
Annals of Pure and Applied Mathematics 
Vol. 3, No. 1, 2013, 17-26 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 16 May 2013 
www.researchmathsci.org 
 

17 
 

Annals of 

Ekman Boundary Layer Mixed Convective  
Heat Transfer Flow through a Porous Medium with 

Large Suction 
 

M. M. Haque 1, M. S. Uddin 1, M. A. Islam 2 and M. H. Uddin 3 
 

1Mathematics Discipline, Khulna University, 
Khulna-9208, Bangladesh. E-mail: mm.haque@ymail.com 

 
2Department of Mathematics, Damkura Hat College, Damkura, 

Rajshahi, Bangladesh 
 

3Department of Computer Science and Engineering, 
Jessore Science & Technology University, Jessore, Bangladesh 

 
Received 22 April 2013; accepted 26 April 2013 

 
Abstract. An analytical investigation on a mixed convective heat transfer steady flow past 
a continuously moving semi-infinite vertical plate bounded by a porous medium with 
large suction is performed in a rotating system. The governing equations of the problem 
are transformed by usual similarity transformations. To solve the momentum and energy 
equations, the perturbation technique is used in this work. The shear stresses and Nusselt 
number are also calculated here. The obtained numerical values of velocities and 
temperature are plotted in figures. To observe the effects of various parameters on the 
above mentioned quantities, the results are discussed in detailed with the help of graphs 
as well as the tabulated values. Finally, a important conclusion is listed here. 
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1. Introduction 
The flow through a porous medium plays a decisive role in many industrial applications. 
Porous media are very widely used to insulate a heated body to maintain its temperature. 
To make the heat insulation of the surface more effective, it is necessary to study the free 
convection flow through a porous medium. Raptis et. al. [1] have observed the steady 
free convective flow through a porous medium bounded by an infinite surface by use of 
the model of Yamamoto and Iwamura [2] for the flow near the surface. Threedimensional 
free convective heat transfer flow through a porous medium has been studied by 
Chaudhury and Chand [3]. 
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Greenspan [4] was the first author to recognize the Ekman layer situation and he 
observed that, in a rotating fluid near a flat plate an Ekman layer exists wherein the 
viscous and Coriolis forces are  of the same order of magnitude. The steady and 
unsteady Ekman layers of an incompressible fluid have investigated as a basic 
boundary layers in a rotating fluid appearing in the oceanic, atmospheric, cosmic 
fluid dynamics and solar physics or geophysical problems. The Ekman layer flow on a 
horizontal plate has been studied by Batchelor  [5].  Mazumder et. al.  [6] have 
studied the flow and heat transfer in a hydro-magnetic Ekman layer on a porous 
plate with Hall effects. In a rotating system, a hydromagnetic free convective flow 
past an impulsively started vertical plate has been observed by Singh [7].  

All the above problems are investigated for free convective flow of a fluid. 
However, the flow by mixed convection plays a special role in a number of industrial 
applications such as fiber and granular insulation, geothermal systems etc. Hence, our 
main aim is to investigate the Ekman boundary layer mixed convective heat transfer 
steady flow past a continuously moving semi-infinite vertical plate surrounded by a 
porous medium with large suction. 
 
2. Mathematical Model of Flow 
Consider a steady mixed convective heat transfer flow of an electrically conducting 
viscous fluid along an electrically non-conducting semi-infinite vertical plate embedded 
by a porous medium. The flow is also assumed to be in the x-direction which is taken 
along the plate in the upward direction and y-axis is normal to it. Initially, we consider 
that the plate as well as the fluid particles is at rest at the same temperature ( )T T∞=  

where T∞  denotes the uniform temperature. It is assumed that the plate be at rest after that 

the plate is to be moving with a constant velocity 0U  in its own plane. It is also 
considered that the system is allowed to rotate with a constant angular velocity Ω  about 
the y-axis. Hence the angular velocity vector is of the form Ω = ( )0 , , 0− Ω . 

In accordance with the usual Boussinesq’s approximation, the equations relevant to 
the present problem are governed by the following system of coupled non-linear partial 
differential equations under the Ekman bounder layer Phenomena, 
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Energy equation, 
2 22
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with the appropriate boundary conditions, 
( )0 , , 0, wu U v V x w T T= = = =  at 0y →  

0,u =        0,v =           0,w =   
      

T T∞=   as y → ∞   
where y is the cartesian coordinate; wvu ,,  are velocity components; g is the local 
acceleration due to gravity, β  is the thermal expansion coefficient, υ is the kinematic 
viscosity, ρ  is the density, κ  is the thermal conductivity and pc is the  specific heat at 
constant pressure. 
 
