
Annals of Pure and Applied Mathematics 

Vol. 31, No. 1, 2025, 9-21 

ISSN: 2279-087X (P), 2279-0888(online) 

Published on 31 January 2025 

www.researchmathsci.org 

DOI: http://dx.doi.org/10.22457/apam.v31n1a02956 

  
 

9 

 

F-Bridge Domination in Fuzzy Graphs using Strong Arcs 

O.T.Manjusha 

PG and Research Department of Mathematics 

Govt Arts and Science College, Kondotty 

Malappuram-673641, India 

E-mail: manjushaot@gmail.com 

 Received 12 December 2024; accepted 28 January 2025  

Abstract. A vital part of communication networks is reliable node connectivity. The 

network’s stability could be in danger if there is a lack of solid connectivity between nodes. 

Fuzzy graphs are designed to ensure network stability by identifying different dominating 

sets with strong arcs. This study introduces the notion of F-bridge dominating set and F-

bridge domination number in fuzzy graphs and its uses in complex networks. A few notable 

characteristics of F-bridge domination numbers are obtained, and pertinent instances are 

used to study them. F-bridge domination numbers of, complete fuzzy graphs, bipartite 

fuzzy graphs, fuzzy cycles, and fuzzy trees are identified. In the event of a node failure, the 

application of F-bridge domination in a partial mesh topology to ensure network 

continuation is demonstrated.   
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1. Introduction 

Most real-world issues on marketing, economics, technology, diagnosis of illnesses, the 

environment, etc., can be modeled as networks. As networks get larger, tracking all their 

nodes and connections becomes more difficult. Determining which nodes control the 

network as a whole is therefore essential. The concept of domination is now one of the 

latest developments in graph theory to tackle these issues. Numerous dominant uses can be 

found in parallel computing, neural networks, communication networks, and picture 

compression. This paper investigates several features of the fuzzy bridge domination 

number and presents the concept of the fuzzy bridge-dominating set of a fuzzy graph with 

strong edges. Furthermore, the fuzzy bridge dominating set and the corresponding fuzzy 

bridge domination number are found for complete fuzzy graphs, complete bipartite fuzzy 

graphs, and fuzzy trees. It demonstrates how to use fuzzy bridge-dominating sets in partial-

mesh topology to assess a network’s strong connectedness. In networking, the idea of fuzzy 

bridge domination is proposed to enable data retrieval from systems or servers even in the 

event of a breakdown. In subsequent work, we can use an algorithmic approach to 

determine the fuzzy bridge domination number in a fuzzy graph. 

http://www.researchmathsci.org/
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2. Preliminaries 

Graphs are simply models of relations, as is widely known. An easy approach to display 

information about the relationships between objects is with a graph. Vertices represent the 

objects, while edges describe the relations. Creating a "fuzzy graph model" is a necessary 

step when there is vagueness in the object’s description, its relationships, or both. A concise 

synopsis of some fundamental definitions of fuzzy graphs can be found in [9, 10, 12-13, 

15-18, 21, 26-29]. 

A fuzzy graph is denoted by 𝐺: (𝑉, 𝜎, 𝜇) where 𝑉 is a node-set, 𝜎 and 𝜇 are 

mappings defined as 𝜎: 𝑉 → [0,1] and 𝜇: 𝑉 × 𝑉 → [0,1], where 𝜎 and 𝜇 represent the 

membership values of a vertex and an edge respectively. For any fuzzy graph 𝜇(𝑥, 𝑦) ≤
min{𝜎(𝑥), 𝜎(𝑦)}. We consider fuzzy graph 𝐺 with no loops and assume that 𝑉 is finite 

and non-empty, 𝜇  is reflexive (i.e., 𝜇(𝑥, 𝑥) = 𝜎(𝑥)  for all 𝑥 ) and symmetric (i.e., 

𝜇(𝑥, 𝑦) = 𝜇(𝑦, 𝑥) for all (𝑥, 𝑦)). In all the examples, 𝜎 is chosen suitably. Also, we 

denote the underlying crisp graph by 𝐺∗: (𝜎∗, 𝜇∗) where 𝜎∗ = {𝑢 ∈ 𝑉|𝜎(𝑢) > 0} and 

𝜇∗ = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉|𝜇(𝑢, 𝑣) > 0}. Throughout we assume that 𝜎∗ = 𝑉. The fuzzy graph 

𝐻: (𝜏, 𝜈) is said to be a partial fuzzy subgraph of 𝐺: (𝜎, 𝜇) if 𝜈 ⊆ 𝜇  and 𝜏 ⊆ 𝜎 . In 

particular, we call 𝐻: (𝜏, 𝜈) a fuzzy subgraph of 𝐺: (𝜎, 𝜇) if 𝜏(𝑢) = 𝜎(𝑢) for all 𝑢 ∈
𝜏∗ and 𝜈(𝑢, 𝑣) = 𝜇(𝑢, 𝑣) for all (𝑢, 𝑣) ∈ 𝜈∗. A fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is called trivial 

if |𝜎∗| = 1. Two nodes 𝑢 and 𝑣 in a fuzzy graph 𝐺 are said to be adjacent if 𝜇(𝑢, 𝑣) >
0. 

