
Annals of Pure and Applied Mathematics 
Vol. 3, No. 1, 2013, 56-66 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 20 May 2013 

   www.researchmathsci.org 
 

56 
 

Annals of 

Irregular Interval–Valued Fuzzy Graphs 

Madhumangal Pal 1 and  Hossein Rashmanlou 2 
 

1Department of Applied Mathematics with Oceanology and Computer Programming 
Vidyasagar University, Midnapore-721102, India 

Email: mmpalvu@gmail.com 
 

2Department of Mathematics, University of Mazandaran, Babolsar, Iran 
Email: hrashmanlou@yahoo.com 

 
Received 6 December 2012; accepted 22 April 2013 

 
Abstract.  In this paper, we define irregular interval-valued fuzzy graphs and their 
various classifications. Size of regular interval-valued fuzzy graphs is derived. The 
relation between highly and neighbourly irregular interval-valued fuzzy graphs are 
established. Some basic theorems related to the stated graphs have also been presented. 
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1. Introduction 
Presently, science and technology is featured with complex processes and phenomena  
for which complete information is not always available. For such cases, mathematical 
models are developed to handle various types of systems containing elements of  
uncertainty. A large number of these models are based on an extension of the ordinary set 
theory, namely, fuzzy sets. In 1965, Zadeh [31] introduced the notion of fuzzy subset of a 
set as a method of presenting uncertainty. The fuzzy systems have been used with success 
in last years, in problems that involve the approximate reasoning. It has become a vast 
research area in different disciplines including medical and life science, management 
sciences, social sciences, engineering, statistics, graph theory, artificial intelligence, 
signal processing, multi agent systems, pattern recognition, robotics, computer networks, 
expert systems, decision making, etc. 

      In 1975, Rosenfeld [19] introduced the concept of fuzzy graphs. In 1975, Zadeh 
[30] introduced the notion of interval-valued fuzzy sets as an extension of fuzzy sets [31] 
in which the values of the membership degrees are intervals of numbers instead of real 
numbers between 0 and 1. Interval-valued fuzzy sets provide a more adequate description 
of uncertainty than traditional fuzzy sets. It is therefore important to use interval-valued 
fuzzy sets in applications, such as fuzzy control. One of the computationally most 
intensive parts of fuzzy control is defuzzification [10]. Since interval-valued fuzzy sets 
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are widely studied and used, we describe briefly the work of  Gorzalczany on 
approximate reasoning [8-9], Roy and Biswas on medical diagnosis [20], Turksen on 
multivalued logic [25] and Mendel on intelligent control [10]. In 2011, Akram [1] 
introduced the concept of  interval-valued fuzzy graphs and defined different operations 
on it.  

Interval- valued fuzzy graph theory is now growing and expanding its applications. 
The theoretical development in this area is discussed here. 

 
1.1. Review of literature 
 After Rosenfeld [19], fuzzy graph theory is increased with a large number of branches. 
Mathew and Sunitha [11] described the types of arcs in a fuzzy graph. Nagoorgani and 
Malarvizhi [14] established the isomorphism properties of strong fuzzy graphs. 
Nagoorgani and Vadivel [15] established relations between the parameters of 
independent domination and irredundance in fuzzy graphs. Nair and Cheng [17] defined 
cliques and fuzzy cliques in fuzzy graphs. Nair [18] established the definition of perfect 
and precisely perfect fuzzy graphs. Akram [2] defined different operations on bipolar 
fuzzy graphs. Strong bipolar fuzzy graphs were also introduced here. He also introduced 
regular bipolar fuzzy graphs [4]. Samanta and Pal introduced fuzzy tolerance graphs [21], 
fuzzy threshold graphs [23], fuzzy competition graphs [22] and bipolar fuzzy hypergraph 
[24]. Akram and Davvaz discussed the properties of strong intuitionistic fuzzy graphs [3]. 
Talebi and Rashmanlou [26] studied isomorphism on interval-valued fuzzy graph. 
Likewise, they defined isomorphism on vague graphs [27]. A very few algorithms have 
also been designed to solve problems on fuzzy graphs [32,33,34]. 
 