3. Mathematical Formulation 
In order to obtain the similar solutions of the mathematical model of flow, it is required 
to introduce the following similarity variables, 
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Introducing the above stated variables, we have the followings, 
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and ( )ηgUw 0=

 Using the above relations, we obtain the dimensionless equations, 
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(Permeability Parameter) and ( ),f η′ ( ),ηg ( )ηθ  represent the non-

dimensional primary velocity, secondary velocity and temperature respectively. 
Also the boundary conditions are transformed to, 

∞→===′
====′=

ηθ
ηθ

as0,0,0
0at1,0,1,

gf
gfff w

                                                        
where, ( )

?U
xxVfw
0

2−=  is the transpiration parameter. Here 0w <f  indicates the suction 

and 0w >f  denotes the injection.  
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4. Solution of the Problem 
Since the solution is sought for the large suction, hence we make the following 
transformations, 

,wfξ η=    ( ) ( ) ,wf f Fη ξ=    ( ) ( )2

wg f Gη ξ=   and  ( ) ( )2 .wf Hθ η ξ=  
Using the above quantities we have the following system of equations, 

( )EGHGFFFF r 2−−′=′′+′′′ κε  
( )FEGGFG ′+=′+′′ 2κε  
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w
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is very small as for the large suction ( )1w >f . Therefore we can expand F, 

G and H in terms of the small perturbation quantity e  as follows, 

( ) ( ) ( ) ( )2 3

2 31
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1 2 3 ................H H H Hξ ε ξ ε ξ ε ξ= + + +                                                                  

Introducing ( )F ξ , ( )G ξ and ( )H ξ  in the above system of equations, we get the 
following first order equations, 
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Also we obtain the second order equations, 
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with the boundary conditions, 

2 2 2 20,     0,  0,  0            F F G H′= = = = at   0ξ =  

2 2 20,    0, 0F G H′ = = =    at   .ξ → ∞  
Using the prescribed boundary conditions, we have the first order solution, 

2
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as well as the second order solution of the system as follows, 
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From the first and second order solution, the velocities and temperature fields are 
obtained as follows, 

Primary velocity, ( ) ( )2

20 20 21 222w w w w r wf f f f P f

w rf e A e A f e P A e A eη η η η ηη ε η− − − − −′ = + − − −  

Secondary velocity, ( ) -
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Temperature, ( ) ( )2
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5. Shear Stress and Nusselt Number 

Since the quantities of chief physical interest are shear stress and Nusselt number, 
hence the primary wall shear stress is defined as,  
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 The secondary wall shear stress is also defined as,  
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 As well as the Nusselt number is defined as,  
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which implies that, ( ) ( )[ ][ ]11 27 28 29 30 30 312 2 1 3 2 .u r r rN P A A P A P A A A Aα ε− − + − − − + − + −  
 
6. Results and Discussion 
In order to discuss the results of the present work, the analytical solutions are obtained by 
perturbation technique. For investigating the physical situation of the model, we have 
computed the numerical values of the flow variables(velocities and temperature) for 
different values of suction parameter, Grashof number, Prandtl number, Eckert number, 
Ekman number as well as permeability parameter. In this section, the numerical values 
of the velocities and fluid temperature versus η  are plotted in Figures  6.1-6.8. 

The primary velocity profiles for different values of rG , K , rP  and cE  are shown 
in Figures 6.1-6.4. From Figure 6.1, we see that the primary velocity increases with the 
increase of rG . It is observed from Figure 6.2 that the primary velocity decreases with 
the rise of K  and the same effect of the Prandtl number on the primary velocity is 
observed from Figure 6.3. An increasing effect on the primary velocity profiles for cE  
is found from the Figure 6.4. 
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Figure 6.1. Primary Velocity Profiles for 2.0,wf = 0.1,K = 1.0,E = 7.0,rP = 1.0.cE =  

 

 
Figure 6.2. Primary Velocity Profiles for 10,rG = 2.0,wf = 1.0,E = 7.0,rP = 1.0.cE =  

