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Abstract. Numerical simulation of two-dimensional laminar steady-state on MHD 

free convection for heat flow patterns with heatlines concept within trapezoidal 

cavity has been investigated. In this study, free convection within a trapezoidal 

enclosure for uniformly heated bottom wall, insulated top wall and isothermal side 

walls with inclination angles (ф) are considered. The fluid is concerned for the wide 

range of Rayleigh number (Ra) from 10
3
 to 10

7
 and Prandtl number (Pr) from 0.026-

1000 with various tilt angles Ф = 45
0
, 30

0
 and 0

0
(square). The properties of the fluid 

were presumed to be constant. The physical problems are represented 

mathematically by different sets of governing equations along with the 

corresponding boundary conditions. The non-dimensional governing equations are 

discretized by using Galerkin weighted residual method of finite element 

formulation. Results are presented in terms of streamlines, isotherms, average and 

Local Nusselt numbers, for different parameters namely Prandtl number Pr and 

Rayleigh number Ra. This range of Ra is selected on the basis of calculation 

covering free convection dominated regimes. The results indicate that the Local and 

average Nusselt number at the uniform heating of bottom wall of the cavity depends 

on the dimensionless parameters.  

Keywords: Free convection, finite element method, Trapezoidal cavities, Uniform 

heating. 
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Nomenclature 

B0         Magnetic induction 

Cp        Specific heat at constant pressure 

            (J/kg K) 

G         Gravitational acceleration (m/s
2
) 

Gr        Grashof number 

H         Convective heat transfer  

            coefficient (W/m
2
 K) 

Ha       Hartmann number 

K         Thermal conductivity of  

            fluid(W/m K) 

L          Height or base of trapezoidal  

             cavity (m) 

K         Thermal conductivity ratio fluid  

N         Total number of nodes  

Nuav     Average Nusselt number 

Nulocal  Local Nusselt number 

P          Non-dimensional pressure 

p          Pressure 

Pr        Prandtl number 

Ra        Rayleigh number 

T          Non-dimensional temperature 

Th         Temperature of hot bottom wall 

             (k) 

Tc         Temperature of cold  bottom wall 

            (k) 

U         x component of dimensionless   

            velocity 

u          x component of  velocity (m/s) 

V          y component of dimensionless   

            velocity 

v          y component of  velocity (m/s) 

V0        Lid velocity 

x, y      Cartesian coordinates 

X, Y     Dimensionless Cartesian  

            coordinates 

Th       Heated uniformly 

Tc       Cold temperature 

 

Greek symbols 

         Thermal diffusivity (m
2
/s) 

         Coefficient of thermal expansion 

           (K
-1

) 

         Density of the fluid (kg/m
3
) 

∆θ       Temperature difference 

Θ         Fluid temperature 

μ          Dynamic viscosity of the fluid  

            (Pa s) 

Π         Heatfunction 

ν           Kinematic viscosity of the fluid 

            (m
2
/s) 

σ          Fluid electrical conductivity(Ω
- 

                   1
m

-1
) 

 

Subscripts 

b         Bottom wall 

l           Left wall 

r          Right wall 

s          Side wall  

 

1.   Introduction  

Free convection flow and heat transfer in a trapezoidal cavity have been the topic of 

many researches in engineering studies. These studies consist of various 

technological applications such as in electronic cooling, ventilation of building, 

design of solar collectors etc. Most of the cavities commonly used in industries are 

cylindrical, rectangular, trapezoidal, triangular etc. Trapezoidal cavities have 
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received a considerable attention for its application in various fields. A brief review 

of the relevant literature is presented in the following section. 

Anandalakshmi and Basak [1] studied for the energy distribution and 

thermal mixing in steady laminar natural convective flow through the rhombic 

enclosures with various inclination angles (φ) for various industrial applications. 

Also an analysis on entropy generation during natural convection in a trapezoidal 

cavity with various inclination angles (φ = 45°, 60° and 90°) has been carried out for 

an efficient thermal processing of various fluids of industrial importance 

(Pr = 0.015, 0.7 and 1000) in the range of Rayleigh number (10
3
 − 10

5
) by Basak et 

al. [2]. Basak et al. [3] studied a comprehensive heatline based approach for natural 

convection flows in trapezoidal enclosures with the effect of various walls heating. 