A path 𝑃 of length 𝑛 is a sequence of distinct nodes 𝑢0, 𝑢1, ⋯ , 𝑢𝑛 such that 

𝜇(𝑢𝑖−1, 𝑢𝑖) > 0, 𝑖 = 1,2, ⋯ , 𝑛 and the degree of membership of the weakest arc is defined 

as its strength. If 𝑢0 = 𝑢𝑛 and 𝑛 ≥ 3, then 𝑃 is called a cycle, and 𝑃 is called a fuzzy 

cycle if it contains more than one weakest arc. The strength of a cycle is the strength of the 

weakest arc in it. The strength of connectedness between two nodes 𝑥 and 𝑦 is defined 

as the maximum of the strength of all paths between 𝑥  and 𝑦  and is denoted by 

𝐶𝑂𝑁𝑁𝐺(𝑥, 𝑦). 

A fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is connected if for every 𝑥, 𝑦 in 𝜎∗, 𝐶𝑂𝑁𝑁𝐺(𝑥, 𝑦) >
0. 

An arc (𝑢, 𝑣)  of a fuzzy graph is called an effective arc (M-strong arc) if 

𝜇(𝑢, 𝑣) = 𝜎(𝑢) ∧ 𝜎(𝑣) . Then 𝑢  and 𝑣  are called effective neighbors. The set of all 

effective neighbors of 𝑢 is called the effective neighborhood of 𝑢 and is denoted by 

𝐸𝑁(𝑢). 

A fuzzy graph 𝐺 is said to be complete if 𝜇(𝑢, 𝑣) = 𝜎(𝑢) ∧ 𝜎(𝑣) for all 𝑢, 𝑣 ∈
𝜎∗. 

The order 𝑝  and size 𝑞  of a fuzzy graph 𝐺: (𝜎, 𝜇)  are defined to be 𝑝 =
∑𝑥∈𝑉 𝜎(𝑥) and 𝑞 = ∑(𝑥,𝑦)∈𝑉×𝑉 𝜇(𝑥, 𝑦). 

Let 𝐺: (𝑉, 𝜎, 𝜇) be a fuzzy graph and 𝑆 ⊆ 𝑉. Then the scalar cardinality of 𝑆 is 

defined to be ∑𝑣∈𝑆 𝜎(𝑣) and it is denoted by |𝑆|𝑠. Let 𝑝 denote the scalar cardinality of 

𝑉, also called the order of 𝐺. 

The complement of a fuzzy graph 𝐺, denoted by 𝐺 is defined to be 𝐺 = (𝑉, 𝜎, 𝜇) 

where 𝜇(𝑥, 𝑦) = 𝜎(𝑥) ∧ 𝜎(𝑦) − 𝜇(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉 [30]. 

An arc of a fuzzy graph is called strong if its weight is at least as great as the 

strength of connectedness of its end nodes when it is deleted. Depending on 

𝐶𝑂𝑁𝑁𝐺(𝑥, 𝑦) of an arc (𝑥, 𝑦) in a fuzzy graph 𝐺 , Mathew and Sunitha [28] 
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defined three different types of arcs. Note that 𝐶𝑂𝑁𝑁𝐺−(𝑥,𝑦)(𝑥, 𝑦)  is the strength of 

connectedness between 𝑥 and 𝑦 in the fuzzy graph obtained from 𝐺 by deleting the arc 

(𝑥, 𝑦). An arc (𝑥, 𝑦) in 𝐺 is 𝛼 −strong if 𝜇(𝑥, 𝑦) > 𝐶𝑂𝑁𝑁𝐺−(𝑥,𝑦)(𝑥, 𝑦). An arc (𝑥, 𝑦) 

in 𝐺  is 𝛽 −strong if 𝜇(𝑥, 𝑦) = 𝐶𝑂𝑁𝑁𝐺−(𝑥,𝑦)(𝑥, 𝑦). An arc (𝑥, 𝑦) in 𝐺  is 𝛿 −arc if 

𝜇(𝑥, 𝑦) < 𝐶𝑂𝑁𝑁𝐺−(𝑥,𝑦)(𝑥, 𝑦). 

Thus an arc (𝑥, 𝑦) is a strong arc if it is either 𝛼 −strong or 𝛽 −strong. A path 

𝑃 is called a strong path if 𝑃 contains only strong arcs. If 𝜇(𝑢, 𝑣) > 0, then 𝑢 and 𝑣 

are called neighbors. The set of all neighbors of 𝑢 is denoted by 𝑁(𝑢). Also 𝑣 is called 

strong neighbor of 𝑢 if arc (𝑢,𝑣) is strong. The set of all strong neighbors of 𝑢 is called 

the strong neighborhood of 𝑢 and is denoted by 𝑁𝑠(𝑢). The closed strong neighborhood 

𝑁𝑠[𝑢] is defined as 𝑁𝑠[𝑢] = 𝑁𝑠(𝑢) ∪ {𝑢}. 

An arc is called a fuzzy bridge of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) [17]if its removal 

reduces the strength of connectedness between some pair of nodes in 𝐺. 