 

 
Figure 6.3. Primary Velocity Profiles for 10,rG = 2.0,wf = 0.1,K = 1.0,E = 1.0.cE =  
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Figure 6.4. Primary Velocity Profiles for 10,rG = 2.0,wf = 0.1,K = 1.0,E = 7.0.rP =  

 

 
Figure 6.5. Secondary Velocity Profiles for 10,rG = 0.1,K = 1.0,E = 7,rP = 1.0.cE =  

 

 
Figure 6.6. Secondary Velocity Profiles for 10,rG = 2,wf = 0.1,K = 7,rP = 1.0.cE =  

The secondary velocity curves for different values of wf  and E  are displayed in 
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with the increase of the Ekman Number. The Figure 6.6 shows that the secondary 
velocity increases with the rise of wf . 

The temperature distributions of fluid are shown in Figures 6.7-6.8. From the two 
figures, we have observed the temperature decreases with the increases of cE  as well 
as the temperature rises in case of strong Prantdl number. 
 

 
Figure 6.7. Temperature Profiles for 10,rG = 2.0,wf = 0.1,K = 1.0,E = 1.0.cE =  

 

 
Figure 6.8. Temperature Profiles for 10,rG = 2.0,wf = 0.1,K = 1.0,E = 7.0.rP =  

 
To discus the quantities of chief physical interest of the problem, the numerical 

values of primary shear stress( )xτ , secondary shear stress( )zτ  and Nusselt number ( )uN  

are tabulated in the following Table 6.1 due to the variation in rG , wf , K ,  E , rP  and cE  

for an externally cooled ( )0rG >  plate. 
It is observed from Table 6.1, the primary shear stress at the wall increases in 
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increases for rising the wf  while it decreases with the increase of E but no effect is 

found by the change of rG , rP , K  or cE . Also the Nusselt number increases in case of 

strong rG , wf , K  or cE  while it decreases the rise of Prandtl number but it remains 
unchanged with the change of Ekman number.         
 

Table  6.1. Numerical Values of Shear Stresses ( )&x zτ τ  with Nusselt Number 
 

S. No. 
rG  wf  K  E  rP  cE  xτ  zτ  uN  

1. 10.0 2.0 0.1 1.0 7.0 1.0 0.217 -0.500 3.871 
2. 11.0 2.0 0.1 1.0 7.0 1.0 0.271 -0.500 4.367 
3. 12.0 2.0 0.1 1.0 7.0 1.0 0.325 -0.500 4.863 
4. 10.0 2.1 0.1 1.0 7.0 1.0 0.157 -0.454 4.292 
5. 10.0 2.2 0.1 1.0 7.0 1.0 0.112 -0.413 4.657 
7. 10.0 2.0 0.2 1.0 7.0 1.0 0.204 -0.500 4.011 
8. 10.0 2.0 0.3 1.0 7.0 1.0 0.192 -0.500 4.151 
9. 10.0 2.0 0.1 2.0 7.0 1.0 0.217 -1.000 3.871 

10. 10.0 2.0 0.1 3.0 7.0 1.0 0.217 -1.500 3.871 
11. 10.0 2.0 0.1 1.0 5.0 1.0 0.352 -0.500 6.931 
12. 10.0 2.0 0.1 1.0 6.0 1.0 0.269 -0.500 5.796 
13. 10.0 2.0 0.1 1.0 7.0 1.1 0.260 -0.500 4.512 
14. 10.0 2.0 0.1 1.0 7.0 1.2 0.304 -0.500 5.135 

 
7. Conclusions  
Some of the important findings obtained from the graphical representation of the 
results with the numerical values of table are listed below; 

1. The primary fluid velocity increases with the increase of rG  or cE  while it 

decreases with the increase of rP  or K .  

2. The secondary velocity of fluid increases with the increase of wf  while it 
decreases with the increase of E . 

3. The fluid temperature is increasingly affected by rP  and decreasingly affected 

by cE .  

4. The primary shear stress at the wall increases in case of strong rG  or cE  while 

decreases with the increase of rP , wf  or K .  

5. The secondary shear stress at the wall increases in case of strong wf  while 
decreases with the increase of E .  

6. The Nusselt number increases with the increase of rG , wf , K  or cE  while it 
decreases in case of strong Prandtl number. 
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