2. Preliminaries 
A fuzzy set A on a set X is characterized by a mapping m: X →  [0, 1], called the 
membership function.  

A fuzzy set is denoted as A = (X, m). A fuzzy graph [19] ),,( µσξ V=  is a non-empty 

set V together with a pair of functions →V:σ [0, 1] and →×VV:µ [0, 1] such that for 

all u, v ∈V , )()(),( vuvu σσµ ∧≤  (here yx ∧  denotes the minimum of x and y). 

Partial fuzzy subgraph ),,( vV τξ =′  of ξ  is such that )()( vv στ ≤  for all Vv∈  and 

),(),( vuVvu ≤µ  for all Vvu ∈, . Fuzzy subgraph [12] ),,( µσξ ′′=′′ P  of ξ  is such 

that VP ⊆ , )()( uu σσ =′  for all Pu ∈  , ),(),( vuvu µµ =′  for all Pvu ∈, . 

A fuzzy graph is complete [13] if )()(),( vuvu σσµ ∧=  for all Vvu ∈, . The degree of 

vertex u is ∑
∈

=
ξ
µ

),(

),()(
vu

vuud . The minimum degree of ξ  is { }Vuud ∈∧= |)( )(ξδ . 

The maximum degree of ξ  is { }Vuud ∈∨=∆ |)( )(ξ . The total degree [13] of a vertex 

Vu ∈  is )()()( uudutd σ+= . A fuzzy graph ),,( µσξ V=  is said to be regular [13] if 

kvd =)( , a positive real number, for all Vv∈ . If each vertex of ξ  has same total 

degree k, then ξ  is said to be a totally regular fuzzy graph. A fuzzy graph is said to be 
irregular [16], if there is a vertex which is adjacent to vertices with distinct degrees. A 
fuzzy graph is said to be neighbourly irregular [16], if every two adjacent vertices of the 
graph have different degrees.  
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 A fuzzy graph is said to be totally irregular, if there is a vertex which is adjacent to 
vertices with distinct total degrees. If every two adjacent vertices have distinct total 
degrees of a fuzzy graph then it is called neighbourly total irregular [16]. A fuzzy graph 
is called highly irregular [16] if every vertex of G  is adjacent to vertices with distinct 
degrees. The complement [12] of fuzzy graph ),,( µσξ V=  is the fuzzy graph 

),,( µσξ ′′= V  where )()( uu σσ =′  for all Vu ∈  and 





∧
>

=′
.            ),()( 

0,),( if                              0 
),(

otherwisevu

vu
vu

σσ
µ

µ  

Let X be a nonempty set. An interval-valued fuzzy set A in V is defined by 
{ }VxxA

xAxA
∈= +− :]) , [ , ( 

)()(
µµ  , where 

)(xA−µ  and 
)(xA+µ  are  fuzzy subsets of 

V such that 
)()( xAxA +− ≤ µµ  for all Vx ∈ . 

    For any two interval-valued fuzzy sets  ] , [
)()( xAxA

A +−= µµ  and 

] , [
)()( xBxB

B +−= µµ  in V  we have: 

• { },:)))( , )(max()),( , )(max(,( VxxxxxxBA
BABA

∈= ++−− µµµµU   

• { }. :)))( , )(min()),( , )(min(,( VxxxxxxBA
BABA

∈= ++−− µµµµI  

If ),( EVG =∗  is a graph, then by an interval-valued fuzzy relation B on a set E we mean 
an interval - valued fuzzy set such that. 
                             ( ), )( , )( min)( yxxy

AAB −−− ≤ µµµ        

                            ( ) )( , )( min)( yxxy
AAB +++ ≤ µµµ  for all Exy ∈ . 

By an interval - valued fuzzy graph of a graph ),( EVG =∗  we mean a pair ),( BAG = , 

where ] , [ +−=
AA

A µµ  is an interval-valued fuzzy set on V and ] , [ +−=
BB

B µµ  is an 

interval-valued fuzzy relation on E. 
The graph G is called complete interval-valued fuzzy graph if 

( ))( , )( min)( yxxy
AAB +++ = µµµ   and ( ))( , )( min)( yxxy

AAB −−− = µµµ  

 for all Vyx ∈, . 