The strong degree of a node 𝑣 ∈ 𝑉 is defined as the sum of membership values 

of all strong arcs incident at 𝑣. It is denoted by 𝑑𝑠(𝑣). That is 𝑑𝑠(𝑣) = ∑𝑢∈𝑁𝑠(𝑣) 𝜇(𝑢, 𝑣). 

The minimum strong degree of 𝐺  is 𝛿𝑠(𝐺) =∧ {𝑑𝑠(𝑣): 𝑣 ∈ 𝑉}  and the 

maximum strong degree of 𝐺 is Δ𝑠(𝐺) =∨ {𝑑𝑠(𝑣): 𝑣 ∈ 𝑉}. 
The strong neighborhood degree of a node 𝑣  is defined as 𝑑𝑆𝑁(𝑣) =

∑𝑢∈𝑁𝑠(𝑣) 𝜎(𝑢) . The minimum strong neighborhood degree of 𝐺  is 𝛿𝑆𝑁(𝐺) =

∧ {𝑑𝑆𝑁(𝑣): 𝑣 ∈ 𝑉} and the maximum strong neighborhood degree of 𝐺 is Δ𝑆𝑁(𝐺) =
∨ {𝑑𝑆𝑁(𝑣): 𝑣 ∈ 𝑉}. 

A fuzzy graph 𝐺 is said to be bipartite [27] if the vertex set 𝑉 can be partitioned 

into two nonempty sets 𝑉1 and 𝑉2 such that 𝜇(𝑣1, 𝑣2) = 0 if 𝑣1, 𝑣2 ∈ 𝑉1 or 𝑣1, 𝑣2 ∈
𝑉2. Further if 𝜇(𝑢, 𝑣) = 𝜎(𝑢) ∧ 𝜎(𝑣) for all 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2, then 𝐺 is called a 

complete bipartite graph and is denoted by 𝐾𝜎1,𝜎2
, where 𝜎1 and 𝜎2 are respectively the 

restrictions of 𝜎 to 𝑉1 and 𝑉2. 

A node 𝑢 is said to be isolated if 𝜇(𝑢, 𝑣) = 0 for all 𝑣 ≠ 𝑢. 

 

3. F-Bridge domination in fuzzy graphs 

Nagoorgani and Chandrasekaran [14] introduced the concept of domination using strong 

arcs in fuzzy graphs. According to Nagoorgani a node 𝑣 in a fuzzy graph 𝐺 is said to 

strongly dominate itself and each of its strong neighbors, i.e., 𝑣 strongly dominates the 

nodes in 𝑁𝑠[𝑣]. A set 𝐷 of nodes of 𝐺 is a strong dominating set of 𝐺 if every node of 

𝑉(𝐺) − 𝐷  is a strong neighbor of some node in 𝐷 . They defined a minimum strong 

dominating set in a fuzzy graph 𝐺 as a strong dominating set with a minimum number of 

nodes [14]. These concepts motivated researchers to reformulate some of the concepts in 

domination more effectively.  

Also in [15] Nagoorgani defined a minimum strong dominating set as a strong 

dominating set of minimum scalar cardinality. The scalar cardinality of a minimum strong 

dominating set is called the strong domination number of 𝐺. 

Manjusha and Sunitha [9] defined strong domination numbers using membership 

values (weights) of arcs in fuzzy graphs as follows. 

 

Definition 3.1. [9] The weight of a strong dominating set 𝐷 is defined as 𝑊(𝐷) =
∑𝑢∈𝐷 𝜇(𝑢, 𝑣), where 𝜇(𝑢, 𝑣) is the minimum of the membership values 
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(weights) of strong arcs incident on 𝑢. The strong domination number of a fuzzy 

graph 𝐺  is defined as the minimum weight of strong dominating sets of 𝐺  and it is 

denoted by 𝛾𝑠(𝐺) or simply 𝛾𝑠. A minimum strong dominating set in a fuzzy graph 𝐺 is 

a strong dominating set of minimum weight.  

 Let 𝛾𝑠(𝐺) or 𝛾𝑠 denote the strong domination number of the complement of a 

fuzzy graph 𝐺. 

Now we define F- Bridge domination in fuzzy graphs using strong arcs as follows.  

 

Definition 3.2. A strong dominating set 𝐷 of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is an F-bridge 

dominating set of 𝐺 if the induced fuzzy subgraph < 𝐷 > is connected and each arc in 

< 𝐷 > is a fuzzy bridge.  

  

Remark 3.3. Note that a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) contains an F-bridge dominating set if 

and only if 𝐺 is connected.  

  

Definition 3.4. The weight of an F-bridge dominating set 𝐷 is defined as 𝑊(𝐷) =
∑𝑢∈𝐷 𝜇(𝑢, 𝑣), where 𝜇(𝑢, 𝑣) is the minimum of the membership values(weights) of 

strong arcs incident on 𝑢. The F-bridge domination number of a fuzzy graph 𝐺 is 

defined as the minimum weight of all F-bridge dominating sets of 𝐺 and it is denoted by 

𝛾𝐹𝑏(𝐺) or simply 𝛾𝐹𝑏. A minimum F-bridge dominating set in a fuzzy graph 𝐺 is an F-

bridge dominating set of minimum weight.  