Basak et al. [4] also presented natural convection flows in porous trapezoidal 

enclosures with various inclination angles. Natural convection in trapezoidal 

enclosures for uniformly heated bottom wall, linearly heated vertical wall(s) in 

presence of insulated top wall have been investigated numerically with penalty finite 

element method by Basak et al. [5]. Basak et al. [6] also performed the phenomena 

of natural convection within a trapezoidal enclosure filled with porous matrix for 

linearly heated vertical wall(s) with various inclination angles φ. Basak et al. [7] also 

studied the phenomena of natural convection in a trapezoidal enclosure filled with 

porous matrix numerically. Besides, a study of the natural heat and mass transfer in 

a trapezoidal cavity heated from the bottom and cooled from the inclined upper wall 

is undertaken by Boussaid et al. [8]. He obtained results which show that the flow 

configuration depends on the θ angle inclination of the upper wall. Peric [9] studied 

Natural convection in trapezoidal cavities with a series of symmetrically refined 

grids 10×10 to 160×160 control volume and observed the convergence of results for 

grid independent solutions. A penalty finite element analysis with bi-quadratic 

elements is performed to investigate the influence of uniform and non-uniform 

heating of bottom wall on natural convection flows in a trapezoidal cavity by 

Natarajan et al. [10]. Natarajan et al. [11] presented a numerical study of combined 

natural convection and surface radiation heat transfer in a solar trapezoidal cavity 

absorber for Compact Linear Fresnel Reflector (CLFR). The numerical simulation 

results are presented in terms of Nusselt number correlation to show the effect of 

these parameters on combined natural convection and surface radiation heat loss. 

Saleh et al. [12] also studied the effect of a magnetic field on steady convection in a 

trapezoidal enclosure filled with a fluid-saturated porous medium by the finite 

difference method. Hung et al. [13] made an attempt to analyze the nonlinear 

instability of a magnetohydrodynamics (MHD) film flow with phase change at the 

interface. They pointed that increasing the stability of film flow by controlling 

magnetic field; a film flow with optimum conditions could be obtained. Basak et al. 

[14] also investigated heat flow patterns in the presence of natural convection within 

trapezoidal enclosures with heatlines concept. In this study, natural convection 

within a trapezoidal enclosure for uniformly and non-uniformly heated bottom wall, 

insulated top wall and isothermal side walls with inclination angle have been 

investigated.  

However, visualization of heat flows via heatlines for magneto-

hydrodynamics with uniformly heated bottom walls were not reported for 
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trapezoidal enclosures. It is also essential to study the heat transfer characteristics in 

complex geometries in order to obtain the optimal design of the container for various 

industrial applications. The aim of the present work is to present the effects on heat 

flow via heatlines for MHD free convection within trapezoidal cavity with uniformly 

heated bottom wall. Results will be presented for different non-dimensional 

governing and physical parameters in terms of streamlines, stream functions, total 

heat flux, isotherms, heat transfer rate as well as the average temperature of the fluid 

in the cavity. The heatlines and thermal mixing will be illustrated for commonly 

used fluid with Pr = 0:026 – 1000 and Ra = 10
3
 - 10

7
 in various industrial 

applications. 

2.   Problem Definition 

The physical model is shown in Figure 1, along with the important geometric 

parameters. A trapezoidal cavity of height L with the left wall inclined at an angle ф 

= 45
0
, 30

0
, 0

0
 with Y axis is considered. The heat transfer and the fluid flow for 

uniform heating in a two-dimensional trapezoidal cavity with a fluid whose left wall 

and right wall (i.e. side walls) are subjected to cold Tc temperature, bottom wall is 

subjected to hot Th temperature while the top wall is kept insulated. The boundary 

conditions for velocity are considered as no-slip on solid boundaries. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the physical system for (a) ф =  45
0
, (b) ф = 30

0
 

and (c) ф = 0
0 

3.   Governing equations  

The following assumptions are made: the fluid is steady, two-dimensional, laminar 

incompressible and Newtonian, there is no viscous dissipation. For the treatment of 

the buoyancy term in the momentum equation, Boussinesq approximation is 
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employed for the variations of density and buoyancy force is included as a body 

force in the v-momentum equation. 