An interval-valued fuzzy graph ),( BAG =  of a given graph ),(* EVG = is called an 
interval-valued strong fuzzy graph if  

( ))( , )( min)( yxxy
AAB −−− = µµµ  and ( ))( , )( min)( yxxy

AAB +++ = µµµ  

for all Exy ∈ . 

The complement of a strong interval-valued fuzzy graph G  is ) , ( BAG =  where  

)]( , )([ xxA
AA +−= µµ  is an interval-valued fuzzy set on V  and ] , [ +−=

BB
B µµ  is an 

interval-valued fuzzy set on VVE ×⊆  such that  

(1) ,VV =  

(2) )()( xx
AA −− = µµ  and )()( xx

AA ++ = µµ   for all ,Vx∈  
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(3) =− )(xy
B

µ








=∧

>

−−−

−

.0)(If)(  )( 

,0)(  If  0 

xyyx

xy

BAA

B

µµµ

µ
 

(4) =+ )(xy
B

µ








=∧

>

+++

+

.0)(If)(  )( 

,0)(  If  0 

xyyx

xy

BAA

B

µµµ

µ
 

 
Definition 1[1]. Let ) , ( BAG =  be an interval-valued fuzzy graph where  

],[ +−=
AA

A µµ  and ] ,[ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty 

finite set V and VVE ×⊆  respectively. The graph G  is called complete interval-

valued fuzzy graph if  ( ))( , )( min)( yxxy
AAB −−− = µµµ  and  

                             ( ) )( , )( min)( yxxy
AAB +++ = µµµ for all ., Vyx ∈  

 
Definition 2. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  

and ] , [ +−=
BB

B µµ  be two interval - valued fuzzy sets on a non- empty finite set V and 

VVE ×⊆  respectively. The total degree of a vertex Vu ∈  is denoted by td(u) and 

defined as )]( , )([)( utdutdutd −+=   where  

)()()( uuvutd
AB

Euv

++ += ∑
∈

+ µµ  , )()()( uuvutd
AB

Euv

−− += ∑
∈

− µµ . 

 
If the total degrees of all vertices of an interval-valued fuzzy graph are equal, then the 

graph is said to be totally regular interval-valued fuzzy graph. 
 
3. Some definitions related to interval-valued fuzzy graphs 
 
The degree of a vertex of an interval-valued fuzzy graph is defined below. 
 
Definition 3. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  

and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively. The positive degree of a vertex Gu ∈  is  

∑
∈

+
+=

Euv
B

uvud )( )( µ . Similarly, negative degree of a vertex Gu ∈  is  

∑
∈

−
−=

Euv
B

uvud )( )( µ . The degree of a vertex u is )]( , )([)( ududud +−= . 

 
If 1)( kud =+ , 2)( kud =−  for all ,Vu ∈ 1k , 2k  are two real numbers, then the graph is 

called ] , [ 21 kk -regular interval valued fuzzy graph.  
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Example 1. We consider an interval-valued fuzzy graph show here. We have 

2.01.01.0)( =+=− xd  , .7.04.03.0)( =+=+ xd  So, )7.0 , 2.0()( =xd . 

Similarly, )7.0 , 3.0()( =yd  and )8.0 , 3.0()( =zd . 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: An example of interval-valued fuzzy graph 
 
The order and size of an interval-valued fuzzy graph are important terms. They are 
defined below. 
 
Definition 4. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  

and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively. The order of G is denoted by O(G) and is defined by 

)]( , )([)( GOGOGO +−=   where ∑
∈

−
−=

Vu
A

uGO )( )( µ  and ∑
∈

+
+=

Vu
A

uGO )( )( µ . 