 

Let 𝛾𝐹𝑏(𝐺) or 𝛾𝐹𝑏  denote the F-Bridge domination number of the complement of a 

fuzzy graph 𝐺. 

 

Example 3.5. Consider the fuzzy graph in Figure 1. In this fuzzy graph (𝑎, 𝑐) and 

(𝑒, 𝑑) are 𝛿 − arcs, and all others are strong arcs. Hence 𝐷 = {𝑏, 𝑐, 𝑑, 𝑓} is a 

minimum F-bridge dominating set, and F-bridge domination number is 𝛾𝐹𝑏(𝐺) = 0.2 +
0.2 + 0.2 + 0.5 = 1.1. 

 
Figure 1: Illustration of F-bridge domination 

                                 

Proposition 3.6. Any F-bridge dominating set of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is a strong 

dominating set of 𝐺.  

  

Remark 3.7. The converse of Proposition 3.6 need not be true as seen in the following 

example.  
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Example 3.8. Consider the fuzzy graph in Figure 2. In this fuzzy graph, 𝐷 = {𝑢, 𝑥} is a 

strong dominating set, but not an F-bridge dominating set, since the induced fuzzy 

subgraph < 𝐷 > is not connected and so no fuzzy bridge in < 𝐷 >. 

 
Figure 2: Example of a strong dominating set but not an F-bridge dominating set 

            

       Since an F-bridge dominating set is necessarily a strong dominating set, the 

following result is obvious.  

 

Proposition 3.9. For any connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) 𝛾𝑠(𝐺) ≤ 𝛾𝐹𝑏(𝐺).  

  

4. F-bridge domination number for classes of fuzzy graphs 

In this section, we have determined the F-bridge domination number of complete fuzzy 

graphs, complete bipartite fuzzy graphs, fuzzy cycles, and join of a fuzzy graph with a 

complete fuzzy graph.  

 

Proposition 4.1. If 𝐺: (𝑉, 𝜎, 𝜇) is a complete fuzzy graph, then 

 𝛾𝐹𝑏(𝐺) =∧ {2𝜇(𝑢, 𝑣): 𝑢, 𝑣 ∈ 𝜎∗}.  

Proof: Since 𝐺  is a complete fuzzy graph, all arcs are strong [25] and each node is 

adjacent to all other nodes. Hence 𝐷 = {𝑢, 𝑣} is an F-bridge dominating set for any 𝑢, 𝑣 ∈
𝜎∗. Hence the result follows.  

 

Proposition 4.2. For any complete bipartite fuzzy graph 𝐾𝜎1,𝜎2
), 

 𝛾𝐹𝑏(𝐾𝜎1,𝜎2
) = {2𝜇(𝑢, 𝑣): 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2}.  

where 𝜇(𝑢, 𝑣) is the weight of a weakest arc in 𝐾𝜎1,𝜎2
.  

Proof: In 𝐾𝜎1,𝜎2
, all arcs are strong. Also, each node in 𝑉1 is adjacent to all nodes in 𝑉2. 

Hence in 𝐾𝜎1,𝜎2
, the F-bridge dominating sets are any sets containing at least 2 nodes, one 

in 𝑉1 and the other in 𝑉2. Hence the set {𝑢, 𝑣} of nodes of any weakest arc (𝑢, 𝑣) in 

𝐾𝜎1,𝜎2
 forms an F-bridge dominating set.  

Hence 𝛾𝐹𝑏(𝐾𝜎1,𝜎2
) = 𝜇(𝑢, 𝑣) + 𝜇(𝑢, 𝑣) = 2𝜇(𝑢, 𝑣). Hence the result.  

 

Theorem 4.3. Let 𝐺: (𝑉, 𝜎, 𝜇) be a fuzzy cycle where 𝐺∗ is a cycle. Then, 𝛾𝐹𝑏(𝐺) =
∧ {𝑊(𝐷): 𝐷   𝑖𝑠  𝑎  𝑠𝑡𝑟𝑜𝑛𝑔  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑  𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔  𝑠𝑒𝑡  𝑖𝑛  𝐺  𝑤𝑖𝑡ℎ |𝐷| ≥ (𝑛 − 2)}, 

where 𝑛 is the number of nodes in 𝐺.  

Proof: In a fuzzy cycle, every arc is strong. Also, the number of nodes in an F-bridge 

dominating set of 𝐺 and 𝐺∗ are the same because each arc in both graphs is strong. In 

graph 𝐺∗, the F- Bridge domination number of 𝐺∗ is obtained as (𝑛 − 2) since every 

strong connected dominating set contains (𝑛 − 2)  nodes [19]. Hence the minimum 
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number of nodes in an F- Bridge dominating set of 𝐺 is (𝑛 − 2). Hence the result follows.  

