy number if and only if there exists 
a closed interval(which may be singleton)[a,b]≠ф such that  

                                          

1, [ , ]
( ) ( ), ( , )

( ), ( , )
A

x a b
x l x x a

r x x b
µ

∈⎧
⎪= ∈ −∞⎨
⎪ ∈ ∞⎩

 

where(i) l: (-∞,a)→[0,1] is increasing, continuous from the right and l(x)=0 for 

1 1( , ), and( ) : ( , ) [0,1]x w w a ii r b∈ −∞ < ∞ → , 1( , )x w∈ −∞   is decreasing continuous 

from the left and 2 2.( ) 0 for ( , ),r x x w w b= ∈ ∞ >  
In the above the theorem the term “increasing” is to be understood in the sense that “

( ) ( )x y l x l y≥ ⇒ ≥ ” i.e. l is non-decreasing. 
 

Remark 1.  In case the membership function of the fuzzy set A in R takes the form Aµ
(x) =1 for x=a and Aµ (x) =0 for x≠a, it becomes the characteristic function of the 
singleton set {a} and therefore represents the real number a. A real interval [a, b] can also 
be identified similarly by its characteristics function in most of the practical application 
the function l(x) and r(x) are continuous which give the continuity of the membership 
function. 
 
Definition 1.3. A fuzzy number A is called a triangular fuzzy number (TFN) if its 
membership function Aµ is given by 
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1

1

0, ,

( ) ,

,

l u

A l

u
u

u

x a x a
x ax a x a
a a
a x a x a
a a

µ

⎧
⎪ < >⎪
⎪ −

= ≤ ≤⎨ −⎪
⎪ −

< ≤⎪
−⎩

 

 
The TFN A is denoted by the triplet A = ( 1, , ua a a ) and has the shape of a triangle. 
Further the α-cut of the TFN A= [ 1, , ua a a ] is the closed interval  

1 1[ , ] [( ) ( ) ], (0,1].L R
u uA a a a a a a a aα α α α α α= = − + − − + ∈  

Next let A =[ 1, , ua a a ] and B=[ 1, , ub b b ] be two TFNSs then using the α-cuts, Aα  and Bα

for α€(0,1] one can compute A*B where *may be(+),(-),(.),(:), ,∨ ∧ operation. In this 
context it can be verified that  
 A (+) B= 1 1( , , ),u ua b a b a b+ + +  

1( , , ),uA a a a− = − − −  
KA= 1( , , ), 0,uka ka ka k >  

                       and A (-) B= 1( , , )u u la b a b a b− − −  
 

0, ,

,

( ) 1, ,

,

l u

l
l

l

A

u

u

x a x a
x a a x a
a a

x a x a

a x a x a
a a

µ − −

−

−

−

< >⎧
⎪ −⎪ ≤ ≤
⎪ −
⎪⎪= ⎨ ≤ ≤
⎪
⎪

−⎪ ≤ ≤⎪
−⎪⎩

 

2. Linear Complementarily Problem 
 Let M be a given square matrix of order n and q a column vector in nR . Throughout this 
paper we will use the symbols 1 2 1 2, ,..., , ,...,n nw w w and z z z  to denote the variable in 
the problem. In an LCP there is no objective function to be optimized. The problem is to 
find 1 2 1 2( , ,..., ) ( , ,..., )T T

n nW w w w and Z z z z= = satisfying the conditions 
W-MZ=q 
W ≥ 0, Z ≥ 0                                                                                              (1) 

i iw z o=   for all i 
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 The only data in the problem is the column vector q and the square matrix nxnM .So we 

will denote the LCP of finding ,n nW R Z R∈ ∈  satisfying (1) by the symbol (q, M). It is 
said to be an LCP of order n. In a LCP of order n there are 2n variables. 
Suppose player I picks his choice i with probability of ix . The column vector 

( ) m
ix x R= ∈  completely defines player I’s strategy. Similarly let the probability vector 

( ) N
jy y R= ∈  be player II’S strategy. If player I adopts strategy x and player II adopts 

strategy y, the expected loss of player I is obliviously 'Tx A y and that of player II is
'Tx B y .  