Definition 5. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=
AA

A µµ   

and ] , [ +−=
BB

B µµ   be two interval-valued fuzzy sets on a non-empty finite set V and 

E respectively. The size of G is defined by )]( , )([)( GSGSGS +−=   where 

∑
≠

∈

−
−=

vu
Euv

B
uvGS

   

)( )( µ  and ∑
≠

∈

+
+=

vu
Euv

B
uvGS

   

)( )( µ . 

 
Example 2. For the interval-valued fuzzy graph of Figure 1, )4.1 , 9.0()( =GO  and 

)1.1 , 4.0()( =GS . 

 
  

[0.4, 0.5] 

[0.2, 0.4] [0.3, 0.5] 

[0.2, 0.4] 

[0.1, 0.3] 

[0.1, 0.4] 

z 

x y 
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Definition 6. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=
AA

A µµ   

and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively. The underlying crisp graph of G is the crisp graph 

) , ( EVG ′′=′  where }0)( and  0)(| { >>=′ −+ vvvV
AA

µµ  and  

}0)( and  0)(|),( { >>=′ −+ uvuvvuE
BB

µµ . 

 
Definition 7. An interval-valued fuzzy graph is said to be connected if it’s underlying 
crisp graph is connected. 
 
Theorem 1. Let G be a regular interval-valued fuzzy graph where induced crisp graph G’ 
is an even cycle. Then G is regular interval-valued fuzzy graph if and only if either +B

µ  

or −B
µ  is constant functions or alternate edges have same positive membership values and 

negative membership values. 
Proof. Let ) , ( BAG =  be a regular interval-valued fuzzy graph where ] , [ +−=

AA
A µµ   

and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively and underlying crisp graph G′  of G be an even cycle. If either 

−B
µ  or +B

µ  is constant function or alternate edges have same positive and negative 

membership values, then G is a regular interval-valued fuzzy graph. Conversely, suppose 
G is a ] , [ 21 kk -regular interval-valued fuzzy graph. Let 1e  , 2e , … ne  be the edges of 

G′  in order. As 





−
=+

even. is i if         

odd, is i if               
)(

11

1

ck

c
eiB

µ  





−
=−

even. is i if         

odd, is i if                
)(

22

2

ck

c
eiB

µ  

If 111 ckc −= , then +B
µ is constant. If ,111 ckc −≠  then alternate edges have same 

positive and negative membership values. Similarly, for −B
µ . Hence the result. � 

Theorem 2. The size of a ) , ( 21 kk -regular interval-valued fuzzy graph is )
2

 , 
2

( 21 PkPk
 

where VP = . 

Proof. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=
AA

A µµ   and 

] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively. The size of G is 






= ∑∑
≠≠

+−

vu
B

vu
B

uvuvGS )(  , )()( µµ . 
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Now,  ∑∑∑
∈∈∈

== −+

Euv
B

Euv
B

Vv

GSuvuvvd )( 2)](  , )( [ 2 )( µµ .  

Thus, .] , [ )(2.. ,)( )(2 21∑ ∑∑
∈ ∈∈

==
Vv VvVv

kkGSeivdGS  

This gives ]k , k[)(2 21 PPGS = . Hence the result. � 

 
Theorem 3. If G is ] , [ kk ′ -totally regular interval-valued fuzzy graph, then 

]P ,k [)()(2 kPGOGS ′=+  where VP = . 

Proof. Let ) , ( BAG =  be an interval-valued fuzzy graph where 

∑∑
≠≠

+−

vu
B

vu
B

uvuv )(  ,  )( µµ be two interval-valued fuzzy sets on  a non-empty finite set V 

and  VV ×  respectively. Since G is a ] , [ kk ′ -totally regular interval-valued fuzzy graph. 

 So )()()( vvdvtdk
A++== ++ µ  and )()()( vvdvtdk

A−+==′ −− µ  for all .Vv ∈  

Therefore  

∑ ∑∑
∈ ∈∈

+
++=

Vv Vv
A

Vv

vvdk )()( µ  and ∑ ∑∑
∈ ∈∈

−
−+=′

Vv Vv
A

Vv

vvdk )()( µ . 

)(2 GSPk +=  and )(2 GSkP −=′ . So 

)()())()((2 GOGOGSGSkPPk −+−+ +++=′+ .  