Using non-dimensional variables defined below, the non-dimensional governing 

equations are obtained as:  

0
U V

X Y

 
 

 
  (1) 

2 2

2 2
Pr

U U P U U
U V

X Y X X Y

     
     

        

(2) 

2 2
2

2 2
Pr ( ) Pr Pr

U U P V V
U V Ra Ha V

X Y Y X Y


    
      

      
(3) 

2 2

2 2
U V

X Y X Y

       
   

       

(4) 

Non-dimensional variables used for the above equations (1−4) stated as follows: 

   

2

2

3 3 2 2
2 0

2 2

, , , , , , Pr ,

Pr
, , ,

c

h c

h c h c

p

T Tx y uL vL pL
X Y U V P

L L T T

g L T T g L T T B L k
Gr Ra Ha

C




  

  


  


      



 
   

 

The appropriate boundary conditions (also shown in Fig. 1) used to solve the 

equations (1)-(4) can be written as: 

At the bottom wall:  
0, 0, 1 0, 0 1U V Y X             

At the left wall:   
0, 0, 0, cos sin 0, 0 1U V X Y Y              

At the right wall:  
0, 0, 0, cos sin cos , 0 1U V X Y Y            

At the top wall:  

 0, 0, 0, 1, tan 1 tanU V Y X
Y


 


        


 

The local Nusselt number at the heated surface of the cavity which is defined by the 

following expression: 

l r b sNu Nu Nu Nu
n


    

 ,
where n denotes the normal direction on a plane. 

The average Nusselt number at the heated bottom wall, cold left and right walls and 

insulated top walls of the cavity based on the non-dimensional variables may be 

expressed as: 
1 1 1 1

0 0 0 0

l r s bNu Nu dX Nu dX Nu dX Nu dX      
.
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4.   Finite Element Technique 

The numerical procedure used in this work is based on the Galerkin weighted 

residual method of finite element formulation. The application of this technique is 

well described by Taylor and Hood [15] and Dechaumphai [16]. In this method, the 

solution domain is discretized into finite element meshes, which are composed of 

triangular elements. Then the nonlinear governing partial differential equations i.e., 

mass, momentum andenergy equations are transferred into a system of integral 

equations by applying Galerkin weighted residual method. The integration involved 

in each term of these equations is performed by using Gauss quadrature method. 

Then the nonlinear algebraic equations so obtained are modified by imposition of 

boundary conditions. These modified nonlinear equations are transferred into linear 

algebraic equations by using Newton’s method. Finally, these linear equations are 

solved by using Triangular Factorization method.  

5.   Grid Independence Test  

Seven different grid sizes of 6402, 12922, 14729, 15731, 25462, 26185, 26903 

nodes and 952, 1947, 2218, 2363, 3852, 3960, 4071elements respectively are chosen 

for the present simulation to test the independency of the results with the grid 

variations. Average Nusselt number at the heated surface study is performed for a 

trapezoidal cavity with Pr = 0.7, phi = 0 and Ra = 10
5
. From these values, a grid size 

of 15731 nodes and 2363 elements are chosen for better accuracy in Table 1. 

 

 

Table 1: Grid Sensitivity Check at Pr = 0.7, Phi = 0, Ha = 50 and Ra = 10
5
. 

       6.   Code Validation 

The work has been validated against the work of Basak et al. (March 2009) for 

natural convection in a trapezoidal cavity. Average Nusselt number is calculated for 

three different Rayleigh numbers (Ra = 10
3
, 10

4
 and 10

5
) and three different angles 

ф = 45
0
, 30

0
, 0

0
, while the prandtl number is fixed i.e. Pr = 0.7 for uniform heating 

of bottom respectively in Table 2. The present average Nusselt numbers are in good 

agreement with these of Basak et al. (March 2009).  