 

Definition 4.4. ([11,12])  Union of two fuzzy graphs: Let 𝐺1: (𝜎1, 𝜇1) and 𝐺2: (𝜎2, 𝜇2) 

be two fuzzy graphs with 𝐺1
∗: (𝑉1, 𝐸1) and 𝐺2

∗: (𝑉2, 𝐸2) with 𝑉1 ∩ 𝑉2 = 𝜙 

and let 𝐺∗ = 𝐺1
∗ ∪ 𝐺2

∗ = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2) be the union of 𝐺1
∗ and 𝐺2

∗.  

Then the union of two fuzzy graphs 𝐺1  and 𝐺2  is a fuzzy graph 𝐺: (𝜎1 ∪
𝜎2, 𝜇1 ∪ 𝜇2) defined by  

 (𝜎1 ∪ 𝜎2)(𝑢) = {

𝜎1(𝑢)    𝑖𝑓  𝑢 ∈   𝑉1\  𝑉2 

𝜎2(𝑢)  𝑖𝑓  𝑢 ∈   𝑉2\  𝑉1 
 

and 

 

 (𝜇1 ∪ 𝜇2)(𝑢, 𝑣) = {

𝜇1(𝑢, 𝑣)    𝑖𝑓  (𝑢, 𝑣) ∈   𝐸1\  𝐸2 

𝜇2(𝑢, 𝑣)  𝑖𝑓  (𝑢, 𝑣) ∈   𝐸2\  𝐸1 
 

 

Definition 4.5. ([11,12]) Join of two fuzzy graphs: Consider the join 𝐺∗ = 𝐺1
∗ + 𝐺2

∗ =
(𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2 ∪ 𝐸′) of graphs where 𝐸′ is the set of all arcs joining  

the nodes of 𝑉1 and 𝑉2 where we assume that 𝑉1 ∩ 𝑉2 = 𝜙. Then the join of two fuzzy 

graphs 𝐺1 and 𝐺2 is a fuzzy graph 

𝐺 = 𝐺1 + 𝐺2: (𝜎1 + 𝜎2, 𝜇1 + 𝜇2) defined by  

 

 (𝜎1 + 𝜎2)(𝑢) = (𝜎1 ∪ 𝜎2)(𝑢), 𝑢 ∈ 𝑉1 ∪ 𝑉2  

and  

 (𝜇1 + 𝜇2)(𝑢, 𝑣) = {

(𝜇1 ∪ 𝜇2)(𝑢, 𝑣)    𝑖𝑓  (𝑢, 𝑣) ∈   𝐸1 ∪  𝐸2   𝑎𝑛𝑑

𝜎1(𝑢) ∧ 𝜎2(𝑣)    𝑖𝑓  (𝑢, 𝑣) ∈   𝐸′ 
 

 

Theorem 4.6. For any fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), 𝛾𝐹𝑏(𝐾𝜎 + 𝐺) = 2𝜇(𝑢, 𝑣) where 

𝜇(𝑢, 𝑣) is the weight of the weakest arc incident on 𝑢 for any node 𝑢 ∈ 𝐾𝜎.  

Proof: For any fuzzy graph 𝐺, any node in 𝐾𝜎 is adjacent to all other nodes in 𝐾𝜎 and 

𝐺 and note that all such arcs are strong arcs. Hence any set 𝐷 = {𝑢, 𝑣} for each node 𝑢 

in 𝐾𝜎 and any node 𝑣 in 𝐺, is an F- bridge dominating set of 𝐾𝜎 + 𝐺. Hence 𝛾𝐹𝑏(𝐾𝜎 +
𝐺) = 𝜇(𝑢, 𝑣) + 𝜇(𝑢, 𝑣) where 𝜇(𝑢, 𝑣) is the weight of the weakest arc incident on 𝑢 for 

any node 𝑢 ∈ 𝐾𝜎.  

 

5. Minimal F-bridge domination in fuzzy graphs 

In this section, we have defined minimal F-bridge dominating sets and discussed some 

properties.  

 

Definition 5.1. An F-bridge dominating set 𝐷 of a connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is 

called a minimal F-bridge dominating set if no proper subset of 𝐷  is an F-bridge 

dominating set of 𝐺.  

  

Remark 5.2. Every minimum F-bridge dominating set is minimal but not conversely.  
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Example 5.3. Consider the fuzzy graph in Figure 3. 

 
Figure 3: Illustration of minimal F-bridge domination 

 

In the fuzzy graph of Figure 3, (𝑢, 𝑣), (𝑣, 𝑥), (𝑥, 𝑤) are strong arcs and (𝑢, 𝑤) is 

a 𝛿 − arc. 𝐷 = {𝑤, 𝑥} is a minimal F-bridge dominating set but not a minimum F-bridge 

dominating set since the set {𝑢, 𝑣}  forms a minimum F-bridge dominating set with 

𝛾𝐹𝑏(𝐺) = 0.8, but 𝑊(𝐷) = 1.1.  

 Note that in a complete fuzzy graph, the minimum and minimal F-bridge 

dominated sets are the same and any set containing two nodes is the minimum F-bridge 

dominating set. Hence the following theorems are obvious.  

 

Theorem 5.4. Every non-trivial complete fuzzy graph 𝐺 has an F-bridge dominating set 

𝐷 whose complement 𝑉\𝐷 also contains an F-bridge dominating set.  