Hence ] , [)()(2 kPPkGOGS ′=+ . � 
 
4. Irregular interval-valued fuzzy graphs 
Irregular interval-valued fuzzy graphs are important as regular interval-valued fuzzy 
graphs. We now define it. 
 
Definition 8. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  

and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively.  G is said to be irregular interval-valued fuzzy graph if there 
exists a vertex which is adjacent to a vertex with distinct degrees. 
 
Example 3. Let ) , ( BAG =  be an interval - valued fuzzy graph where ] , [ +−=

AA
A µµ  

and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively, where { }4321 ,,, vvvvV = . 

]1 , 8.0[)( 1 =vd  , ] 1 , 8.0[)( 2 =vd  , ]4.1 , 2.1[)( 3 =vd  , 0] , 4.0[)( 4 =vd . 

Here )()( 32 VdVd ≠ . So this graph is an example of irregular interval-valued fuzzy 

graph, show in Figure 2. 
Neighbourly irregular interval-valued fuzzy graph is a special case of irregular 

interval-valued fuzzy graph. 
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Definition 9. Let G be a connected interval-valued fuzzy graph. Then G is called 
neighbourly irregular interval-valued fuzzy graph if for every two adjacent vertices of G 
have distinct degrees. 
 
     
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: An example of irregular interval-valued fuzzy graph. 
 
Definition 10. Let ) , ( BAG =  be an interval-valued fuzzy graph where 

] , [ +−=
AA

A µµ  and ] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty 

finite set V and VVE ×⊆  respectively. G is said to be totally irregular interval-valued 
fuzzy graph if there exists a vertex which is adjacent to a vertex with distinct total 
degrees. 
 
Definition 11. Let G be a connected interval-valued fuzzy graph. Then G is called highly 
irregular interval-valued fuzzy graph if every vertex of G is adjacent to vertices with 
distinct degrees. 
 
Example 4. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  

and ] , [ +−=
BB

B µµ be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively, where { }4321 ,,, vvvvV = . ] 5.0 , 4.0[1 =v , ,] 6.0 , 5.0[2 =v  

]5.0 , 4.0[3 =v , ]4.0 , 4.0[4 =v , 3.0)( 21 =− vv
B

µ , 4.0)( 21 =+ vv
B

µ , ,2.0)( 32 =− vv
B

µ  

4.0)( 32 =+ vv
B

µ , 3.0)( 43 =− vv
B

µ , 4.0)( 43 =+ vv
B

µ , 2.0)( 42 =− vv
B

µ ,

4.0)( 42 =+ vv
B

µ . 

 So we have ] 4.0 , 3.0[)( 1 =vd , ] 2.1 , 8.0[)( 2 =vd , ,] 8.0 , 5.0[)( 3 =vd   

])8.0 , 5.0[)( 4 =vd . Here the interval-valued fuzzy graph is highly irregular but not 

neighbourly irregular as )()( 43 vdvd = . 

 

 
  

[0.4, 0.5] 

v1
 

 
  

[0.5, 0.7] 
 
  

[0.4, 0.7] 

 
  

[0.5, 0.6] 

[0.4, 0.5] [0.4, 0.5] 

[0.4, 0.5] 

[0.4, 0.4] 

v3
 

v2
 

v4
 



Madhumangal Pal and Hossein Rashmanlou 

64 
 

Theorem 4. Let G be an interval-valued fuzzy graph. Then G is highly irregular interval-
valued fuzzy graph and neighbourly irregular interval-valued fuzzy graph if and only if 
the degrees of all vertices of G are distinct. 
Proof. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  and 

] , [ +−=
BB

B µµ be two interval-valued fuzzy sets on a non-empty finite set V and VV ×  

respectively. Let { }nvvvV ,...,, 21= . We assume that G is highly irregular and 

neighbourly irregular interval-valued fuzzy graphs. Let the adjacent vertices of 1u  be 

nuuu  ,...,  , 32  with degrees ] , [ ..., , ] , [ , ] , [ 3322
+−+−+−
nn kkkkkk  respectively. As G is 

highly and neighbourly irregular, )(...)()()( 321 nudududud ≠≠≠≠ . So it is obvious 

that all vertices are of distinct degrees. 
Conversely, assume that the degrees of all vertices of G are distinct. This means that 

every two adjacent vertices have distinct degrees and to every vertex the adjacent vertices 
have distinct degrees. Hence, G is neighbourly irregular and highly irregular interval-
valued fuzzy graphs. 
 