 

 

Ra 

Average Nusselt Number, ( Nuav ) 

Present work  Basak et al. (2009)  

ф =  0
0
 ф =   30

0
 ф =  45

0
 ф =  0

0
 ф =  30

0
 ф =  45

0
 

10
3
 6.055778 4.714051 3.894428 5.31956 3.93605 3.34577 

Nodes 

(Elements) 

6402 

(952) 

12922 

(1947) 

14729 

(2218) 

15731 

(2363) 

25462 

(3852) 

26185 

(3960) 

26903 

(4071) 

Nuav 5.753017 6.120885 6.005761 6.123839 6.618788 6.74774 6.721055 

Time (s) 3.563 6.813 7.235 7.875 13.781 14.0 14.266 
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10
4
 6.09068 4.935452 4.19254 6.4311 5.37306 4.90481 

10
5
 7.558405 6.633036 5.952502 8.71198 7.80227 7.37514 

 

Table 2: Code validation for uniform heating of bottom wall with Pr = 0.7. 

7.   Results and Discussion 

Numerical studies have been studied on MHD free convection within trapezoidal 

cavity with uniformly heated bottom. In this endorsement uniformly heated bottom 

wall, thermal insulation of top wall and cold side (left or right) walls have been 

analyzed. Results are obtained on uniform heating for parametric study for the wide 

range of Rayleigh number, Ra = 10
3
- 10

7
 and Prandtl number, Pr = 0.026, 0.7, 1000 

with various angles, ф = 45
0
, 30

0
, 0

0
(square cavity). 

7.1 Uniform Heating of Bottom Wall 

Figures 2-7 display the effects of streamline (stream function), isotherms 

(temperature) and heatlines for Pr = 0.026, 0.7, 1000 when bottom wall is uniformly 

heated and side walls is maintained as cold. Here we see that from the middle 

portion of the bottom wall fluid rise up and the fluid near the hot bottom wall has 

lower density. So it moves upward relatively heavy fluid along two vertical side 

walls moves downwards (flow down) forming symmetric rolls with clockwise and 

anticlockwise rotations inside the cavity and the fluid is heated up. Thus fluid 

completes circulation. 

Figure 2 illustrates that the magnitudes of streamfunction contours are 

considerably smaller which express that, at low Rayleigh number the flow is 

primarily due to conduction. For Ra = 10
3
, Pr = 0.026 and ф = 0

0
(square cavity) 

isotherms (temperature) with θ = 0.05 - 0.10 occur symmetrically along side (left or 

right) walls and with θ ≥ 0.15 are smooth curves symmetric with respect to vertical 

symmetrical line (Fig. 2a). For Ra = 10
3
, Pr = 0.026 and ф = 30

0
 the temperature 

contours with θ = 0.05 – 0.25 occur symmetrically near the side walls of the 

enclosure and with  θ ≥ 0.30 are smooth curves symmetric with respect to central 

symmetrical line (Fig. 2b). Again for Ra = 10
3
, Pr = 0.026 and ф = 45

0
 isotherms 

(temperature) with θ = 0.05 – 0.30 occur symmetrically near the side walls of the 

enclosure and with θ ≥ 0.35 are smooth curves symmetric with respect to vertical 

symmetrical line (Fig. 2c). The presence of significant convection is also exhibited 

with temperature distribution for various ф in trapezoidal cavity. It can be explained 

with distribution of heat energy is governed by heat function or heat flux. Heatlines 

or total heat flux are shown in panels of fig.2a-c. Heatlines illustrate that heat energy 

from the bottom wall symmetrically distributed to side walls for various tilt angles 

of ф especially for smaller Ra.  
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(a)                             (b)                             (c) 

              
Figure 2: Stream function (Ψ), temperature (θ), heat function or total heat flux(П) 

contours for uniform bottom heating θ(X,0) = 1 with Pr = 0.026, Ha = 50 and Ra = 

10
3
 (a) Φ = 0

o
 (b)  Φ  = 30

o
   (c) Φ = 45

o
 

It is important to note that two bottom corner edges have infinite heat flux as the 

cold wall is directly in contact with the hot bottom wall and sign of heat functions 

depend on boundary conditions at two bottom corners. Our sign convection is based 

on the fact that heat flow occurs from hot to cold walls and the positive heat flow 

corresponds to anticlockwise heat flow. It may be noted that the magnitudes of heat 

functions decrease from the bottom edges to the central symmetric line where no 

heat flux condition is valid due to symmetric boundary conditions for temperature. 