The strategy pair ( , )x y  is said to be an equilibrium pair if no player benefits by 
unilaterally changing his own strategy while the other player keeps his strategy in the pair 
( , )x y  unchanged, that is if 

' ' ,
' ' ,

T T m

T T N

x A y x A y For all probability vector x R
x B y x A y For all probability vector x R

⎧ ≤ ∈
⎨

≤ ∈⎩
                     (2) 

Let α, β be arbitrary positive numbers such that ' 0 ' 0ij ij ij ija a and b bα β= + > = + >  
for all i, j. 

Let A=( ija ), B= ( ijb ) Since 'Tx A y = Tx Ay -α and 'Tx B y = Tx By -β for all 

probability vector x€ mR  and y€ NR , if ( , )x y  is an equilibrium pair of strategies for the 
game with loss matrices A’,B’ then ( , )x y  is an equilibrium pair of strategies for the 
game with loss matrices A,B and vice versa. So without any loss of generality, consider 
the game in which the loss matrices are A, B. Since x is a probability vector, the 
condition T Tx Ay x Ay≤  for all probability vector x€ mR  is equivalent to the system of 
constraints 

T
ix Ay A y≤  (For all I =1, 2… m)                                                                 (3)                       

Let re  denote the column vector in rR  in which all elements are equal to 1. In matrix 

notation the above system of constraints can be written as ( )T
mx Ay e A y≤ . In similar 

way the condition 'Tx B y ≤ Tx By by for all probability vectors y€ NR is equivalent to

( )T T
Nx By e B x≤ . Hence the strategy pair ( , )x y  is an equilibrium pair strategies for 

the game with loss matrices A, B if  
( )T

mAy x Ay e≥                                                                                               (4) 

( )T T
NB x x By e≥  

Since A,B is strictly positive matrices Tx Ay and Tx By is strictly positive numbers. Let  

T T
x yand

x By x Ay
ξ η= = .                                                                        (5) 



C.Loganathan and M.S.Annie Christi 

206 
 

 Introducing slack variable corresponding to the inequality, constraints (4) is equivalent 
to  

0
0

0, 0

0

m
T

N

T

eu A
ev B

u
v

u
v

ξ
η

ξ
η

ξ
η

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤
≥ ≥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦                                                               

(6) 

Conversely, if ( , , , )u v ξ η  is a solution of LCP(6) then the equilibrium pair of strategies 

for the original game is ( , )x y  where 
i i

x and yξ η
ξ η

= =
∑ ∑                               

(7) 

Therefore  
( )0

(0
m m j m

T TT
N N i N

e A e A y eA
e B e B x eB

η ηξ
ξ ξη
≥ ⇒ ∑ ≥⎛ ⎞ ⎧⎛ ⎞⎛ ⎞

≥ ⇒ ⎨⎜ ⎟ ⎜ ⎟⎜ ⎟ ≥ ⇒ ∑ ≥⎝ ⎠ ⎩⎝ ⎠⎝ ⎠
                         (8) 

Then we have  
1

1

m
j

T
N

Ay e

B x e

η

ξ

⎧ ≥⎪ ∑⎪
⎨
⎪ ≥
⎪ ∑⎩

                                                                                                 (9) 

By defining  
1 1, T

j i

xAy x By
η ξ

= =
∑ ∑                                                                          

(10) 

We have  
( )
( )

T
m

T T
N

Ay x Ay e
B x x By e

⎧ ≥
⎨

≥⎩
                                                                                      (11) 

Therefore the converse part has been established. 
 In the next section we develop the above mentioned procedure with interval data 
and we extend the procedure when the data are not precisely known. 
 
2.1. Fuzzy Linear Complementarity Problem (FLCP) 
Given a real nxn square matrix M and a nx1 real vector q, then the linear 
Complementarity problem denoted by LCP (q, M) is to find real nx1 vector w, z such that  

W – Mz = q                                                                     (12) 
0, 0, 1,2,3,..j jw z j≥ ≥ ∀ =   n                                    (13) 

0j jw z = , for     j=1, 2, 3...n                                    (14) 
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Here the pair ( , )j jw z is said to be a pair of complementary variables.  
A solution (w, z) to the above system is called a complementary feasible 

solution, if (w, z) is a basic feasible solution to (12) to (13) with one of the pair ( , )j jw z  
is basic for j=1, 2, 3…n. 