Theorem 5. Let G be an interval-valued fuzzy graph. If G is neighbourly irregular and 

−A
µ  , +A

µ  are constant functions, then G is a neighbourly total irregular interval-valued 

fuzzy graph. 
Proof. Let ) , ( BAG =  be an interval-valued fuzzy graph where ] , [ +−=

AA
A µµ  and 

] , [ +−=
BB

B µµ  be two interval-valued fuzzy sets on a non-empty finite set V and 

VVE ×⊆  respectively. 
   Assume that G is a neighbourly irregular interval-valued fuzzy graph, i.e. the 

degrees of every two adjacent vertices are distinct. Consider two adjacent vertices 1u  and 

2u  with distinct degrees ],[ 11
+− kk  and ],[ 22

+− kk  respectively. Also let, ,)( 1cu
A

=−µ  

2)( cu
A

=+µ  for all Vu ∈  where [ ]1 , 0 , 21 ∈cc  are constants. Therefore, 

] , [])( , )([)( 211121111 ckckcudcudutd ++=++= +−+−  

] , [])( , )([)( 221222122 ckckcudcudutd ++=++= +−+− . Clearly, )()( 21 utdutd ≠ . 

Therefore for any two adjacent vertices 1u  and 2u  with distinct degrees, it’s total degrees 

are also distinct, provided −A
µ , +A

µ  are constant functions. The above argument is true 

for every pair of adjacent vertices in G. 
 
5. Conclusions  
  Graph theory is an extremely useful tool in solving the combinatorial problems in 
different areas including geometry, algebra, number theory, topology, operations research 
and computer science. In this paper, we have described degree of a vertex, order, size and 
underlying crisp graph of an interval-valued fuzzy graph. The necessary and sufficient 
conditions for an interval-valued fuzzy graph to be the regular interval-valued fuzzy 
graphs have been presented. Size of an interval-valued fuzzy graph a relation between 
size and order of an interval-valued fuzzy graph have been calculated. We have defined 
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irregular interval-valued fuzzy graphs, neighbourly irregular, totally and highly irregular 
interval-valued fuzzy graphs. Some relations about the defined graphs have been proved. 
 

REFERENCES 
 

1. M. Akram and W. A. Dudec, Interval-valued fuzzy graphs, Computers and  
Mathematics with Applications, 61 (2011), 289-299. 

2. M. Akram, Bipolar fuzzy graphs, Information Sciences, 181 (2011), 5548–5564. 
3. M. Akram and B. Davvaz, Strong intuitionistic fuzzy graphs, Filomat, 26(1) (2012), 

177–196. 
4. M. Akram and W.A. Dudek, Regular bipolar fuzzy graphs, Neural Computing and 

Applications (2011). 
5. K. R. Bhutani and A. Battou, On M-Strong fuzzy graphs, Information Sciences, 155 

(1-2), 103-109, (2003). 
6. K. R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, Information Sciences, 

152 (2003), 319-322. 
7. K. R. Bhutani, J. Mordeson and A. Rosenfeld, On degrees of end nodes and cut nodes 

in fuzzy graphs, Iranian Journal of Fuzzy Systems, 1(1) (2004), 57 -64. 
8. M. B. Gorzalczany, A method of inference in approximate reasoning based on 

interval-valued fuzzy sets, Fuzzy Sets and Systems, 21 (1987), 1-17. 
9. M. B. Gorzalczany, An interval-valued fuzzy inference method some basic 

properties, Fuzzy Sets and Systems, 31 (1989), 243-251. 
10.   J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New 