Figure 3 illustrates that effect of buoyancy force is compared to viscous forces 

and the intensity of fluid motion has been increased by larger magnitudes of 

streamfunction for Ra = 10
7
, Pr = 0.026. The enhanced convection causes larger heat 

energy to flow from the bottom wall to the top portion of the vertical wall and large 

regime of the top portion of the cavity remains at uniform temperature for ф = 45
0
 

and 30
0
. It is interesting to note that isotherms are more compressed near to corners 

of bottom wall. Therefore the deformation occurs in the streamfunction near to the 

corners of bottom wall. As a result secondary circulations are also developed near to 

θ

θ 

Ψ 

П

П 
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the intersection of uniformly heated bottom wall and center of the cold side walls for 

ф = 0
0
 and for ф =  30

0
, 45

0
 symmetric multiple circulations near to corner appear.  

 

 

 

 
                (a)    (b)                       (c)     

Figure 3: Stream function (Ψ), temperature (θ), heat function or total heat flux(П) 

contours for uniform bottom heating θ(X,0) = 1 with Pr = 0.026, Ha = 50 and Ra = 

10
7
 (a) Φ = 0

o
 (b)  Φ  = 30

o
   (c) Φ = 45

o
 

Figure 4 exemplifies that the magnitudes of streamfunction  are circular or 

elliptical near the core but the streamlines near the wall is almost parallel to wall 

exhibiting large intensity of flow for Pr = 0.7 and Ra = 10
7
. For Pr = 0.7 and Ra = 

10
7
 isotherms with θ = 0.05 – 0.50, θ = 0.05 – 0.55,  θ = 0.05 – 0.45 occur 

symmetrically near the side walls of the enclosure and θ ≥ 0.55, θ ≥ 0.60, θ ≥ 0.50  

are smooth curves symmetric with respect to central symmetrical line for Ra = 10
7
, 

Pr = 0.7 and ф = 45
0
, 30

0
, 0

0
(square cavity) respectively. Although streamlines are 

circular or elliptical near the core but streamlines near the wall are almost parallel to 

wall for intensity of flow (fig. 4). It is also fascinating that multiple correlations are 

absent for Pr = 0.7 and Ra = 10
7
 whereas multiple heat circulation loops were 

observed for Pr = 0.026 (fig. 3). Due to enhanced flow circulations the isotherms are 

highly compressed near the side walls except near the bottom wall especially for ф = 

45
0
 and 30

0
.The thermal energy is further analyzed with heatlines. The large 

Ψ 

θ

θ 

П

П 



Muhammad Sajjad Hossain
 
and Mohammad Abdul Alim

 

50 

 

temperature gradient near the side walls are due to significant number of heatlines 

with a large variation of heat function as seen in figure 6a-c whereas the heatlines 

along the side walls are less dense leading to less thermal gradient and also near 

corners irrespective of ф s.  

 

 

 
      (a)     (b)                (c) 

Figure 4: Stream function (Ψ), temperature (θ), heat function or total heat flux(П) 

contours for uniform bottom heating θ(X,0) = 1 with Pr = 0.7, Ha = 50 and Ra = 10
7
 

(a) Φ = 0
o
 (b)  Φ  = 30

o
   (c) Φ = 45

o
 

Figure 5 shows streamline, Isotherms (temperature) and heatlines for Ra = 10
7
, 

Pr =1000 and ф = 45
0
, 30

0
, 0

0
(square cavity) respectively. For Pr = 1000 and Ra = 

10
7
 isotherms with θ = 0.05 – 0.45, θ = 0.05 – 0.40,  θ = 0.05 – 0.40 occur 

symmetrically near the side walls of the enclosure and  θ ≥ 0.50, θ ≥ 0.45, θ ≥ 0.45  

are smooth curves symmetric with respect to central symmetrical line for Ra = 10
7

, 

Pr = 1000 and ф = 45
0
, 30

0
, 0

0
(square cavity) respectively. Comparative studies on 

figure 4 and figure 5 show that as Pr increases from 0.7 to 1000 for various Ra, the 

values of stream function on the core cavity increase because of highly viscous. It is 

exemplify that the greater circulations due to higher Pr leads to elliptical stream 

function in the core.   