If q 0≥ , then we immediately see that w=q, z=0 is a solution to the linear 
Complementarity problem. If however, q 0≤ , we consider the related system, 

0W MZ ez q− − =                                                (15) 

00, 0, 0, 1,2,3,...j jw z z j n≥ ≥ ≥ =                        (16) 

0, 1,2,3,...j jw z j n= =                                    (17) 

where 0z is an artificial variable and e is an n-vector with all components equal to one.  

Letting 0z =maximum{ }/ 1iq i n− ≤ ≤ , Z=0, and we obtain 0w q ez= + ; we obtain a 

starting solution to the above system. Lemke’s algorithm attempts to drive 0z to zero, 
thus obtaining a solution to the linear Complementarity problem (LCP). Using the 
method adopted in [4], without using the artificial variable 0z , we solve the above LCP. 
Assuming all the parameters in (12) to (14) are fuzzy and are described by triangular 
fuzzy numbers, the solution of the LCP can be obtained by replacing crisp parameters by 
fuzzy numbers. 
 

 

 
The pair ( , )j jw z  is sad to be a pair of fuzzy Complementarity variables. 
 
2.2. Algorithm 
Lemke [6] suggested an algorithm for solving linear Complementarity problems. Based 
on this idea and using the method given by [4] an algorithm for solving fuzzy LCP is 
developed. Consider the FLCP ( , )q M  of order n, suppose there exists a column vector 

of M  in which all the entries are strictly positive. Then a variant of the Complementarity 
pivot algorithm which uses no artificial variable at all can be applied on the FLCP
( , )q M . The table for this algorithm is given below: 
 

W Z

I M q−
 

0, 0, 1,2,3,...

0, 1,2,3,...
j j

j j

W MZ q
w z j n

w z j n

− =
≥ ≥ =

= =
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We assume that q <0. Let s be such that 0sM > . So, the column vector associated with 

sZ is strictly negative. Hence the variable sZ can be made to play the same role as of the 

artificial variable 0Z . 

Step 1. Choose the row t, to satisfy min 1, 2,...t t

is ts

q qi n
m m

⎧ ⎫⎛ ⎞⎪ ⎪∀ = =⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

and update the 

table by pivoting at row t and sZ column. 
Step 2. In the updated table tw is selected to be the entering variable if tw  is strictly 
negative. The basic feasible solution of the given FLCP is at the end of an almost 
Complementarity ray. 
Step 3. Choose sZ  as the entering variable. Hence the basic feasible vector is (

1 2 1 1, ,... , , , ...t s t nw w w Z w w− + ). Proceeding like this we can determine the entering 
variables using the Complementarity pivot rule. 
This algorithm will terminate if either one of the variables from the Complementarity pair 
( ,s sW Z ) leaves out of the basic vector or becomes zero in the basic feasible solution of 
the FLCP or at some stage of the algorithm, both the variables in the Complementarity 
pair ( ,s sW Z ) may be strictly positive in the basic feasible solution and the pivot column 
in that stage may turn out to be non-positive. 
 
3. Numerical Example 
Consider the Fuzzy Linear Complementarity Problems ( , )q M , with fuzzy triangular 
numbers. 
 Consider the fuzzy game matrices, 

 A =  
( ) ( )
( ) ( )

90,100,110 110,160,170
130,140,190 60,110,120

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and B = 
( ) ( )
( ) ( )

80,105,110 110,150,190
120,140,200 80,90,140

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The above fuzzy triangular number payoff matrix can be converted into the 
interval number payoff matrix using α-cut. The solution obtained for different α-cuts are 
given as follows: 
 

α ix  jy  
  0 [-0.42, 0.5], [-0.42,1] [-0.14,0.4], [-2.8, 1] 

0.25 [-0.5, 0.5], [-1.09, 0.5] [-0.42, 0.46], [-1.15,0.54] 
0.5 [-0.66, 0.55], [-0.53, 1.19] [-1.6, 1.14], [-0.73, 0.31] 

0.75 [-1.25, 0.76], [-0.98, 0.63] [-2.28, 1.4], [-1.44,2.28] 
1 1.32, -0.32 0.41, 0.59 

 
4. Conclusion 
The given fuzzy bimatrix game is converted into Fuzzy Linear Complementarity Problem 
and it is solved by Complementarity pivoting algorithm without using any artificial 
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variable. This method can be applied to any higher order bimatrix games. We strongly 
emphasize that the procedure introduced in this paper is an approximation. 
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