Directions, Prentice-Hall, Upper Saddle River, New Jersey, (2001). 
11.  S. Mathew and M. S. Sunitha, Types of arcs in a fuzzy graph, Information Sciences, 

179 (2009), 1760-1768. 
12.  J. N. Mordeson and P. S. Nair, Fuzzy Graphs and Hypergraphs, Physical Verlag, 

(2000). 
13.  A. Nagoorgani and K. Radha, On regular fuzzy graphs, Journal of Physical 

Sciences, 12 (2008), 33-40. 
14.  A. Nagoorgani and J. Malarvizhi, Isomorphism properties of strong fuzzy graphs, 

Intern.Journal of Algorithms, Computing and Mathematics, 2(1) (2009), 39-47. 
15.  A. Nagoorgani and P. Vadivel, Relations between the parameters of independent 

domination and irredundance in fuzzy graph, International Journal of Algorithms, 
Computing and Mathematics, 2(1) (2009), 15-19. 

16.  A. Nagoorgani and A. Latha, On irregular fuzzy graphs, Applied Mathematical 
Sciences, 6(11) (2012), 517 - 523. 

17.  P. S. Nair and S. C. Cheng, Cliques and fuzzy cliques in fuzzy graphs, IFSA world 
congress and 20th NAFIPS International Conference, 4 (2001), 2277-2280. 

18.  P. S. Nair, Perfect and precisely perfect fuzzy graphs, Fuzzy Information Processing 
Society, (2008) 19-22. 

19.  A. Rosenfeld, Fuzzy graphs, in: L. A. Zadeh, K. S. Fu, M. Shimura (Eds), Fuzzy 
Sets and Their Applications, Academic Press, New York, 77-95, (1975). 

20.  M. K. Roy and R. Biswas, I-V fuzzy relations and Sanchez’s approach for medical 
diagnosis, Fuzzy Sets and Systems, 47 (1992), 35-38. 



Madhumangal Pal and Hossein Rashmanlou 

66 
 

21.  S. Samanta and M.Pal, Fuzzy tolerance graphs, International Journal of Latest 
Trends in Mathematics, 1(2) (2011), 57-67. 

22.  S. Samanta and M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs, 
to appear in Fuzzy Information and Engineering. 

23.  S. Samanta and M. Pal, Fuzzy threshold graphs, CIIT International Journal of Fuzzy 
Systems, 3 (12) (2011), 360-364. 

24.  S. Samanta and M. Pal, Bipolar fuzzy hypergraphs, International Journal of Fuzzy 
Logic Systems, 2(1) (2012), 17-28. 

25.  I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and 
Systems, 20 (1986), 191-210. 

26.  A. A.Talebi and H. Rashmanlou, Isomorphism on interval-valued fuzzy graphs, to 
appear in Annals of Fuzzy Mathematics and Informatics. 

27.  A. A.Talebi, H. Rashmanlou and N. Mehdipoor, Isomorphism on vague graphs, to 
appear in Annals of Fuzzy Mathematics and Informatics. 

28.  Hossein Rashmanlou and Young Bae Jun, Complete interval-valued fuzzy graphs, to 
appear in Annals of Fuzzy Mathematics and Informatics. 

29.  A. A. Talebi, Hossein Rashmanlou and Bijan Davvaz,  Some properties of interval-
valued fuzzy graphs, Submitted. 

30.  L. A. Zadeh, The concept of a linguistic and application to approximate reasoning I, 
Information Sciences, 8 (1975), 199–249. 

31.  L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. 
32. Sk. Md. Abu Nayeem and M.Pal, Shortest path problem on a network with 

imprecise edge weight, Fuzzy Optimization and Decision Making, 4 (2005) 
293-312. 

33. Sk. Md. Abu Nayeem and M.Pal, The p-center problem on fuzzy networks 
and reduction of cost, Iranian Journal of Fuzzy Systems,  5(1) (2008) 1-26. 

34. Sk. Md. Abu Nayeem and M.Pal, PERT on a network with imprecise edge 
weights, The Journal of Fuzzy Mathematics, 16(4) (2008) 853-874. 
 

  