At larger Ra = 10
7
 and Pr =1000 (Fig. 5a-c), it is seen that the intensity of flow 

circulations are increased from the values of stream functions. Streamlines near the 

side walls take the shape of container or circular and signify enhance mixing effects. 

Ψ 

θ

θ 

П

П 
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     (a)      (b)   (c)    

Figure 5: Stream function (Ψ), temperature (θ), heat function or total heat flux(П) 

contours for uniform bottom heating θ(X,0) = 1 with Pr = 1000, Ha = 50 and Ra = 

10
7
 (a) Φ = 0

o
 (b)  Φ  = 30

o
   (c) Φ = 45

o
 

The isotherms θ ≤ 0.40 are highly compressed near the side walls and isotherms with 

θ ≥ 0.50 are also confined within a small regime near the bottom wall. The heatlines 

are highly dense at the central regime. It is also significant that at high Pr streamline 

except at the central regime is almost circular indicating higher intensity of flows. 

Also the signififcant numbers of heatlines are observed along the side walls leading 

to large thermal gradient for ф = 45
0
 and 30

0
 and heatlines are less dense along the 

side vertical walls. Besides, the effects of heat transfer for various Ra and inclination 

angles ф = 45
0
, 30

0
, 0

0
 for different Pr on local and average Nusselt number are 

discussed later in detail. 

 

7.2  Heat Transfer Rates: Local Nusselt Number vs distance and Average 

       Nusselt Number vs Rayleigh Number 

Figure 6(a) displays the effects of local Nusselt number vs distance for various 

inclinations of angles i.e. i) ф = 0
0 

,ii) ф = 30
0
, iii) ф = 45

0
, for uniform heating of 

bottom wall with Pr = 0.026. Here the heat transfer rates are  shown for Ra = 10
3
. As 

Ψ 

θ

θ 

П

П 
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bottom wall is heated and side wall is cold and top wall is insulated so that for 

adjacent wall it is observed that heat transfer rate is maximum near edge of the left 

wall and the rate is step down from left side and it is straightly moving and then also 

it goes up to right side. Here the heat transfer rates are almost same for ф = 30
0
, 45

0
 

except ф = 0
0
 [square cavity]. Figure 6(a) also display similar effects of local 

Nusselt number with distance for various inclination tilt angles for Pr = 0.026 in case 

of uniform heating. But here the values of heat transfer rate increase a little. Here the 

heat transfer rates are shown for Ra = 10
3
,10

4
. Figure 6(a) also detects the variation 

of local Nusselt number with distance for various inclination tilt angles i.e. i) ф = 0
0 

,ii) ф = 30
0
, iii) ф = 45

0
,with Pr = 0.026 for uniform heating of bottom wall. Here 

heat transfer rates are discussed for Ra = 10
7
. It is observed that heat transfer rates is 

very high at corners and it reduce the heat transfer rates toward the middle of bottom 

wall as the comparison of temperature contours is minimum at the center of wall 

irrespective of фs with Pr = 0.026. 

Figure 6(b) shows the effects for various inclination angles when Ra = 10
3
 

and Pr = 0.7 in presence of uniform heating of bottom walls. Here the value of heat 

transfer rates increases as Pr increases. It is interesting to observe that the heat 

transfer rates (Nub) for ф = 30
0
, and ф = 45

0
 are almost identical except ф = 0

0
. It is 

also observed that thermal gradient is minimum at the center of bottom wall as seen 

from dispersed isotherm contours at the center of the wall for irrespective of фs. 

Figure 6(b) exemplify that similar effects of various inclination angles ф = 45
0
, 30

0
, 

0
0
 for Ra = 10

4
, 10

5
, 10

7
 with Pr = 0.7 in presence of uniform bottom heating. Here, 

in case of uniform heating the heat transfer rate of left wall is very high and almost 

uniform near the bottom edge of hot vertical wall. As Ra increases then the 

magnitudes of heat transfer rates increases. But at larger Ra = 10
7
, local heat transfer 

rates occur due to presence of secondary circulations which results isotherm 

contours at various places of bottom wall of uniform heating. 