  

Theorem 5.5. Let 𝐺 be a complete fuzzy graph. If 𝐷 is a minimal F-bridge dominating 

set then 𝑉\𝐷 also contains an F-bridge dominating set.  

 Note that in a complete bipartite fuzzy graph, the end nodes of any weakest arc 

form a minimal F-bridge dominating set. Hence the following theorems are obvious.  

 

Theorem 5.6. Every non-trivial complete bipartite fuzzy graph 𝐺  has an F-bridge 

dominating set 𝐷 of two elements whose complement 𝑉\𝐷 also contains an F-bridge 

dominating set.  

Theorem 5.7. Let 𝐺 be a complete bipartite fuzzy graph. If 𝐷 is a minimal F-bridge 

dominating set of two elements then 𝑉\𝐷 also contains an F-bridge dominating set of at 

least two elements.  

Remark 5.8. Theorems 5.4 to 5.7 are not true in general connected fuzzy graphs as seen 

in the following example.  

Example 5.9. Consider the fuzzy graph given in Figure 4. 

 
Figure 4: Example of an F-bridge dominating set D such that 𝑉\𝐷 does not contain an 

F-bridge dominating set                                
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In this fuzzy graph, all node weights are taken as 1. 𝐷 = {𝑥, 𝑤} is a minimal F-bridge 

dominating set. But 𝑉\𝐷 = {𝑢, 𝑣, 𝑦, 𝑧} does not contain an F-bridge dominating set.  

  

6. F-bridge domination in fuzzy trees 

Note that in the definition of a fuzzy tree, 𝐹 is the unique maximum spanning tree (MST) 

of 𝐺 [27]. 

 

Definition 6.1. ([17]) A fuzzy cut node 𝑤 is a node in 𝐺 whose removal from 𝐺 reduces 

the strength of connectedness between some pair of nodes other than 𝑤.  

 

Definition 6.2. ([3]) A node 𝑧 is called a fuzzy end node if it has exactly one strong 

neighbor in 𝐺. A non-trivial fuzzy tree 𝐺 contains at least two fuzzy end nodes and every 

node in 𝐺 is either a fuzzy cut node or a fuzzy end node.  

  

Definition 6.3. ([2,27]) In a fuzzy tree 𝐺 an arc is strong if and only if it is an arc of 𝐹 

where 𝐹 is the associated unique maximum spanning tree of 𝐺.  

 

Note that these strong arcs are 𝛼-strong and there are no 𝛽-strong arcs in a fuzzy 

tree [24]. Also note that in a fuzzy tree 𝐺 an arc (𝑥, 𝑦) is 𝛼-strong if and only if (𝑥, 𝑦) 

is a fuzzy bridge of 𝐺 [24].  

 

Theorem 6.4. In a non-trivial fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇), each node of an F-bridge dominating 

set is incident on an 𝛼 −strong arc (fuzzy bridge) of 𝐺. 

Proof: Let 𝐷  be an F-bridge dominating set of 𝐺 . Let 𝑢 ∈ 𝐷 . Since 𝐷  is a strong 

dominating set, there exists 𝑣 ∈ 𝑉\𝐷 such that (𝑢, 𝑣) is a strong arc. Then (𝑢, 𝑣) is an 

arc of the unique MST 𝐹 of 𝐺 [2, 27]. Hence (𝑢, 𝑣) is an 𝛼 −strong arc or a fuzzy 

bridge of 𝐺  [17]. Since 𝑢  is arbitrary, this is true for every node of the F-bridge 

dominating set of 𝐺. This completes the proof. 

 

Proposition 6.5. In a non-trivial fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇), no node of an F-bridge dominating 

set is an end node of a 𝛽 −strong arc.  

Proof: Note that a fuzzy graph is a fuzzy tree if and only if it has no 𝛽 −strong arcs [24]. 

Hence the proposition. 

 

Theorem 6.6. In a non-trivial fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇), except 𝐾2, the set of all fuzzy cut 

nodes is an F-bridge dominating set.  

Proof: Let 𝐷 be the set of all fuzzy cut nodes of a non-trivial fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇). Then 

𝐷 is a strong connected dominating set in 𝐺 [10]. Note that the internal nodes of 𝐹 are 

the fuzzy cut nodes of 𝐺 [24]. Also, note that all the strong arcs in 𝐺 are fuzzy bridges. 

Hence 𝐷 is an F-bridge dominating set of 𝐺. 

 

Remark 6.7. The set of all fuzzy end nodes need not be an F-bridge dominating set in a 

non-trivial fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇) except 𝐾2.  

Theorem 6.8. In a fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇), each node of every F-bridge dominating set is 

contained in the unique maximum spanning tree of 𝐺.  

Proof: Since 𝐺  is a fuzzy tree, 𝐺  has a unique maximum spanning tree 𝐹  which 
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contains all the nodes of 𝐺[2, 27]. In particular, 𝐹 contains all nodes of every F-bridge 

dominating set of 𝐺. This completes the proof.  

 

Theorem 6.9. In a non-trivial fuzzy tree 𝐺: (𝑉, 𝜎, 𝜇) except 𝐾2, 𝛾𝐹𝑏(𝐺) = 𝑊(𝑆) where 

𝑆 is the set of all fuzzy cut nodes of 𝐺.  

Proof: Note that the set 𝑆 of all fuzzy cut nodes of 𝐺 is an F-bridge dominating set of 

𝐺 (Theorem 6.6). Here we have to prove that 𝑆 is a minimum F-bridge dominating set. 

Suppose if possible 𝑆 is not a minimum F-bridge dominating set. Then there exists an F-

bridge dominating set 𝑆′ such that 𝑊(𝑆′) < 𝑊(𝑆). Then 𝑆′ has 4 choices. 

 

a) 𝑆′ contains all fuzzy cut nodes and at least one fuzzy end node. 

b) At least one fuzzy cut node say 𝑤  is not contained in 𝑆′  and 𝑆′ 

contains no fuzzy end node. 

c) 𝑆′ is a combination of fuzzy cut nodes and fuzzy end nodes. 

d) 𝑆′ contains only fuzzy end nodes. 

 

In case 1 it is obvious that 𝑊(𝑆′) > 𝑊(𝑆). 

 

In case 2 < 𝑆′ > (the fuzzy subgraph induced by 𝑆′) is not connected if 𝑤 is an 

internal node of < 𝑆 >  (the fuzzy subgraph induced by 𝑆 ) or 𝑆′  is not a strong 

dominating set if 𝑤 is an end node of the fuzzy subgraph < 𝑆 > for,  

A fuzzy tree contains at least 2 fuzzy end nodes. If 𝑤 is an end node of < 𝑆 > 

then one neighboring node of 𝑤 is a fuzzy end node say 𝑢 in 𝐺  and 𝑤 is the only 

strong neighbor of 𝑢 in 𝐺. Therefore, if 𝑤 is not contained in < 𝑆′ > then 𝑢 is not 

strongly dominated by any node in 𝐺. Hence 𝑆′ is not a strong dominating set of 𝐺. 

 

Case 3 has 3 possibilities. 

 

a) 𝐺 has a unique maximum weighted arc adjacent to any fuzzy end node, then 

𝑊(𝑆′) > 𝑊(𝑆) since the weight of maximum arc is contributed to 𝑊(𝑆′) 

but not to 𝑊(𝑆) 

b) The unique maximum weighted arc is adjacent to any fuzzy cut node then 

𝑊(𝑆′) ≥ 𝑊(𝑆) 

c) 𝐺 has more than one maximum weighted arc and one of these is adjacent to a 

fuzzy cut node and the other is adjacent to a fuzzy end node then 𝑊(𝑆′) >
𝑊(𝑆). 

 

In case 4 we can consider cases a, b, and c as in case 3, we get similar results. 

 

Therefore in all the cases, we get a contradiction. Hence the minimum F-bridge 

dominating set of 𝐺 is the set of all fuzzy cut nodes of 𝐺. 

 Hence, 𝛾𝐹𝑏(𝐺) = 𝑊(𝑆).  

 

7. F-bridge domination in complement of fuzzy graphs 

Sunitha and Vijayakumar [26] have defined the present notion of the complement of a 

fuzzy graph. Sandeep and Sunitha have studied the connectivity concepts in a fuzzy graph 
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and its complement [21]. 

 

Definition 7.1. ([26]) The complement of a fuzzy graph G, denoted by 𝐺 or 𝐺𝑐 is defined 

to be 𝐺 = (𝑉, 𝜎, 𝜇) where 𝜇(𝑥, 𝑦) = 𝜎(𝑥) ∧ 𝜎(𝑦) − 𝜇(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉.  

 

Bhutani has defined the isomorphism between fuzzy graphs [1]. 

 

Definition 7.2. ([1]) Consider the fuzzy graphs 𝐺1: (𝑉1, 𝜎1, 𝜇1) and 𝐺2: (𝑉2, 𝜎2, 𝜇2) with 

𝜎1
∗ = 𝑉1  and 𝜎2

∗ = 𝑉2 . An isomorphism between two fuzzy graphs 𝐺1  and 𝐺2  is a 

bijective map ℎ: 𝑉1 → 𝑉2 that satisfies  

 

 𝜎1(𝑢) = 𝜎2(ℎ(𝑢)) for all 𝑢 ∈ 𝑉1.  

 

 𝜇1(𝑢, 𝑣) = 𝜇2(ℎ(𝑢), ℎ(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉1 and we write 𝐺1 ≈ 𝐺2.  

 

Definition 7.3. ([26]) A fuzzy graph 𝐺 is self-complementary if 𝐺 ≈ 𝐺.  

  

Theorem 7.4. If 𝐺 is a connected fuzzy graph with no 𝑀 −strong arcs then 𝐺 and 𝐺𝑐 

contain at least one F-bridge dominating set.  

Proof: If 𝐺  is a connected fuzzy graph with no 𝑀 − strong arcs then 𝐺𝑐  is also 

connected [21]. Hence both 𝐺 and 𝐺𝑐 contain at least one F-bridge dominating set. 