The heat transfer rates are also displayed in figure 7(a)-(c), where 

distributions of average Nusselt number of bottom wall respectively are plotted vs 

the logarithmic Rayleigh number. It may be noted that average Nusselt number is 

obtained by considering temperature gradient. It can also be noted that as Ra 

increases then the average Nusselt number increases. It is seen in figure 7(a) that as 

Ra increases from 10
3
-10

6
 then average Nusselt number is straightly moving but as 

Ra increases more,then average Nusselt number is increasing for Pr = 0.026. As Pr 

increases (figure 7(b)) then conduction dominant heat transfer is narrowed down. It 

is also seen from figure 7(c), that, as Pr increases more, then from uniform heating 

case it is analyzed that average Nusselt number for bottom wall remain constant 

during the entire Rayleigh number regime. This illustrates the conduction dominant 

heat transfer for different Prandtl number regime irrespective of Ra.. It is observed 

that Nub at the middle portion of bottom wall for Φ = 0
o 
is larger for uniform heating 

case whereas for Φ = 30
o
 and 45

o 
heat transfer rates are identical. It is also seen that 

Nus is largest near the bottom corner of side walls for Φ = 0
o
. At larges Pr (Pr= 

1000) of uniform bottom heating it is seen that as Ra increase from 10
3
 to 10

6
, then 

average heat transfer rates (Nub) increases. After crossing Ra = 10
6
 then it is also 

seen average heat transfer rates are decreasing. After that when Ra goes to 10
7
 then 

average heat transfer rate is also increasing because of highly viscous of Pr.  
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                                      (a)                                                                 (b) 

Figure 6: Variations of local Nusselt numbers (Nub) with distance for a) Pr = 0.026, 

b)  Pr =  0.7  and  Ra = 10
3
 , 10

4
  ,10

5
 , 10

7
  and for various inclination of angles Φ = 

0
o
, 30

o
, 45

o
 in presence of uniform heating of bottom walls. 

 

                                           
   (a)                                        (b)                                    (c)                                              

Figure 7: Variations of Average Nusselt Number vs Rayleigh number for  (a) Pr = 

0.026, (b) Pr = 0.7, (c) Pr = 1000 and for various inclination of angles Φ = 0
o
, 30

o
, 

45
o
 in presence of uniform heating of bottom wall. 
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8.  Conclusions 

In this authentication, two-dimensional laminar steady state MHD free or natural 

convection within trapezoidal cavity for uniformly heated of bottom wall has been 

analyzed with heatlines concept by finite element method. The finite element 

equations were derived from the governing flow equations that consist of the 

conservation of mass, momentum, and energy equations. The derived finite element 

equations are nonlinear requiring an iterative technique solver. Galerkin weighted 

residual method has been applied to solve these nonlinear equations for solutions of 

the nodal velocity component, temperature, and pressure by considering Prandtl 

numbers of 0.026, 0.7, 1000, Hartman numbers of 50 and also Rayleigh numbers of 

10
3
 to 10

7
. The results show that,  

1. The heat transfer rate is maximum near the edge of the wall and the rate is 

minimum near the center of the wall irrespective of all angles (ф) for uniform 

heating of the bottom wall for Rayleigh number 10
3
 to 10

7
 gradually. 

2. The average Nusselt number (Nu) at the uniform heating of bottom wall is the 

highest for the angle 0
0
  when Rayleigh number 10

7
, whereas the lowest heat 

transfer rate for the angle 45
0
when Rayleigh number 10

3
. Moreover, the average 

Nusselt number, the uniform heated bottom wall is higher than those obtained 

with the non-uniform heated bottom wall for different angle. 

3. Heat transfer depends on Prandtl number and heat transfer rate is maximum near 

the edge of the wall and the rate is minimum near the center of the wall 

irrespective of all angles (ф) for uniform heating of the bottom wall for different 

prandtl number.  

4. The heat transfer rate average Nusselt Number, Nuav increases with the increase 

of Rayleigh number, Ra, for uniform heating of bottom wall.  
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