 

Remark 7.5. There are fuzzy graphs which contain 𝑀 −strong arcs such that 𝐺 and 𝐺𝑐 

contain F-bridge dominating set [Example 7.6]. 

  

Example 7.6. Consider the fuzzy graph in Figure 5. Here (𝑣, 𝑤) is the only 𝑀 − 𝑠𝑡𝑟𝑜𝑛𝑔 

arc in 𝐺 and 𝐺 and 𝐺𝑐 are connected. In 𝐺, 𝐷 = {𝑣, 𝑤} is an F-bridge dominating 

set and in 𝐺𝑐, 𝐷 = {𝑢, 𝑤} is an F-bridge dominating set.  

 

 
Figure 5: Illustration of an F-bridge dominating set in a fuzzy graph and its complement 

 

Theorem 7.7. Let 𝐺: (𝑉, 𝜎, 𝜇) be a fuzzy graph. Then each of 𝐺 and 𝐺𝑐 contain at least 

one F-bridge dominating set if and only if 𝐺 contains at least one connected spanning 

fuzzy subgraph with no 𝑀 −strong arcs.  

Proof: Note that for a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), 𝐺 and 𝐺𝑐 are connected if and only if 

𝐺 contains at least one connected spanning fuzzy subgraph with no 𝑀 −strong arcs [21]. 

Thus, it follows that for a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), 𝐺 and 𝐺𝑐 contains at least one F-

bridge dominating set if and only if 𝐺 contains at least one connected spanning fuzzy 
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subgraph with no 𝑀 −strong arcs. 

 

Theorem 7.8. Let 𝐺: (𝑉, 𝜎, 𝜇) be a fuzzy graph. Then each of 𝐺 and 𝐺𝑐 contain at least 

one F-bridge dominating set if and only if 𝐺 contains at least one fuzzy spanning tree 

having no 𝑀 −strong arcs.  

Proof: Note that for a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), 𝐺 and 𝐺𝑐 are connected if and only if 

𝐺 contains at least one fuzzy spanning tree having no 𝑀 −strong arcs [21]. Thus it follows 

that for a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), each of 𝐺  and 𝐺𝑐  contain at least one F-bridge 

dominating set if and only if 𝐺  contains at least one fuzzy spanning tree having no 

𝑀 −strong arcs. 

 

Theorem 7.9. If 𝐺: (𝑉, 𝜎, 𝜇) is a connected self-complementary fuzzy graph, then each of 

𝐺 and 𝐺𝑐 contain at least one F-bridge dominating set.  

Proof: Since 𝐺 is self complementary 𝐺 is isomorphic to 𝐺𝑐. Also, 𝐺𝑐 is connected 

since 𝐺 is connected. Hence the result. 

 

Corollary 7.10. If 𝐺 is a connected fuzzy graph such that 𝜇(𝑢, 𝑣) =
1

2
(𝜎(𝑢) ∧ 𝜎(𝑣)) 

for all 𝑢, 𝑣 ∈ 𝜎∗ then each of 𝐺 and 𝐺𝑐 contain at least one F-bridge dominating set.  

Proof: Since 𝜇(𝑢, 𝑣) =
1

2
(𝜎(𝑢) ∧ 𝜎(𝑣))  for all 𝑢, 𝑣 ∈ 𝜎∗ , 𝐺  is self complementary 

[26]. Hence the result follows. 

 

8. Practical application 

The mesh topology is a fundamental network configuration for establishing connections 

between network devices or computers to facilitate data sharing among all devices. It aims 

to prevent the entire network from failing if a device or network experiences issues. The 

network components are interconnected to a certain extent, and no central control exists. 

Most devices are connected to two or three network devices or computers, which play a 

dominant role. Essentially, every device is connected to at least one of the dominant 

networks, minimizing the risk of data loss due to this network topology. 

Consider the network presented in Table 1 for illustrating the use of fuzzy bridge 

domination in a partial-mesh topology. Nodes A, B, C, D, and E can be defined as follows: 

Table 1. Nodes comprising the network. 

 

Node          System  

 A            Data warehouses 

 B            Information management systems 

 C            Transaction processing systems 

 D            Executive information systems 

 E            Decision support systems 

Assume that each system is a node and that the relationships between the systems 

are represented by the arcs. Prioritizing the amount of data collected from the systems is 

achieved by assigning weights to arcs. 
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Figure 6: Partial mesh topology representation of computer networks 

                              

From the Fig. 6, {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, {𝐴, 𝐵, 𝐷, 𝐶}, {𝐴, 𝐵, 𝐷}, {𝐵, 𝐷, 𝐸}, {𝐵, 𝐷} are 

some strong dominating sets in 𝐺. Further, (𝐵, 𝐶), (𝐵, 𝐷) and (𝐷, 𝐸) are fuzzy bridges 

of 𝐺. 

In this application, the F-bridge dominating set with induced fuzzy subgraph is 
{𝐵, 𝐷}. 

If suppose one of the devices 𝐴, 𝐶,  or 𝐸  breaks down, then the rest of the 

networks remain intact due to their connection with the strongly connected dominating 

elements 𝐵 and 𝐷 through the fuzzy bridge. The same procedure applies to complex 

network connections.  
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